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Abstract— Objective: Connectivity patterns of interictal 

epileptiform discharges (IED) are all subtle indicators of where the 

3D source of a seizure could be located. These specific patterns are 

explored in the recorded electroencephalogram (EEG) signals of 

20 individuals diagnosed with focal epilepsy to assess how their 

functional brain maps could be affected by the 3D onset of a 

seizure. Methods: Functional connectivity maps, estimated by 

phase synchrony among EEG electrodes, were obtained by 

applying a data-driven recurrence-based method. This is 

augmented through a novel approach for selecting optimal 

parameters that produce connectivity matrices that are deemed 

significant for assessing epileptiform activity in context to the 3D 

source localization of seizure onset. These functional connectivity 

matrices were evaluated in different brain areas to gauge the 

regional effects of the 3D epileptic source. Results: Empirical 

evaluations indicate high synchronization in the temporal and 

frontal areas of the effected epileptic hemisphere, while strong 

links connect the irritated area to frontal and temporal lobes of the 

opposite hemisphere. Conclusion: Epileptic activity originating in 

the temporal or frontal areas is seen to affect these areas in both 

hemispheres. Significance: The results obtained express the 

dynamics of focal epilepsy in context to both the epileptogenic zone 

and the affected distant areas of the brain. 

 
Index Terms— Electroencephalography (EEG), Epileptogenic 

zone, Focal epilepsy, Functional connectivity, Interictal 

epileptiform discharges (IED), Nonlinear recurrence-based 

methods. 

I. INTRODUCTION 

pilepsy is a chronic neurological disorder distinguished by 

the abnormal synchronous activity of brain neurons. This 

abnormal activity, consisting of concurrent neuronal electric 

discharges, causes a nervous attack known as seizure [1]. 

Epileptic seizures, which are clinically recognized as ictal 

events, are categorized into two major groups of focal and 

generalized based on the type of seizure origin [2]. In general, 

the genesis of a focal seizure is limited to a single hemisphere 

while a generalized seizure has distributed sources engaging 

 
This study is supported by the National Science Foundation under grants: 

CNS 1532061, CNS-1551221, CNS-1429345 and CNS-1338922. Support of 

the Ware Foundation is also greatly appreciated. Ms. Hoda Rajaei is supported 

this year as Postdoctoral Scientist by the University Graduate School at Florida 
International University.  

H. Rajaei, *M. Cabrerizo (cabreriz@fiu.edu), P. Janwattanapong, and M. 

Adjouadi are with the Center for Advanced Technology and Education 
(CATE), Florida International University, Miami, FL, USA. 10555 West 

both hemispheres. A focal seizure can be seen in 60 percent of 

people with epilepsy [2]. 

Epilepsy is mainly characterized by its seizures or ictal 

events. However, there are between seizure incidents known as 

interictal epileptiform discharges (IEDs), which carry 

significant traits of this brain disorder. Due to the 

unpredictability of seizures, a thorough investigation of 

interictal events could enhance our understanding and 

management of the disease [3]. 

Due to its simplicity and noninvasive nature, scalp 

electroencephalography (EEG) recordings remain to this day 

the first recording modality utilized for diagnosis of epilepsy [3, 

4]. Practical considerations, cost-effectiveness, and high 

temporal resolution make of the EEG recording modality a 

convenient platform to investigate the epileptogenesis of the 

disease by studying ictal and interictal episodes in patients with 

epilepsy [3]. In many studies, interictal EEG intervals were 

frequently utilized to locate the epileptogenic zone (EZ) in focal 

epilepsy [5]. In [6], IEDs were used to locate the epileptic 

source of the high-density scalp EEGs in a population of 38 

focal epileptic individuals, and results were precisely correlated 

with the epileptogenic foci found through seizure onset. 

However, authors in [7] differentiated the brain areas affected 

by IEDs and regions that initiated the seizure and concluded the 

agreement between these zones in 75% of their patients. 

Recent studies consider epilepsy as a network disease, which 

means that in spite of the epileptic focus, there is a network of 

neuronal activities that contribute to the unusual behavior of the 

disease [8-10]. It is observed that IEDs as interictal 

abnormalities make alternations to the default network of the 

brain [11]. As an example, the effects of spikes in connectivity 

of mesial temporal lobe epilepsy were tested using frequency 

domain analysis of EEG signals in [12], which resulted in 

increased connections in the presence of spikes. A model-based 

probabilistic connectivity analysis was thus performed during 

spike-wave discharges in [13], and authors concluded that 

higher synchrony, larger amplitude, and complex spatial profile 

were related to the spike activity. In [14], the variation of 
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epileptic networks during interictal spikes were compared in the 

right and left temporal lobe epilepsy by applying the electrical 

source imaging analysis to the high-density EEG recordings. 

Authors of this study have determined that there was a 

significant difference in connectivity networks of these two 

disease types. As another application, directed functional 

connectivity networks, which were obtained from high-density 

EEG, were used to differentiate between the three groups of 

right temporal lobe epilepsy (RTLE), left temporal lobe 

epilepsy (LTLE) and normal controls [15]. In [16], functional 

connectivity helped in electrical source imaging to precisely 

locate the seizure onset area during ictal events. In [17], a 

directed graph analysis method was adopted to locate the origin 

of IED activity using intracranial data. Results were 

corroborated with the clinically determined epileptogenic 

source. In [18], a network analysis of IEDs over stereotactic 

EEG data proved a correlation among spike cluster’s location 

and seizure onset zone. 

The scalp EEG signal recorded by a single electrode is 

viewed as a spatiotemporally filtered version of the local field 

potential (LFP) integrated over an area of about 6 cm2 or more. 

Under most conditions, this area will be located near and around 

the electrode location. Therefore, the relation between electrode 

signals could lead to the cortical functional relation rather than 

the structural connections that address biological interactions 

between neurons. Many connectivity measures have been 

proposed in the literature to express the dependence among 

electrodes in the time/frequency domain as well as by utilizing 

data-driven analyses [19-21]. Phase synchronization based 

metrics are proved to be more suitable for analyzing the 

functional connectivity networks since such metrics highlight 

the synchrony of cortical modules rather than the signal 

amplitude relations [22, 23]. The synchronization metrics can 

be realized using linear measurements like coherence, or 

nonlinear methods that can be adopted, albeit with added 

computational requirements [24-26]. Some new methods have 

been developed that suggest the calculation of phase synchrony 

between two signals using the FFT signal conversion [27, 28]. 

Since the nonlinear nature of brain signals and the non-

stationary features of the EEG can be well explained as complex 

dynamic oscillators [29], phase synchronization can be well 

estimated by applying recurrence-based methods to such 

complex systems [8, 30, 31]. 

When applying nonlinear methods, data compatibility needs 

to be examined [32, 33] since a linear correlation or filtered 

noise in the data might lead to unexpected outcomes [34]. 

Surrogate data testing is a reliable statistical method that helps 

evaluate the existence of nonlinearity as well as confirming the 

significance of the obtained results [29, 32, 35]. This method 

works based on generating surrogates with similarities to the 

original data but also with some randomness in its nature [22]. 

The method tests the desired metric against the null hypothesis 

of no significant difference among results between original and 

surrogate data. In fact, the more similar the surrogate is to the 

original data, the more reliable the results will be [32]. Various 

techniques are available to generate a surrogate. Surrogate data 

can be generated easily by shuffling the components of time 

series (e.g., random shuffling) or applying more advanced 

methods based on the Fourier transform to maintain some 

spectral similarities with the original signal [34]. Among all 

methods that can be used to create a surrogate data, the iterative 

Amplitude Adjusted Fourier Transform (iAAFT) remains the 

most widely-used method [34]. The surrogate data testing 

method has been used in most of the recurrence-based studies, 

but in this study, we have used this useful statistical test in a 

novel manner to find suitable parameters that could facilitate 

the interpretation of results and enhance the analysis. 

Source localization using scalp EEG is a technique 

commonly used to find the epileptogenic area in patients for 

presurgical evaluation and planning. At this stage, the epileptic 

focus needs to be localized as accurately as possible. To achieve 

this goal, high-density EEG and source level directed functional 

connectivity are proven to be most useful [36, 37]. However, 

researchers need to deal with the head model selection and 

inverse solutions that inherently face practical limitations and 

introduce errors to the 3-D localization process [38-40]. As per 

our previous study [41], interictal epileptic activity causes high 

synchronization through the brain with a higher number of 

strong connections in the connectivity maps. In our previous 

work, we have investigated the differences between 

connectivity maps in focal and generalized epilepsy, yielding 

well-defined regional activities in focal epilepsy and scattered 

activity in all regions of the brain for the generalized case [42]. 

Here in this study, we tried to investigate the footprints of the 

epileptic source in functional connectivity achieved from the 

standard electrode resolution of the 10-20 EEG system. Since 

this kind of EEG recording is done at the epilepsy diagnosis 

stage, we sought to show how functional connectivity can 

indeed help the neurologist get an idea about the disease type in 

these early stages of the diagnosis without recourse to a more 

intensive investigation that may well yield the same outcome. 

In this research, we have adopted a nonlinear recurrence-based 

method to estimate the phase synchronization properties of 

functional brain modules using the interictal EEG time series. 

We have used a novel technique to find parameters that result 

in what we termed as significant functional connections. We 

have investigated the nature of these connectivity maps as a 

result of focal IEDs in temporal and frontal lobe epileptic 

patients. These results can be used in concert to the 3D source 

of seizure onset [43] by simply using interictal EEG activity, 

and we assert that the interplay between the changes in the 

connectivity maps in relation to the determined 3D source could 

eventually aid the validation of the region around and near the 

3D source location, which in turn could help gauge the causal 

effect on these activity maps based on the type of seizure as 

detailed in Section III.  

II. MATERIAL AND METHODS 

A. Data 

In this study, we have collected the scalp EEG recordings of 

twenty adult individuals (10 males and 10 females). Nineteen 

electrodes EEG signals, including Fp1, F7, T3, T5, O1, F3, C3, 

P3, Fz, Cz, Pz, Fp2, F8, T4, T6, O2, F4, C4 and P4, were 

recorded based on the 10-20 international placement montage. 

Signals were digitized using the variable sampling frequencies 

of 512, 256 and 200 Hz. The signals were all referenced with 

respect to channel Cz. All participants were diagnosed with 

https://biblio.ugent.be/person/000080127151


0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2919263, IEEE
Transactions on Biomedical Engineering

TBME-01355-2018 3 

focal epilepsy. The assessment process was performed based on 

the dipole analysis of selected IEDs, and the specified 

location(s) were reviewed and confirmed by a group of 

neurologists at Baptist Hospital of Miami.  

The epileptic focus was found in the right/left temporal lobes 

for ten subjects, for six individuals the epileptic source was 

diagnosed in the right/left of the frontal area, and the remaining 

four subjects had bilateral epileptic focus in the temporal or 

frontal lobes. Table I provides detailed information on the study 

population. The data was recorded at Baptist Hospital of Miami 

and subjects were instructed to be relaxed and avoid movement 

as much as possible during the EEG recording session. The 

study process was approved by the Institutional Review Board 

of Florida International University (protocol number: IRB-

150247). The EEG data segments considered in this study were 

those containing interictal discharges as marked by expert 

neurologists.  

B. Preprocessing and Artifact Rejection 

Data were preprocessed before segmentation to highlight 

brain-related activities and minimize the effects of unwanted 

noise. We applied a 4th order Butterworth band-pass filter with 

a passing frequency range of 0.5 to 70 Hz. The band-pass filter 

was applied with zero phase to eliminate the distortion effect of 

the filter on signals [44]. A notch filter with a frequency of 

60Hz is used to suppress the AC line noise. Signal baselines 

were also removed for all EEG data.  

In EEG data analysis, the problem of common sources, 

whether as volume conduction or active reference electrode 

affects the connectivity results [24, 45]. A common reference 

electrode causes a distortion in calculated synchrony among 

electrodes and results in false phase synchronization values 

[27]. In our study, we re-referenced the data sets to average 

montage to overcome this problem. Average reference is 

normally used in connectivity analysis of EEG to solve this 

problem [28]. Artifact contaminations such as eye blink, jaw 

and muscle movements are removed from the data by applying 

both the principal component analysis (PCA) and independent 

component analysis (ICA) using EEGLAB software [46]. 

C. Segmentation 

The International Federation of Societies for 

Electroencephalography and Clinical Neurophysiology 

(IFSECN) categorizes interictal discharges into four categories 

of sharp waves, spikes, spike-wave complexes and polyspike-

wave complexes [47]. Generally, sharp waves and spikes are 

associated with focal epilepsy. Since our study population 

consists mainly of patients with focal epilepsy, we had mostly 

sharp waves and spikes reflected as the interictal epileptic 

activity, but there were specific instances where a wave 

followed the spike.  

The filtered, artifact-free EEG data were subdivided into 

three-second segments as suggested by the neurologist as a 

means for such segments to be physiologically and 

computationally meaningful. Epileptiform waves were aligned 

to the same position in the segment in order to have an equal 

share of epileptiform activity in the selected segments. One 

hundred and four (104) segments of EEG including spike or 

sharp wave were extracted from the recorded EEG data. These 

segments were partitioned such that the spike peak is situated 

in the middle for all extracted segments [41], thus allocating the 

same amount of time before and after the occurrence of a spike. 

Fig. 1 illustrates sample data with a spike, a spike followed by 

a wave and a sharp wave. 

D. Functional Connectivity Matrices  

The human brain is a complicated system, and EEG signals, 

as a representation of brain behavior, inherit this complexity. 

We have applied a nonlinear method, which is based on 

complex dynamical systems to extract mutual coupling of the 

individual dynamics of the brain units, and hence it is useful to 

investigate the behavior of brain dynamics in a reconstructed 

multi-dimensional space referred to as the phase space. 

Recurrence, which is the basic property of complex dynamic 

systems, is quite beneficial for performing system assessment. 

It is simply expressed as the return (revisit) of system 

trajectories to a specific neighborhood or site after a period of 

time. Recurrence is thus the basis for analyzing phase 

synchrony between two nonlinear systems. The recurrence plot 

(RP) can serve as a visualization tool that depicts the behavior 

of the multidimensional reconstructed trajectory through the 

advent of recurrence. The RP patterns and features are 

quantified by a set of techniques, known as recurrence 

quantification analysis (RQA) [20, 29]. As a further extension 

of RQA methods, RPs were utilized to estimate the phase 

synchronization (PS) between the dynamics of two complex 

systems [48]. This method which is known as the correlation 

Table I. Demographic information of participants 

Individual 

ID 

Gender Sampling 

Rate (Hz) 

Epileptic 

Source Region 

Number of 

Segments 

P1 F 512 LT 6 

P2 M 512 RT 3 

P3 M 512 RT 5 

P4 M 512 RT 5 

P5 F 512 LT 5 

P6 F 512 RT 6 

P7 F 512 RT 4 

P8 M 512 LT 6 

P9 M 512 LT 5 

P10 F 512 RT & LFT 5 

P11 F 256 LFT & RFT 4 

P12 M 512 LF 5 

P13 M 512 LFT & RFT 7 

P14 M 512 LFT & RFT 10 

P15 F 256 RF 5 

P16 F 200 LF 5 

P17 M 200 LF 3 

P18 F 256 RT 5 

P19 M 200 RF 4 

P20 F 512 LF 6 

T: Temporal lobe, F: Frontal lobe, R: Right, L: Left  
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between probabilities of recurrences (CPR) estimates the PS 

among signals of the EEG electrodes [30]. In fact, the CPR 

method finds the synchronized periodic rhythms hidden in the 

signal and estimates the amount of phase synchrony between 

them [29]. This characteristic makes this method a strong 

candidate for analyzing natural complex dynamical oscillators 

like brain signals. 

Based on the dynamical systems theory, the first step is to 

reconstruct a system trajectory into the phase space. The signal 

trajectory can be easily rebuilt using time delay theorem as 

conveyed in [30]. As per this theory, the signal 𝑋 =
[𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁] with 𝑁 entries, reconstructed into a 

trajectory, 𝑦𝑖 , in phase space, can be defined as follows: 

𝑦𝑖
𝑇 = [𝑥𝑘  𝑥𝑘+𝑡  𝑥𝑘+2𝑡  ⋯ 𝑥𝑘+(𝑚−1)𝑡]                 (1) 

𝑚 ≥ 1, 𝑡 ≥ 1, 𝑖 = 1, ⋯ 𝑁 𝑎𝑛𝑑 𝑘 = 1, ⋯ , 𝑁 − (𝑚 − 1)𝑡 

Where 𝑚 defines the embedding dimension, 𝑡 represents the 

time delay, and 𝑦𝑖  defines the points on the trajectory. The 

trajectory preserves the topological properties of the original 

signal; therefore, the spike activities are reflected in these 

constructed routes [45]. 

The brain signal trajectories have recursive behavior, 

meaning the trajectory returns to its neighborhood after a passed 

time thus establishing a recurrence. The amount and pattern of 

recurrences explain the signal behavior [45]. Since a direct 

investigation of trajectory behavior in phase space is not 

feasible, RPs are developed instead to assess such behavior 

[43]. Calculation of recurrence is consequently formulated as in 

(2). 

𝑅𝑖,𝑗 = Θ(𝜀−∥ 𝑦𝑖 − 𝑦𝑗 ∥)                        (2) 

Based on this relation, the recurrence between points 𝑖 and 𝑗, 

𝑅𝑖,𝑗 , is said to occur when the Euclidean distance between these 

two points in the trajectory is less than a set threshold 𝜀. The 

function Θ is a Heaviside step function making the resulting 

value, 0 for no recurrence, or 1 when recurrence occurs. 

Calculation of recurrence for all points of the trajectory leads to 

the matrix of recurrence plot. 

Various behaviors in trajectories create a variety of specific 

patterns in the RPs [29]. These specifications, which are 

extracted by applying the RQA techniques, are used to 

characterize the different signal states. The periodic rhythms are 

represented as a long diagonal line in the RPs where the 

constant vertical distances indicate the period of the signal [29]. 

In the case of chaotic systems, the diagonal lines are interrupted, 

and the vertical lines are not consistent, thus representing 

different periodicities that are concealed in the original signal. 

If two dynamic systems develop a PS, the vertical distances in 

both RPs are said to be simultaneous [29]. The RPs diagonal 

length and the vertical line can be utilized to calculate the 

probability of recurrence to estimate the PS among electrodes 

of one EEG segment. This probability of recurrence can be 

designated as a generalized autocorrelation of the original 

signal by calculating the number of returns of the trajectory to 

a specific neighborhood as defined in (3): 

𝑝(𝜏) =
1

𝑁−𝜏
∑ 𝑅𝑖,𝑖+𝜏

𝑁−𝜏
𝑖−1                         (3) 

Where 𝜏 is the time delay and 𝑁 is the original signal length. 

The 𝑝(𝜏) represents the system recurrence (diagonal lines in 

RPs) based on time delays. If two systems develop phase 

synchronization, the peaks of 𝑝 (𝜏) of the two signals will 

coincide. Using this notion, the value of phase synchronization 

between two-time series can be calculated using the following 

equation: 

𝐶𝑃𝑅𝑖,𝑗 =
∑ {(𝑝𝑖(𝜏)−𝑚𝑖)⋅(𝑝𝑗(𝜏)−𝑚𝑗)}

𝜏𝑚−1
𝜏=𝜏𝑒

𝜎𝑖𝜎𝑗
                (4) 

𝐶𝑃𝑅𝑖,𝑗 defines the correlation between the probabilities of 

recurrences, with 𝑚𝑖 being the mean and 𝜎𝑖 being the standard 

deviation of 𝑝𝑖  (𝜏). The CPR values range from zero when there 

is no PS between two signals and reaches a value of 1 for the 

complete PS between the two signals [49]. Calculating all 

mutual CPR values among all electrodes of one EEG segment 

establishes the phase synchronization matrix of that EEG 

segment as in (5). 

𝐶𝑃𝑅𝑁×𝑁 = [

𝐶𝑃𝑅1,1 ⋯ 𝐶𝑃𝑅1,𝑁

⋮ ⋱ ⋮
𝐶𝑃𝑅𝑁,1 ⋯ 𝐶𝑃𝑅𝑁,𝑁

]                   (5) 

Considering the values of phase synchronization as the 

strength of connections between brain modules in EEG signals, 

the brain connectivity matrix is obtained. In fact, two electrodes 

are considered phase synched, if the CPR value is high (i.e., 

closer to 1) and are deemed having no coupling if the value of 

phase synchronization is low (near 0) [48]. 

E. Parameters Selection and Evaluation 

To achieve a reliable connectivity matrix, optimal selection 

of suitable parameters (time lag, embedding dimension and 

recurrence threshold) is essential. Various methods have been 

suggested in the literature to find these appropriate parameters. 

A very small value for the time lag causes to capture no new 

information in the successive sampling and creates a redundant 

situation, while a too large value results in potential information 

loss [34]. Mutual information, considered sensitive to subtle 

Fig. 1. Sample EEG data segments, (a) Spike with regular background 

activity from patient P2 where the IED is prominent in F8 and T4. (b) Spike 

followed by a wave with high background activity from patient P3 where the 
spike is still noticeable in some channels. (c) Sharp wave with propagation 

of IED activity in Patient P5 where the spike is not easily localized as in (a). 
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changes in the brain, is one of the most popular measures used 

to determine the optimal time lag [34, 51]. The suitable time lag 

can be found at the occurrence of the first local minima of the 

auto-mutual information curve of the signal [34, 51, 52]. On the 

other hand, the embedding dimension should be large enough 

to capture the dynamics of the signal but with the caution that 

very large embedding dimension would make the calculation 

expensive [48, 51]. The Kth nearest neighbor and Cao’s method 

has been used extensively to find an optimal embedding 

dimension, [34, 52, 53]. Recurrence threshold is the parameter 

that affects the advent of recurrence. A value of 10% in space 

average diameter is assumed empirically appropriate for such a 

recurrence threshold [29]. 

Despite the fact that the aforementioned methods are used to 

find optimal parameters, using these factors is not a guarantee 

for obtaining what we designate as significant connectivity 

matrices. To assure the significance of the calculated results, we 

used a surrogate data testing technique to suggest an algorithm 

for fine tuning the proper parameters and evaluate the 

significance of the connectivity matrices. The method works 

based on generating surrogates of original signals and test for 

the null hypothesis of similarity between two connectivity 

matrices generated from original and surrogate signals. 

Rejection of the null hypothesis is an indication that the 

connectivity matrix is significant. To generate the surrogate 

data, we have used the iAAFT method mentioned earlier, which 

showed more credible results [35]. The number of surrogates 

calculated for each EEG segment depended on the confidence 

level we needed for the test. According to the literature [35], for 

the 𝛼 level of significance the minimum number of surrogates 

𝑀, as defined in (6), can be estimated as follows: 

𝑀 =
2𝐾

𝛼
− 1                                  (6) 

Where 𝐾 is an integer normally chosen as 1 for simplicity 

sake. Hence, for a two-sided test with a 95% confidence 

interval, 𝛼 will be 0.05, and M will yield 39 surrogates that 

would be needed in that case. 

The connectivity matrices were calculated for the original 

data as well as for all generated surrogates; then each surrogate 

connectivity matrix was tested against the original matrix using 

the Wilcoxon rank sum test. If the rejection rate of the null 

hypothesis was more than 60%, the original connectivity matrix 

is considered to be significant. 

The surrogate data test was performed for a different 

combination of parameter values (time lag range of [2~14] and 

dimension range of [3~10]) to find a set of parameters that lead 

to significant results. Fig. 2 shows the suggested structure of the 

algorithm for fine tuning the parameters. 

We had chosen the ranges to include the optimal parameters 

obtained via mutual information and the Cao’s method. The 

final values of the parameters were chosen in a way that 

connectivity matrices for all of the segments be significant. We 

have started with a time lag of 3 and an embedding dimension 

of 6, which are assumed computationally optimal; and if the 

resulting connectivity matrix is not significant, we adjusted 

these parameters until significant connectivity is obtained. We 

have reduced the rejection rate of the connectivity matrices to 

27.9% by using this method. 

III. RESULTS 

The connectivity matrices from 104 segments of EEG data 

have been evaluated for the regional and distant patterns related 

to the interictal epileptiform discharges (IED). Parameters were 

adjusted to yield significant functional connectivity values 

using the surrogate data method, and the significance of the 

connection values was assessed. There were 4 EEG segments 

which were excluded from our study as they did not yield 

significant connectivity matrices for the assumed range of 

parameters. The remaining 100 connectivity matrices were thus 

considered for the assessment of the epileptogenic zone activity 

using functional connectivity maps. 

To highlight the behavior of a given epileptogenic zone in the 

connectivity maps, we counted the activity of each region as 

local connectivity and the strong links that connected two local 

areas as distant connections. We have divided the brain cortex 

into the six functional areas as depicted in Fig. 3. Table II lists 

the placement of the electrodes within these brain areas. 

We investigated the relationship between local areas to 

obtain the propagation patterns resulting from the IED activity. 

We considered couplings between the left frontal and left 

temporal (FL-TL), right frontal and right temporal (FR-TR), 

left temporal and left parietal (TL-PL), right temporal and right 

parietal (TR-PR), as the ipsilateral inter-relation of local zones, 

and the inter-hemispheric relationships are also checked by 

observing links between the left and right frontal regions (FL-

FR), and left and right temporal regions (TL-TR). 

A. Threshold selection and assessment of connectivity maps 

We separated the links associated with the IED activity by 

thresholding the connectivity matrices and generating the 

connectivity maps. The PS value among electrodes ranged from 

0 (indicating no synchronization) to 1 (complete coupling). 

Based on the literature, the CPR value of 0.5 or 0.6 denotes the 

start of synchrony among the two systems [30, 50]. Therefore, 

a higher threshold is deemed sufficient to best-represent a well-

established link. In our application, the segment’s background 

activity should be considered since there was some variability 

among segments belonging to the same patient. Since the IED 

activity is associated with stronger links [42], adjustments of 

the threshold needed to be made in a way to delineate the IED-

related connections. Therefore, we considered a general 

threshold of 0.75 as the minimum value for such connections. 

It means that two electrodes were considered connected if the 

value of CPR was higher than or equal to 0.75 and all lower 

values are assumed as no connection between aforesaid 

electrodes. Given that thresholds are subjective, we assumed 

normal distributions of the connection strengths in the 

connectivity patterns and made use of the mean (μ), standard 

deviation (σ) and upper percentile (z) measures to determine an 

adjusted threshold based on the following formula: Fig. 2. Structure of the algorithm for fine tuning of the parameters 



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2919263, IEEE
Transactions on Biomedical Engineering

TBME-01355-2018 6 

𝑇𝑎 = 𝜇 + 𝑧𝜎        (7) 

{
 𝑖𝑓 𝑇𝑎 ≤ 0.75, 𝑡ℎ𝑒𝑛 𝑇 = 0.75

𝑖𝑓 𝑇𝑎 >  0.75, 𝑡ℎ𝑒𝑛 𝑇 = 𝑇𝑎
 

Where 𝑇𝑎 is the adjusted value and T is the threshold. To 

visualize better this problem, Fig. 4 compares two segments 

from a same individual (P6) with different background activity. 

As depicted in part (a), the same threshold of 0.75 is applied to 

the connectivity matrices and shows a full connectivity map for 

segment 2. In part (b) the connection distribution for the two 

segments were shown in the same plot, it can be observed that 

segment 2 resulted in higher value connections. In Part (c) the 

connectivity maps are instead shown with the adjusted 

threshold formula in (7), where it can be seen that the two 

connectivity maps are more homogeneous with regards to 

connection density. 

To correlate the region's activity with the epileptogenic zone, 

we quantified the activity of local regions by calculating the 

activity percentage for each local area. Activity percentage is 

obtained by dividing the number of available connections over 

the number of possible connections for that area as formulated 

in (8): 

𝑃𝐴𝑥 =
𝑙𝑥

𝐿𝑡
× 100                                 (8) 

Where 𝑃𝐴𝑥 denotes the percentage activity for region 𝑥. The 

value of 𝑙𝑥 defines the number of available connections in the 

region and 𝐿𝑡 is the number of possible connections in the 

relevant local region. Local brain areas were ranked based on 

the percentage activity to determine the most active regions. 

In our study population, the IED with the highest voltage 

field was observed in electrodes that are located in the 

epileptogenic zone or nearby areas. However, there were three 

cases related to patients P5, P7, and P9 where electrodes with 

the largest epileptic activity were not as prominent with respect 

to other electrodes. Referring back to Fig 1, the different EEG 

segments clearly show the complexity of such signals and the 

different ways interictal spikes manifest themselves.  For 

example, Fig 1(a) shows a sample data segment of patient P2 

with clear spike activity observed in F8 and T4 and with a 

relatively smooth EEG background activity, but in Fig. 1 (b), 

showing a segment from patient P3, while one of the spikes is 

prominent, most others seem overwhelmed by the higher EEG 

background activity. Spikes showed in Fig. 1 (c) of patient P5 

seem to be more uniform across the channels, but the spikes are 

just slightly more prominent than the EEG background activity.  

These different ways that spikes manifest themselves 

underlines the importance of having a mathematically derived 

threshold as expressed in (7) that could provide uniformity in 

the way to express the connectivity maps and to allow for more 

meaningful comparisons and assessments. 

We have thus compared the local brain activity statistically 

by combining the regional synchronization values of several 

segments. The non-parametric statistical test of Kruskal Wallis 

(analysis of variance with the null hypothesis of the same 

median) has been conducted per individual. These tests were 

followed by the post-hoc analysis with Bonferroni correction 

for the significance value, to highlight the areas which were 

significantly different. Table III lists the test results with the 

calculated P-values.  

B. Individuals with temporal lobe epileptic focus 

We have investigated the individuals grouped based on the 

same location of the epileptic source. In patients with the 

epileptogenic zone in the left temporal area (P1, P5, P8, and 

P9), TL was highlighted as an expected active zone. In addition, 

we observed that the frontal areas (Left and Right) also exhibit 

high connections. In fact, in all patients, except for P8, the 

frontal lobes show slightly higher activity than the left temporal 

lobe. The right temporal zone was the next active zone. Strong 

distant links between left and right frontal lobes (FL-FR) were 

observed in all individuals and strong left temporal-frontal links 

(FL-TL) were also observed in P1, P5, and P8. 

In cases with a focus in the right temporal (P2, P3, P4, P6, 

P7, and P18), TR was indeed the region found to have the 

highest activity. In addition, TL and FR were also very active 

lobes. The FL region did not show high activity in all patients, 

but only in P4, P6 and P7. The PL region was found to be an 

active region in all cases except for P7 and P18. Strong 

connections were observed in both TL and TR lobes. Unlike the 

left temporal group, we did not observe solid connections 

between the frontal areas, while the FR and TR regions were 

still strongly linked as was expected given the observation 

already made for the left temporal focus. Statistically, we did 

not observe significant differences among the activity between 

TR, FR and TR, TL. 

C. Individuals with Frontal lobe epileptic focus 

In the group with left frontal focus (P12, P16, P17, and P20), 

high activity was observed in both FL and TL in all patients 

except for P12. There was also a propagation of the activity to 

FR and TR. Strong distant links were also observed between FL 

and TL. The two hemispheres were connected through temporal 

Table II. Six brain local regions and related electrodes 

Region name Abbreviation Electrodes 

Left Frontal FL Fp1, Fz, F3, F7 

Right Frontal FR Fp2, Fz, F4, F8 

Left Temporal TL F7, T3, T5 

Right Temporal TR F8, T4, T6 

Left Parietal and Left 

Occipital 
PL-OL C3, Cz, P3, Pz, O1 

Right Parietal and 
Right Occipital 

PR-OR C4, Cz, P4, Pz, O2 

 

Fig 3. The different local brain regions considered and 

related placement of electrodes 
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lobes (P12 and P16) or frontal lobes (P17 and P20). 

Statistically, no significant difference was observed between 

FL, TL, FR and TR zones, while parietal regions were 

significantly different. 

In patients with a focus on the right frontal (P15 and P19), 

the FR, FL, and TL regions were found to be highly active with 

TR being the next active zone. The epileptic source assessment 

of these two patients showed activity in the left hemisphere 

which conforms to the high synchrony achieved in connectivity 

maps. Strong distant links connected frontal areas in both 

hemispheres and frontal-temporal regions in the left 

hemisphere. Unlike the left frontal focus group, we did not 

observe strong connections between FR and TR. No significant 

difference in synchronization activity of FR, TR, FL, and TL 

was observed, while activity in FL, TL and FR was significantly 

different from those in PL-OL and PR-OR.  

D. Patients with bilateral focus 

For Patients with bilateral focus (P10, P11, P13, and P14), 

we considered segments with the same active focus to find the 

source-relevant patterns. For patients P10, P11 and P14, the 

activity of one source were dominant in the EEG segment, 

while for patient P13 both epileptic foci were active in all 

segments; therefore, we considered all segments in the same 

group. 

In cases that the right focus was active, we observed high 

activity in FR, TR, FL, and TL in all patients, while in P10, PL-

OL was highly active. In all these cases, strong connections 

linked the contralateral temporal and frontal regions (TL-TR 

and FL-FR) 

When a left source was active FL, TL and FR were the most 

active regions. The activity extends to TR lobe in case of P14 

and P10. Here, the interhemispheric stronger link was FL-FR 

rather than TL-TR. Statistically, significant activity was 

observed among parietal and frontal areas and not among 

frontal and temporal areas. 

To visualize these connections in relation to their spatial 

locations on the scalp, we plotted the connectivity matrices on 

the head map after pruning them with the threshold. The 

strength of connections was depicted by color codes 

representing dark red, as a very strong connection and dark blue 

as weak coupling. Fig. 5 shows the activities in six local areas 

with relevant distant regional connections for cases with right 

temporal, left frontal and a bilateral patient. The comparison of 

the local and distant activities in terms of the average activity 

percentage across individuals with the same epileptic focus is 

also shown in Fig. 6, and these results are summarized in our 

discussion section in parts B, C and D. 

In our population study, we have recognized three patterns 

based on the location of the epileptic focus. In General, the 

epileptogenic focus located in the temporal or frontal lobes 

irritates both ipsilateral and contralateral frontal and temporal 

areas, but the pattern varies depending on the location of the 

focus. The left temporal focus tends to expand to contralateral 

hemisphere through the frontal zones, while evidence indicates 

right temporal sources engage the other hemisphere through 

temporal links. Likewise, the frontal source pattern affects both, 

left and right frontal and temporal zones, but the link can be 

either through TL-TR or FL-FR. In frontal patterns, we have 

seen more significant differences in synchronization among 

frontal-temporal regions and parietal areas. This can happen 

since frontal sources are less likely to affect the parietal zones, 

Threshold: 0.75 

Segment 1 Segment 2 

Threshold: 0.75 

(a) 

(c) 

Segment 1 

Threshold: 0.75 

Segment 2 

Threshold: 0.86 

 
Statistical metric Segment 1 Segment 2 

Mean 0.67 0.8 

Standard deviation 0.104 0.075 

Upper percentile 0.73 0.86 

 (b) 

Fig. 4. The comparison of the effect of the adjusting the threshold on the 

connectivity maps. (a) Shows two segments of patient P6 with different 
background (spike peak to signal mean difference for segment 1 is 

0.0933 and for segment 2 is 0.0751) and relevant connectivity maps with 

general threshold of 0.75. (b) represents the connection distribution and 
statistics for the two connectivity matrices. (c) Shows the two 

connectivity maps with the adjusted threshold for segment 2. 
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while this might not be the case in temporal sources. Based on 

our study, bilateral patterns depend on the single or 

simultaneous activation of the two sources.  

 We have extracted the propagation patterns of frontal and 

temporal focal epilepsies utilizing the interictal EEG 

recordings. The interictal data is the strength of our study since 

interictal recordings are easier to get in EEG than actual seizure 

events. On the other hand, separating good spikes with 

minimum background activity is a limiting factor. Although this 

study is helpful in the diagnosis of the disease, the method is 

only based on analysis of the interictal data in the early 

diagnosis stages. This is why we need future investigations to 

make it more engaging for enhancing clinical decisions. As our 

research group continues to see patients in another IRB 

approved study to perform EEG-triggered fMRI, where EEG 

recordings are done simultaneously as a patient is inside an 

MRI machine, it will be extremely important to validate such 

work by looking at the BOLD effect as well as the default mode 

network in resting-state fMRI to gauge such connectivity links 

and any potential disruptions due to the position of the 3D 

source and the interictal spikes that have triggered the fMRI 

process. 

IV. CONCLUSION 

A nonlinear data-driven method is applied to scalp EEG 

signals to estimate the phase coupling among brain cortical 

nodes. Functional connectivity maps were explored both locally 

and in terms of how the epileptogenic zone can affect distant 

areas of the brain. Local links were investigated concerning six 

brain regions (left and right frontal, left and right temporal, left 

and right parietal and occipital).  

Relationships between the local areas were investigated 

through distant connections. Moreover, obtaining the activity 

percentages allowed us to assess the regional activities and the 

most active areas for every connectivity map.  

The comparison between activities of local areas indicates 

that the region associated with the epileptic foci results in high 

coupling in their corresponding connectivity maps. In addition 

to the affected temporal or frontal area, we have observed high 

synchrony in the frontal zone of the affected hemisphere. 

Furthermore, we observed strong links connecting the active 

distant regions resulting in stimulation of temporal and frontal 

areas of the opposite hemisphere. Interestingly, we have found 

different propagation patterns based on the hemisphere that 

contains the epileptic source. In general, we have observed that 

epileptic activity in temporal and frontal area irritates both 

hemispheres in both the temporal and frontal zones. These 

findings enhance our perception of the epileptic brain 

mechanism as a network disease, which through the different 

activity patterns could help assess brain areas that are most 

affected.  

Overall, our contributions can be summarized as follows: 

- Interictal data is used to determine brain activity patterns 

and the effects it has on distant areas. 

- A nonlinear data-driven method is used to estimate 

phase synchrony using a time domain analysis. 

- A method is proposed for finding parameters to ensure 

that significant connectivity matrices are obtained. 

- A new thresholding method is proposed based on the 

distribution of the connection values in order to 

overcome the intra-variability in the EEG segments and 

provide for more meaningful comparisons between 

brain connectivity maps. 
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Fig5. Head map connectivity plot of local and distant regions resulting from a sample EEG segment of (a) P4 with right temporal epileptic focus, 
(b) P12 with epileptic focus in left frontal and (c) P10 with bilateral focus (RT-LFT) and right focus is active for this segment. Note: only strong 

connections are shown. 
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Fig. 5 (Cont.) Head map connectivity plot of local and distant regions resulting from a sample EEG segment of (a) P4 with right 
temporal epileptic focus, (b) P12 with epileptic focus in left frontal and (c) P10 with bilateral focus (RT-LFT) and right focus is 

active for this segment. Note: only strong connections are shown. 
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Fig. 6. The bar plot of the average activity percentage across patients grouped with the same epileptic focus. Segments 

with same active epileptic source are grouped together. 
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(c) Left frontal 

(d) Right frontal 

Fig. 6. (Cont.) The bar plot of the average activity percentage on patients with temporal and frontal epileptic focus. Segments 

with same active epileptic source are grouped together. 

(e) Bilateral focus (left source is active) 

(f) Bilateral focus (right source is active) 

(g) Bilateral focus (Both sources are active) 
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