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GESTURE DISCERNMENT AND 
PROCESSING SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application claims the benefit of U.S. Provisional 
Patent Application No. 62/055,749, filed Sep. 26, 2014. 

BACKGROUND 

As the field of Human-Computer Interaction (HCI) has 
matured, the development of new categories of gestural 
input devices (e.g., multi-touch displays, full body motion 
sensors, gyroscopes, and accelerometers) has become a 
common occurrence. However, as the type and number of 
these devices increases, the software engineering problems 
posed by processing their data become increasingly com­
plex. 

BRIEF SUMMARY 

2 
DETAILED DISCLOSURE 

Techniques and systems are described that enable 
improved gesture discernment from input devices, as well as 

5 simplified modeling and processing of gestures by applica­
tion software layers. Given data (e.g., about movements, 
actions, or events) gathered from input devices, techniques 
and systems allow gestures to be discerned and inferred 
more formally and reliably, and processed more easily by an 

10 application layer. Certain techniques and systems enable 
distributed processing scenarios across multiple types of 
gestural input device. Certain techniques and systems enable 
parallel processing of gestures. Certain techniques and sys­
tems are applicable to, for example, graphical gesture mod-

15 eling tools, programming frameworks or code libraries, or 
languages. 

A "gesture" is a form of communication in which bodily 
actions communicate particular messages. Sometimes ges­
tures are accompanied by vocal communications. Gestures 

20 refer to a full range of human body movements, including 
digits and limbs, hands, face, eye, and full-body positioning. 
In some cases, gestures are composed of multiple body 
movements, e.g., multiple actions or movements of the same 
body part or simultaneous or serial movement of different Techniques and systems are described that enable 

improved gesture discernment from input devices, as well as 
simplified modeling and processing of gestures by applica­
tion software layers. Given data ( e.g., about movements, 
actions, or events) gathered from input devices, techniques 
and systems allow gestures to be discerned and inferred 
more formally and reliably, and processed more easily by an 30 

application layer. Certain techniques and systems enable 
distributed processing scenarios across multiple types of 
gestural input device. Certain techniques and systems enable 
parallel processing of gestures. Certain techniques and sys­
tems may be applicable to, for example, graphical gesture 
modeling tools, programming frameworks or code libraries, 

25 body parts. It should be noted that these are merely 
examples, and the range of human gestures is almost lim­
itless; disclosures herein pertain to systems and techniques 
for discerning and processing gestures rather than being 
limited to particular gesture types. 

The basic actions of a gesture are sometimes determined 
by the type of input device. For example, a capacitive 
display device registers a few primitive actions as input, 
such as an object (e.g., a finger or stylus) contacting the 
surface, moving along the surface, and leaving the surface. 

35 A multi-touch capacitive display registers these action 
primitives in more than one place on the display at a time. 
For the multi-touch kind of input device, gestures are made 
up of permutations of a relatively few action primitives. 

or languages. 
In some implementations, a gesture interpreter is provided 

that, in response to receiving an activation input data from 
an input device, instantiates a high-level Petri Net instance, 
executes the high-level Petri Net instance, and returns, to an 
application layer, an outcome gesture indicative of a termi­
nal node in a path of the high-level Petri Net instance being 
traversed during the execution of the high-level Petri Net 
instance. 

This Summary is provided to introduce a selection of 
concepts in a simplified form that are further described 
below in the Detailed Description. This Summary is not 
intended to identify key features or essential features of the 
claimed subject matter, nor is it intended to be used to limit 
the scope of the claimed subject matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows an example component environment in 
which techniques and systems may be enabled in some 
implementations. 

FIGS. 2A-2B show examples of processing in a Petri Net 
Graph. 

FIG. 3 shows an example process flow for instantiating 
and executing an HLPN definition for discerning and pro­
cessing a gesture. 

FIGS. 4A-4B show an example implementation for multi­
touch display device gesture processing. 

FIG. 5 shows a block diagram illustrating components of 
devices and systems that may be used to implement the 
techniques described herein. 

In some cases, these action primitives are processed into 
40 gestures such as "zoom" or "swipe" or "click" by the 

operating system (OS). Functions or programming inter­
faces of the OS may then broadcast events that indicate 
when a gesture is occurring. Application layer code may 
subscribe to the events and react to the events, as desired, 

45 with their own application-specific operations. 
An "input device" is a device for detecting the bodily 

actions, movements, or events that may be associated with 
one or more gestures. Sometimes, an input device capable of 
detecting the actions or events composing a gesture may also 

50 be referred to herein as a "gesture input device." 
As noted, a gesture may sometimes be composed of more 

than one physical action or body movement, and the mul­
tiple physical actions can occur with respect to the same 
input device or on multiple different input devices. For 

55 example, a "click" or select action on a touch display device 
can involve a single action on the touch display device, i.e., 
the user contacting the surface of the display with a finger 
atop an operative user interface element like an icon, link, 
button, menu, etc. A "zoom" gesture may involve multiple 

60 actions and multiple body movements, e.g., two fingers that 
both contact the surface of the display and move relative to 
one another. 

Other types of gestures might involve multiple actions 
detected across multiple input devices. For example, the 

65 meaning of a "hand wave" gesture may differ based on 
cultural norms (e.g., Southern European vs. Northern Euro­
pean) with respect to the speed of the wave. Therefore, to be 
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culturally sens1t1ve, proper gesture determination may 
depend on the input from multiple devices in that the hand 
wave involves, for example, movement recognition using 
3D image-based recognition and a determination of velocity 
using another sensor. Another example might include a 
touch screen gesture that works differently based on the 
orientation of the screen with respect to the user. 

Some approaches to determining and processing gestures 
center on interacting with existing user interface program­
ming models, which may be predominantly event-driven. 
For example, the Microsoft Windows® operating system 
generates a distinct "event" for each mouse movement, 
button press, etc. These approaches may be sufficient when 
the gesture is discrete enough, i.e., when it has very few 
possible outcomes. When a user moves a computer mouse, 
for example, in many cases it is not important where the user 
moves the mouse until it arrives at a final destination and a 
mouse button is clicked or released. 

However, a complex gesture that may involve multiple 
interactions with a single device or across multiple input 
devices, is more difficult for application software layers to 
process. The standard event-driven programming models 
suffer from several shortcomings that increase in importance 
as the complexity of the gestures increases. First, a complex 
gesture may be better represented as a series of actions 
occurring over time; therefore, an application layer may 
need to provide feedback at pivotal points during the course 
of the gesture. However, in some event-driven prograniming 
models, the outcome may be a single event indicative of the 
gesture; or, the outcome may be multiple lower-level events 
from which the gesture must be discerned with program­
ming logic. Deviating from the standard event-driven pro­
gramming models to provide intermediate feedback may 
require the application layer to process low-level device 
events. This mixture of gesture definition code and feedback 
code results in code that is less maintainable and portable 
across different application layers. 

The first problem is compounded as the number of actions 
or states to track in a gesture increases, as is common with, 

4 
techniques and systems have technical features that, in many 
cases, improve certain technical problems with standard 
event-driven prograniming models. For example, the use of 
a mathematically sound mechanism for processing action 

5 primitives means that gesture processing can yield a defini­
tive gesture outcome. Also, existing methods' use of "spa­
ghetti code" may lead to inconclusive outcomes, which may 
result in "bug"-filled and unreliable programming logic. 
Relatedly, the disclosed techniques allow for easier design 

10 and modeling of a gesture (see, for example, the ease of 
modifying an existing model in the example that includes a 
"BACK-TILTED SWIPE"). Applications that use or con­
nect to implementations of the disclosed systems may con­
tain improved prograniming logic, since the feedback 

15 mechanisms providing gesture output and intermediate ges­
ture states are definitive and simplified. 

Furthermore, techniques and systems enable multiple 
input devices to be integrated into a single mechanism by 
allowing a simplified and flexible framework. Because mod-

20 els built on the disclosed techniques are mathematically 
sound, gesture discernment and processing may even be 
conducted in parallel across multiple processors, asynchro­
nously, and involving multiple input device types. 

FIG. 1 shows an example component environment in 
25 which techniques and systems may be enabled in some 

implementations. According to certain implementations, a 
gesture interpreter 100 is provided which performs gesture 
discernment based on input from one or more input devices 
(e.g., 101-103), and communicates relevant events and 

30 information for use by applications. 
Gesture interpreter 100 may take the form of, for 

example, a software framework, programming library, com­
ponent, or service. In some cases, the gesture interpreter 100 
resides on a client device. In some cases, the gesture 

35 interpreter 100 resides on another device or processing 
system or component, and is accessible via network or other 
communications mechanism. 

Input devices 101-103 are devices that collect data detect­
ing movements or other information associated with one or 

40 more gestures. An input device is a device for detecting 
bodily actions, bodily movements, device movements, or 
other events that may be associated with one or more 
gestures. Input devices may detect gestures directly, as for 
example a multi-touch display does. Often a gesture input 

for example, multi-touch display input devices and full-body 
gesture input devices. Furthermore, particularly in cases 
where multiple types of gestural input device are processed, 
the application layer programming logic that responds to 
events in standard event-driven programming models is 
sometimes layered across different functions and different 
code modules. Consequently, the application layer may be 
programmed with a convoluted array of interacting data 
structures, signaling flags, and cross-module messaging 
functions. This can lead to complex and fragmented code 
that is complex to understand, maintain, and modify, and 50 

that has a higher incidence of prograniming errors or "bugs." 
This kind of code is often referred to in the industry as 
"spaghetti code." 

45 device demarcates a working space or working field in 
which the actions are conducted; that field may be a direct 
mapping to a physical field or a relative mapping to a virtual 
field. 

Gesture input devices fall into a number of different 
categories, each of which has numerous device types, ven­
dors, and implementations. Most familiar of the gesture 
input devices are controller-based input devices. These 
controllers act as an extension of the body so that move­
ments may be captured by software. A mouse is a type of Further, many gestures are composed of the same set of 

initiating actions. For example, a touch of a single finger on 55 

a multi-touch device may result in a variety of different 
ultimate gestures, e.g., an activation of an icon, a "swipe," 
or in cases when a second finger is touched to the device, a 
"zoom in" or "zoom out" gesture. In other words, the 
beginning action determines a finite set of outcome gestures, 60 

but in many cases that set is very large and evolves as 
additional actions are processed. Programming logic to 
handle the various permutations in a standard event-driven 
model can quickly become unwieldy. 

Certain techniques and systems described herein repre- 65 

sent a novel improvement in the technological art of gesture 
input device discernment and processing. The disclosed 

controller-based input device, in that the movement of a 
pointer across a virtual space is being correlated with the 
movement of the user's hand holding the mouse controller. 
Multi-touch display devices are another example, as the 
tracking or movement of one or more fingers is correlated 
not only with physical movements across a virtual space, but 
may also have different semantic content in the context of 
different virtual spaces ( e.g., a "flick" gesture may indicate 
an item of content should be deleted in one application, but 
marked "complete" in another). 

Another category of input device includes various kinds 
of gesture devices for image-based recognition. Image­
based recognition uses optical (light sensitive) sensors to 
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detect motion. Image-based recognition devices may vary 
by the ability to and method of sensing motion in three 
dimensions (3D). For example, a stereo camera input device 
uses two cameras, for example an RGB camera and a depth 
camera, whose physical location is known to one another to 5 

get a 3D output by the camera. As another example, a 
depth-aware camera can use structured light (e.g., strobe 
flashes) to generate a depth map of what is being seen 
through the camera at a short range; short range detection 
(e.g., of hand gestures) can be performed using this 3D 10 

representation. An example of image-based recognition is 
the Microsoft Kinect®, which uses various camera sensors 
to detect full-body gestures and perform facial recognition. 
Some full-body gesture recognition systems use "joint" 
mapping to determine body positioning based on bends in 15 

the limbs. 
However, sometimes an input device may also detect 

other kinds of information that is useful in discerning a 
gesture. Discerning a kind of gesture may in some cases 
depend on other sensors that may not necessarily be thought 20 

of as gesture input devices. For example, some kinds of 
gesture may depend not only on what a user is doing, but 
also on external factors like the speed the device is moving. 

6 
the input device 101-103. Once the device sends data back 
to the device driver 111, the driver may invoke routines in 
the original calling program. Device drivers are generally 
hardware-dependent and specific to the OS 110. 

Gesture interpreter 100 may also interact with one or 
more application programming interfaces (APis) 112 that 
may be provided by or accessible through the OS 110. An 
API is an interface implemented by a program code com-
ponent or hardware component (hereinafter "API-imple­
menting component") that allows a different program code 
component or hardware component (hereinafter "API-call­
ing component") to access and use one or more functions, 
methods, procedures, data structures, classes, and/or other 
services provided by the API-implementing component. An 
API can define one or more parameters that are passed 
between theAPI-calling component and theAPI-implement­
ing component. The API and related components may be 
stored in one or more computer readable storage media. 

Gesture interpreter 100 may call functions in event APis 
112, which in some cases may provide coarser-grained or 
higher-level capabilities than OS 110 or device driver 111 
functions. For instance, the device driver 111 that commu­
nicates with a multi-touch display input device may process 

25 low-level sensor information about the distortion of the 
If a user were driving an automobile while wearing a device 
that senses eye movement tracking (such as Google® 
Glass), a quick movement of the eye to the top right corner 
might not be an indication to perform a gesture on the 
device, but might instead be a quick check by the user of the 
automobile's rear view mirror. In a case such as this, gesture 
recognition might include input from not only the eye 30 

movement tracking device, but also the device's GPS sensor 
(for speed detection). 

Another type of input device may be a device sensor that 
detects positioning or relative motion of the device. An 
accelerometer, which measures proper acceleration, is one 35 

example of such an input device. An accelerometer may be 
used, for example, for detecting free-fall or collision (i.e., 
rapid deceleration) of a device or the orientation of the 
device. A gyroscope, which measures orientation based on 
the principles of angular momentum, is another example of 40 

a device sensor input device. 
It should be noted that FIG. 3 shows three input devices 

101, 102, and 103. The use of three input devices is 
indicative of the fact that a gesture may be composed of 
input from multiple devices and/or multiple device types. 45 

The use of three input devices is not intended to limit the 
component environment to any particular number of input 
devices. 

sensor's electrostatic field when a finger or other electrical 
conductor contacts the display. The OS 110 may determine 
that that distortion perceived by the device driver 111 is 
significant enough to register as a "touch" for the purposes 
of the OS functions. OS 110 may then notify other software 
layers of the "touch" event by exposing an event API 112 
that allows interested software layers to subscribe to sig­
nificant events occurring on input devices like the multi­
touch display. When significant events occur, the events are 
published and the subscribing software layers, in this case 
the gesture interpreter 100, are notified. 

While interpreting a gesture from input from one or more 
input devices, gesture interpreter 100 may also communicate 
with components in the application layer 120. The applica­
tion layer 120 contains other software layers, such as appli­
cations or other APis or frameworks, that perform user-
oriented activities on the device. Some familiar examples of 
applications in the application layer 120 are email applica­
tions, word processors, and spreadsheet applications. In 
some cases an application layer 120 may include an inter­
mediate layer that makes certain capabilities easier or acces-
sible to application software. An example is the Microsoft® 
.NET Framework, which acts as an intermediate component 
within the application layer 120 to make software written In some implementations, gesture interpreter 100 may, 

instead of communicating with input devices 101-103 
directly, interact with intermediate software layers provided 
by the operating system (OS) 110 of a device with which 
input devices 101-103 are connected or integrated. 
Examples of operating systems include Microsoft Win­
dows®, Apple iOS®, and Google Android®. OS 110 may 
include device drivers 111 that communicate sensor data to 
the software layers of the device. 

50 across multiple device types more uniform. 

A "device driver" 111 operates or controls a particular 
type of device that is attached to a computer. A device driver 
111 provides a software interface to hardware devices, 
enabling operating systems and other computer programs to 
access hardware functions without needing to know precise 
details of the hardware being used. A device driver 111 
typically communicates with the device through the com­
puter bus or communications subsystem to which the hard­
ware connects. When a calling program invokes a routine in 
the device driver, the device driver 111 issues commands to 

The activities and capabilities that may be part of a 
gesture interpreter 100 will be discussed in more detail in 
later figures and accompanying text. In general, however, 
gesture interpreter 100 may communicate with software in 

55 the application layer 120 by, for example, exposing API 
functions that allow software in the application layer 120 to 
be informed when gestures have been discerned and/or at 
relevant points of feedback within the gesture. For example, 
say that software in the application layer 120 would like to 

60 be notified when a "swipe" (the "outcome gesture") is 
performed on the device's multi-touch display. The software 
would also like to be notified when the "move" phase of the 
swipe action is occurring so that it can show a directional 
arrow of the swipe. The gesture interpreter 100 may expose 

65 one or more API functions that may be called by the 
application layer 120 software to indicate that the software 
would like to be notified of these happenings. 
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state to state. To put it another way, a Petri Net represents a 
system by showing the transition of states over the life of the 
system as the system executes under different conditions. 

In a standard Petri Net, the state of the system is repre-

In FIG. 1, examples of two types of applications within 
the application layer 120 that may make use of the capa­
bilities provided by the gesture interpreter 100 are shown. 
The first type, an application with a user interface (UI) 
responsive to gestures 121, is illustrative of the software 
example immediately above relating to the swipe gesture. 
This kind of application includes nearly any user-oriented 
application, including email applications, to-do list applica­
tions, etc. 

5 sented with simple, lower level data types ( e.g., integer 
values). A high-level Petri Net (HLPN), such as used in the 
described implementations, is a type of Petri Net that allows 
tokens having complex data types to be associated with the 
places in the net. An HLPN also allows more complex 

In some cases, gesture interpreter 100 includes the ability 
to design new gestures or gesture models. In some cases, 
software in the application layer 120 may provide an inter­
face with which to design or model new types of gestures. 

10 conditions to be associated with an arc (the association of 
conditions with an arc are sometimes called "arc annota-

A gesture design application 122 may, for example, be 
capable of designing new gestures graphically or visually, 15 

and may call API functions to instruct the gesture interpreter 
100 to model the new gesture. In some cases, the gesture 
interpreter 100 contains a library of gestures that have been 
developed by third parties using such tools. 

According to certain implementations, gesture interpreter 20 

100 uses high-level "Petri Nets" to achieve a formal math­
ematical representation of a given gesture model that may 
execute to perform gesture discermnent and processing. 

A Petri Net is a type of state transition model which can 
be helpful to represent a system's possible state changes as 25 

the system responds to events or input. One advantage of a 
Petri Net is that it formally represents all possible state 
changes in the system in response to varying input. Hence, 

tions"). 
Certain techniques and systems described herein define a 

particular type ofHLPN, which is a variation of a Predicated 
Transitions Net (PrT Net), that has a particular model for arc 
functions, token definitions associated with the types of 
input device, and a picking algorithm for discerning the 
processing order for arcs. Implementations of this HLPN 
model create distinct gesture HLPNs for different kinds of 
gestures discerned and processed by the gesture interpreter 
100. Of course embodiments are not limited to the PrT 
Net-type HLPN. For example, Coloured Petri Nets (CPN) 
may be used. 

As noted, each arc is defined as a function F denoting 
constraints. Each function F is defined as a tuple of functions 
such that F=(B, U, C, R). The tuple B, U, C, and R describe 
the conditions for selecting a particular arc's path to the next 
node as well as the functions that will occur after it has been 
selected. The characteristics ofB, U, C, and R, are described a Petri Net is mathematically sound. A Petri Net includes a 

definition ( or specification) and an execution model. 
Embodiments described herein define particular high­

level Petri Net models that execute in specific technical 
environments to coordinate and process gesture-related 
input from various input devices. 

30 below, but it should be noted for clarity that B, U, C, and R 
denote a function specification or template. A given imple­
mentation of an HLPN for a specific gesture can call 
different functions and operate differently in the case of each 

A Petri Net is usually described using its graphical 35 

representation. The graphical representation of a Petri Net is 
sometimes called a Petri Net Graph. FIG. 2A shows a very 
simple example of a generic Petri Net Graph. To briefly 
s=arize, a Petri Net includes states, sometimes known as 
"places" 200, 225 which are joined to "transitions" 205 by 40 

"arcs" 210, 220. Places 200 and transitions 205 are both a 
type of "node," which are the vertexes of a Petri Net Graph. 
During the execution of the Petri Net, each "place" 200, 225 
in the Petri Net is "marked" with one or more data elements 
called "tokens" T. Each place accepts tokens of a specified 45 

token definition that defines the structure of the token's data 
elements. A transition 205 takes as input a state of the place 
200 it was joined to, and in some cases alters the system 
state, transitioning it to another place 225, or in some cases 
back to the prior place with possibly different token values. 50 

In other words, a place 200, 225 may contain one or more 
tokens T, which are "consumed" during a transition 205; the 
transition 205 yields one or more new tokens T to the next 
place 225 indicated by the output arc 220. 

Connections between nodes are indicated by "arcs," 55 

which are represented in the Petri Net Graph as arrows ( e.g., 
210, 220), but which are defined mathematically as func­
tions. Each node (i.e., place or transition) may have multiple 
input arcs and multiple output arcs, though only one of each 
is shown in FIG. 2A. An Input arc 210 to a node indicates 60 

the possible paths taken to arrive at the node from other 
nodes, and an output arc 220 indicates the possible paths 
taken to leave the node and enter other nodes. An arc 210, 
220 defines the conditions under which a particular state 
transition may occur as the system "moves" from place to 65 

place. Here, "move" is used primarily figuratively, as the 
"motion" of the system is the transition of the system from 

arc function, though the HLPN for the gesture adheres to the 
overall function template for the model as described. Fur­
thermore, functions in the arc tuple may be null operations 
for some individual arcs. 

B denotes the "arc constraints function" that evaluates to 
TRUE or FALSE as a precondition of the arc being selected 
as the path to the next node. 

U denotes the "arc update function," which instantiates a 
code block for setting values to data elements within the 
current token. For instance, the update function may obtain 
a next sample of data from the input device ( e.g., the current 
X, Y location of the finger on the multi-touch display 
device). 

C denotes the "arc callback function," which allows the 
HLPN to have a function callback with conditional IF 
statements, local variable assignments, and calls to external 
functions. If no callback event is provided, a default generic 
callback event may be called. The callback function may 
provide, for instance, the capability of application layer 120 
software to receive notifications of gesture events from a 
gesture interpreter 100, both during execution of the gesture 
and at the gesture's termination or final outcome. 

R denotes the "arc priority function" that instantiates a 
code block for the purpose of assigning an arc priority value 
to the arc. 

The priority value is used by the "picking function" to 
discern the highest-priority arc to process when multiple 
arcs exit a node. Picking the next transition or place for the 
case when there is only one possible arc is trivial. However, 
when there are multiple arcs, a function to pick the next one 
to check may be important. 

Some implementations may use a "picking" function that 
combines random selection with the use of priority func­
tions. This picking function may compute the priority func-
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tion for arcs leading from a node, sort them by ascending 
value, and then group them if the values are equivalent (e.g., 
Gl=lO, 10, 10, G2=1, 1). Selection between nodes with 
equivalent priorities is chosen at random among the mem­
bers of the highest-ranking group ( e.g., one of the nodes of 5 

Gl with priority value 10 will be randomly chosen first). In 
some cases, an arc priority function can be undefined, and 
the arc priority for an undefined arc priority function is zero. 
In these cases, the picking function can randomly select 
between arcs of priority value zero. Naturally, other picking 10 

functions are possible and may be appropriate in other 
implementations. 

Some implementations may use parallel processing so 
that multiple paths may be traversed simultaneously. This 
may be advantageous when multiple processing units are 15 

available, when nodes are expensive to traverse due to 
complex constraints, or when data from input devices arrive 
sporadically or asynchronously. 

FIG. 28 shows an example of parallel processing. In FIG. 
28, place 250 having a token Tl moves via arc 255 into 20 

transition 260. Transition 260 can create multiple identical 
copies of the token Tl based on the original and effectively 
pass the tokens to two places 270, 271 simultaneously via 
two output arcs 265, 266. Processing using identical token 
data may then proceed in parallel along two paths. Since an 25 

HLPN is mathematically sound, a single definitive outcome 
will emerge, even when the nodes are traversed in parallel. 

FIG. 3 shows an example process flow for instantiating 
and executing an HLPN definition for discerning and pro­
cessing a gesture. Techniques expressed by the process flow 30 

may be appropriate for implementation in a gesture inter­
preter 100, described with respect to FIG. 1. 

10 
and/or events of the input device. Note that in some cases, 
all the nodes in a given HLPN might not be traversed, as the 
path traversed through the nodes is determined by the token 
data and function outcomes at each possible path. 

For each node in the HLPN for a path being traversed 
(301), several processing steps may be performed. Initially, 
the picking function may be applied to determine the order 
in which to evaluate arcs from the node (302). The picking 
function may perform this operation by calling the priority 
function of each arc emerging from the node, and then 
ranking the priority values. The picking function may in 
some cases choose randomly between arcs of equivalent 
priority. For example, the priority function may not be 
defined ( or may be defined to equivalent priorities of 0), 
resulting in the picking function picking randomly between 
the arcs. This aspect was described in more detail above in 
reference to the definition of a picking function. 

Having ordered the output arcs on a node, the arc con­
straints function can be evaluated for the next arc (here, the 
first arc) in the order (303). The arc constraints function is 
determinative of whether conditions for taking a particular 
path out of a node have been met. The precise requirements 
in a given arc constraints function are determined by the 
gesture design. For example, a "zoom" motion often 
requires two fingers to be on a multi-touch display. Thus, a 
condition for determining a "zoom" motion may require two 
tokens, each one representing an individual finger trace on 
a multi-touch display, to be present in a place. Unless two 
tokens are in the place, the "zoom" transition may not be 
called. A detailed example of arc constraints function pro-
cessing is shown in FIG. 4A-48. 

Constraints are tested as described above (304). If con­
straints are not met (NO), then the arc constraints on the next 
arc in the order (303), as determined by the picking function, 
are tested. 

If the constraints are met (YES), then that particular arc 
is chosen, meaning that processing for the arc executes by 
calling the arc update function and triggering the arc call­
back function (305). As noted with respect to FIG. 2A, the 
arc update function may in some cases retrieve additional 
samples of data from an input device to update values in the 
token(s) associated with a place. For example, a new sample 

In FIG. 3, a "gesture HLPN," i.e., an HLPN that describes 
the discernment and processing for a particular set of 
actions, movements, or events that make up a gesture, is 35 

instantiated (300). The general description of a gesture 
HLPN was described above with respect to FIG. 2, and 
includes token definitions, places, transitions, arcs and their 
associated function tuple, and a picking function. In other 
words, to design a gesture HLPN for a given gesture, places 40 

are defined and associated with specific tokens that capture 
data relevant to the type of input devices that provide action 
primitives to the gestures. Transitions are also described that 
show the transitions from state to state. Arcs and their 
associated function tuples describe the "path" of possible 
states through the system to ultimately arrive at a gesture 
outcome through the gesture HLPN. Note that a detailed 
example of an HLPN for a multi-touch display device is 
described below with respect to FIGS. 4A-48. 

45 may indicate that the position of a user's finger on a 
multi-touch display has moved to a new location and the x, 
y coordinates of the finger may be updated accordingly in 
the token. 

Instantiating the gesture HLPN (300) occurs when, in 50 

response to receiving activation input data from an input 
device, a gesture HLPN is initialized by having tokens 
associated with places (sometimes referred to as "marking" 
the HLPN). The tokens initially contain data values appro­
priate to the types of input devices and types of gesture 55 

action primitives that the gesture HLPN is designed to 
discern and process. 

Having instantiated the gesture HLPN, the gesture HLPN 
may now be "executed." The gesture HLPN is executed by 
traversing the nodes (places and transitions) of the HLPN in 60 

a given path until termination of the nodes in the path, which 
describes a final gesture outcome. The objective of execut­
ing the gesture HLPN is to apply appropriate transitions to 
the state at important junctures, update the state with new 
information from input devices when appropriate, and arrive 65 

at a final determination as to the outcome gesture for the 
particular set of actions and movements taken by the user 

An arc callback function may also be triggered with 
respect to the arc. As noted with respect to FIG. 2A, an arc 
callback function may allow for additional processing and 
may provide, for instance, the capability of application layer 
120 software to receive notifications of gesture events both 
during execution of the gesture and at the gesture's termi-
nation or final outcome. 

If the node being traversed is a terminal node (306), i.e., 
the last node in a given path for traversing the gesture 
HLPN, then a final outcome gesture is determined by the 
path and returned (307). In some cases, the final state of a 
token arriving at the terminal node may represent the 
outcome gesture, and in some cases the arc callback function 
on the arc leading to the final node may indicate to software 
in the application layer 120 that an outcome gesture has been 
determined in this instance. 

If the node being traversed is not a terminal node in the 
path being traversed, then execution of the gesture HLPN 
continues with the next node (306 returning to 301). 
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Example: Multi-Touch Display Device Gesture Process­
ing 

One example implementation of techniques and systems 
described herein is appropriate to gesture processing for 
multi-touch displays. Multi-touch displays (e.g., a touch 
panel of a tablet or display) may be capacitive, resistive, 
heat-based, or infra-red based as some examples. In some 
cases, camera tracking may be used. Furthermore, some 
multi-touch displays may also be vision-based, such as 
Microsoft® PixelSense or even a device that tracks eye 
movements such as Google® Glass. This example specifi­
cally discusses capacitive multi-touch displays, but the 
techniques discussed in this example may also be applied to 
gestures detectable from eye movements tracking devices or 
other kinds of multi-touch input devices, particularly when 
they are analogous to finger-based gestures. 

12 
In some cases, the ability to obtain a history of prior token 

states may be relevant to an implementation. Depending on 
the implementation, a previous history of token states may 
be stored within the token, or it may be stored in a buffer 

5 accessible through a function. The token definition in this 
example includes a reference "prev" to the token describing 
the previous sample. This example token data structure 
includes a pointer function "get(Time t)" to access a previ­
ous history of token states at a particular time "t" contained 

10 in a buffer of size "tSize". 
It should be noted that the token definition depicted in 

FIG. 4A is exemplary only and is not intended to limit either 
multi-touch display device gesture processing, or gesture 

15 
input device processing in general, to a specific token 
definition. 

Implementation includes a specific gesture HLPN, includ­
ing token definitions appropriate to multi-touch display 
gesture processing; places that have tokens; transitions; arcs 
with pre- and post-condition functions appropriate to the 20 

display; and a picking function for determining the arc 
traversal priority. 

Take, for example, an interaction that has two possible 
gestures using two fingers: "swipe" and "zoom". FIG. 48 
shows an example HLPN "graph" (a graphical representa­
tion of the HLPN's mathematical expression) for processing 
the two possible gestures of the multi-touch display device. 
A swipe implies that the user moves two fingers in any 
direction. In the case of "zoom," zoom-in and zoom-out 
could be modeled separately, but are modeled together in 
FIG. 48. 

In this example implementation, a capacitive multi-touch 
display can detect multiple finger strokes at the same time. 

FIG. 48 shows places denoted by circular elements; 
transitions denoted by rectangular elements that are labeled 
for clarity to indicate the transition; arcs represented by 
directional arrows (labeled with letters); and two tokens ( al 
and a2), representing two active traces in place 405. FIG. 48 
is described with reference to Table 1, which contains more 
detailed descriptions of activities occurring with respect to 
each arc. Table 1 shows each arc expression with the 
Boolean condition function and other relevant information. 

A "trace" is generated when a finger touches down onto the 25 

surface, moves ( or stays static), and is eventually lifted from 
the surface. Therefore, a trace is a set of touches or actions 
that are part of a continuous stroke. A set of traces may 
define a gesture. For example, a simple gesture on a multi­
touch display may be two fingers moving on the same path, 30 

creating a swipe. Another example gesture is the "zoom 
out," when two fingers are detected as moving away from 
one another. Another example gesture is the "zoom in," in 
which two fingers are detected as moving toward one 
another. 35 In Table 1, TK denotes a generic token of a given definition, 

of which al and a2 are instances. A token is the data structure for capturing system state in 
the gesture processing system. In some implementations, a 
single token definition may sufficiently represent the neces­
sary unit of gesture processing. Here, a token represents the 
action of a single finger trace. Turning first to the definition 
of the token T=TK for this example implementation, FIG. 
4A describes an example token definition. The description in 
FIG. 4A shows several data elements and a textual descrip­
tion of their meaning. 

The gesture processing system can assign, for example, an 
"id" or unique identification code. Depending on the imple­
mentation, the "id" may be a unique number or consecutive 
integer assigned while the system is operating. The "tid" 
may denote an identifier within a particular gesture process­
ing instance, for example representing the individual move­
ments such as traces or finger strokes that compose the 
gesture. 

Display coordinates, i.e., the location of the touch or 
action on the virtual space of the multi-touch display, are 
given by "x" (for the horizontal coordinate) and "y" (for the 
vertical coordinate). The "state" variable represents the 
current mode of the token. In this example, the state variable 
has one of several discrete values such as DOWN, MOVE, 
and UP. 

The "holdTime" tracks how many milliseconds have 
elapsed since the generation of the token, so that it may be 
determined if the finger has remained static at the current 
position on the display. Note that, since the token in this 
implementation represents a trace rather than a movement, 
if a touch interaction is not moving or is not moving beyond 
a threshold amount, it will not create additional samples but 
increment the holding time of the finger. 

40 

45 

50 

55 

Arc From 

A 400 
B DOWN 
C 402 
D 402 
E MOVE 
F 405 
G 405 
H MOVE' 

405 

ZOOM 
K 405 

L SWIPE 
M UP' 
N UP 
0 410 
p END 

To 

DOWN 
402 
MOVE 
UP 
405 
UP' 
MOVE' 
405 
ZOOM 

405 
SWIPE 

405 
410 
410 
END 
412 

TABLE 1 

Condition 

TK.state -- DOWN 
update(TK) 
TK.state -- MOVE 
TK.state -- UP 
update(TK) 
TK.state -- UP 
TK.state -- MOVE 
update(TK) 
TK.state -- MOVE && 
IsZoom(al, a2) 
Update(al, a2) 
TK.state -- MOVE && 
IsSwipe( al, a2) 
Update(al, a2) 
TK.state -- UP 
TK.state -- UP 
true 
true 

Token Count 

2 

2 
2 

2 

The system begins with an empty initial marking (no 
tokens) awaiting an action to be registered on the gesture 
input device. Once the user touches down onto the surface, 

60 tokens are created (e.g., based on available token defini­
tions) and placed in START 400. Many multi-touch display 
devices would initiate by registering a finger on the display, 
so given that the tokens will start with a DOWN state, they 
will move from place 400 into place 402, using arcs A and 

65 B to move through transition 401. Arc A consumes the token, 
and arc B updates the token with the next touch data sample 
into place 402. Once in place 402, since the token was 
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updated with the next touch sample, the system infers the 
next transition using the constraints provided. It has two 
options, either arc C or arc D. If the token's state is MOVE, 
each token is moved into place 405 using arc E, and another 
updated touch data sample is taken. 

FIG. 48 shows the system at this time, with both tokens 
al and a2 (each representing a finger trace) at place 405. 
The system infers the next transition ( 406, 407, 408, or 409) 
by using the picking algorithm to determine which arc (F, G, 
I, or K) has priority. For this example, assume that MOVE' 
406, ZOOM 407, SWIPE 408, and UP' 409 each have 
priority functions that calculate to values 1, 10, 10, and 2, 
respectively. This means that the group with ZOOM and 
SWIPE are the first to be checked for constraints, since they 
have the highest values. Using the picking algorithm, the 
system will randomly choose one of the two equivalent­
priority arcs and check the arc's constraints function to see 
if it can be enabled ( or "fired"). 

14 
moves the system through transition END 411, which con­
sumes the final token and executes necessary operations for 
final token state 412. Node 412 represents the terminal node 
for the path. 

Example: Multiple Gesture Input Devices 
One example implementation of techniques and systems 

described herein may be appropriate to gesture processing 
for multiple input devices. This example shows the advan­
tages of the techniques and systems by showing the ease of 

10 modeling, discerning, and processing gesture models with 
multiple input devices. 

Consider, for example, a gesture that is determined from 
a combination of action primitives across multiple input 
devices, a "back-tilted swipe". This hypothetical gesture 

15 requires both a "swipe" gesture involving two fingers and 
that the device be tilted such that the bottom of the device 

Assume, for example, that the picking function deter­
mines that SWIPE 408 should be checked to see if the 20 

is higher than the top of the device at an angle of more than 
30 degrees of horizontal. In such an example, the tilt may be 
determined from the state of the gyroscope input device on 
the device, and the "swipe" gesture may require input from 
the multi-touch display input device. constraints are met. In the example in FIG. 48, at place 405, 

evaluating arc K, the constraints include a TRUE return 
from the Boolean function "IsSwipe (al, a2)" (the arc's 
definition of the function B pre-condition), which accepts 
two tokens and returns TRUE or FALSE. The constraints are 
true if two tokens are in place 405, both tokens are in state 
MOVE, and the function IsSwipe returns TRUE. If the 
constraints are met, the callback function indicating a 
SWIPE 408 transition has occurred will be called. The 

To address this example, the gesture HLPN described in 
FIGS. 4A-4B for the multi-touch display is simply modified 
by including a new token definition for the gyroscope, an 

25 additional place associated with the new token definition for 
the gyroscope, and an additional transition called "BACK­
TILTED SWIPE." Modifications to the HLPN also include 
appropriate arcs for connecting the new nodes and their 
associated arc functions. 

callback function may, for example, indicate the direction of 30 

the swipe and pass a copy of the token data for use by the 
application layer. The token data will then be updated to the 
next sample via an update function associated with arc L. 
This brings back both tokens into place 405. 

The new token definition for the gyroscope input device 
may include a data element indicating the position of the 
gyroscope in degrees. The new place GYRO may be asso­
ciated with tokens of the "gyroscope" type. 

The new gesture can be integrated with the HLPN in FIG. 
Alternatively, during execution of the system, ZOOM 407 

may be chosen by the picking function and arc I may be 
evaluated. If arc I's constraints have been met, i.e., if the 
state of both tokens is MOVE and the IsZoom(al, a2) 
evaluates to TRUE, then the callback function indicating a 
ZOOM 407 transition has occurred will be called. The 
callback function will pass a copy of the token data for use 
by the application layer. The token data will then be updated 
to the next sample via an update function associated with arc 
J. This brings back both tokens into place 405. 

Alternatively, during execution of the system, likely 
because constraints on higher-priority arcs are not met, 
MOVE' 406 may be chosen by the picking function and arc 
G may be evaluated. Arc G's constraints have been met if the 
state of the token is MOVE. There is no Boolean function 
constraint, hence MOVE' 406 may represent a fallback state 
when one or both fingers are moving, but neither are moving 
in a discernable SWIPE or ZOOM motion (e.g., the fingers 
are not moving together, only one finger is moving, or both 
fingers are not moving towards or away from one another). 
A callback function may be called which may pass a copy of 
the token data. The token data will then be updated to the 
next sample via an update function associated with arc H, 
which brings the token(s) back to place 405. 

Eventually, from place 405, a finger may be lifted from 
the multi-touch display device. When that occurs, a token al 
and/or a2 will have the UP state, and the token(s) will move 
via arc F into transition UP' 409, and then to place 410 via 
arc M. The system may also arrive at place 410 via arc N, 
for example if a finger was initially lifted from place 402 
without ever having been moved. In that case, the system 
would have moved through transition UP 404 to arrive at 
place 410. From place 410, arc 0, which has no constraints, 

35 48 by connecting the new GYRO place to the SWIPE 
transition 408 with an arc. GYRO is given a token ~1, 
indicating the state of the gyroscope. Connected to GYRO 
by a new arc might be the new transition BACK-TILTED 
SWIPE. The new arc may have an arc constraints function 

40 requiring that the gyroscope token have data indicating a 
reading of 30 degrees or more. BACK-TILTED SWIPE 
might be connected with an output arc leading directly back 
to place 405. Naturally, other implementations are possible. 

FIG. 5 shows a block diagram illustrating components of 
45 devices and systems that may be used to implement the 

techniques described herein. 
Referring to FIG. 5, device 500 may represent a comput­

ing device such as, but not limited to, a personal computer, 
a tablet computer, a reader, a mobile device, a personal 

50 digital assistant, a wearable computer, a smartphone, a 
laptop computer (notebook or netbook), a gaming device or 
console, a desktop computer, or a smart television. Accord­
ingly, more or fewer elements described with respect to 
device 500 may be incorporated to implement a particular 

55 computing device. 
Device 500, for example, includes a processing system 

505 of one or more processors to transform or manipulate 
data according to the instructions of software 510 stored on 
a storage system 515. Examples of processors of the pro-

60 cessing system 505 include general purpose central process­
ing units, application specific processors, and logic devices, 
as well as any other type of processing device, combina­
tions, or variations thereof. 

The software 510 can include an operating system 521 
65 and components such as a gesture interpreter 520 and 

application layer software 525 (100 and 120 of FIG. 1, 
respectively). The gesture interpreter 520 may implement 
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aspects of systems and techniques herein, and software in 
the application layer 525 may interact with the gesture 
interpreter 520 to discern and process gestures. Software in 
the application layer may include user oriented applications 
that wish to process gestures and gesture design applications 5 

(121 and 122 of FIG. 1, respectively). 

16 
may include, but are not limited to the technology used to 
implement the storage media of storage system 515 and 
whether the computer-storage media are characterized as 
primary or secondary storage. 

The storage system 515 can further include a gesture store 
containing HLPN models for a plurality of gestures. The 
gesture store may be one or more files or databases con­
taining graph models, function definitions, data structures, 
or other information used by the gesture interpreter 520 to 

Device operating systems 521 generally control and coor­
dinate the functions of the various components in the 
computing device, providing an easier way for applications 
to connect with lower level components like input devices or 
capabilities. An OS 521 may provide device drivers (111, 
described with respect to FIG. 1) for communicating with 
input devices and assisting in the interchange of data 
between the input devices 530 and other software layers. 
Non-limiting examples of operating systems include Win­
dows® from Microsoft Corp., Apple® iOS™ from Apple, 
Inc., Android® OS from Google, Inc., and the Ubuntu 
variety of the Linux OS from Canonical. 

10 perform gesture discernment and processing. 

It should be noted that the operating system 521 may be 
implemented both natively on the computing device and on 
software virtualization layers running atop the native device 
operating system (OS). Virtualized OS layers, while not 
depicted in FIG. 5, can be thought of as additional, nested 
groupings within the operating system space, each contain­
ing an OS, application programs, and APis. 

Storage system 515 may comprise any computer readable 
storage media readable by the processing system 505 and 
capable of storing software 510, including the gesture inter­
preter 520. 

Storage system 515 may include volatile and nonvolatile, 
removable and non-removable media implemented in any 
method or technology for storage of information, such as 
computer readable instructions, data structures, program 
modules, or other data. 

Examples of storage media include random access 
memory (RAM), read only memory (ROM), magnetic disks, 
optical disks, CDs, DVDs, flash memory, solid state 
memory, phase change memory, or any other suitable stor­
age media. Certain implementations may involve either or 
both virtual memory and non-virtual memory. In no case do 
storage media consist of a propagated signal or carrier wave. 
In addition to storage media, in some implementations, 
storage system 515 may also include communication media 
over which software may be communicated internally or 
externally. 

The device 500 can further include input devices 530 
which may enable different types of actions, movements, or 
events to be detected for use by the gesture interpreter 520. 
Input devices can include, for example, a camera 532 for 

15 detecting visual input, a multi-touch display device 533 for 
receiving a touch gesture from a user, and a motion input 
device 534 for detecting non-touch gestures and other 
motions by a user. Input devices may also include a gyro­
scope 535 and an accelerometer 536. These input devices are 

20 exemplary only. 
Other user interface components 540 may include other 

input components such as a mouse, keyboard, and display. 
Other user interface components 540 may also include 
output devices such as display screens, speakers, haptic 

25 devices for tactile feedback, and other types of output 
devices. In certain cases, the input and output devices may 
be combined in a single device, such as a touchscreen 
display which both depicts images and receives touch ges­
ture input from the user. Visual output may be depicted on 

30 the display in myriad ways, presenting graphical user inter­
face elements, text, images, video, notifications, virtual 
buttons, virtual keyboards, or any other type of information 
capable of being depicted in visual form. 

Other user interface components 540 may also include 
35 user interface software and associated software ( e.g., for 

graphics chips and input devices) executed by the OS in 
support of the various user input and output devices. The 
associated software assists the OS in communicating user 
interface hardware events to application programs using 

40 defined mechanisms. The user interface system 530 includ­
ing user interface software may support a graphical user 
interface, a natural user interface, or any other type of user 
interface. 

A communication interface (not shown) may be included, 
45 providing communication connections and devices that 

allow for communication between device 500 and other Storage system 515 may be implemented as a single 
storage device but may also be implemented across multiple 
storage devices or sub-systems co-located or distributed 
relative to each other. Storage system 515 may include 
additional elements, such as a controller, capable of com- 50 

municating with processor 505. 

computing systems (not shown) over a communication 
network or collection of networks (not shown) or the air. 
Examples of connections and devices that together allow for 
inter-system communication may include network interface 
cards, antennas, power amplifiers, RF circuitry, transceivers, 
and other communication circuitry. The connections and 
devices may communicate over communication media to 
exchange communications with other computing systems or 
networks of systems, such as metal, glass, air, or any other 
suitable communication media. The aforementioned com­
munication media, network, connections, and devices are 
well known and need not be discussed at length here. 

Software 510 may be implemented in program instruc­
tions and among other functions may, when executed by 
device 500 in general or processing system 505 in particular, 
direct device 500 or the one or more processors of process- 55 

ing system 505 to operate as described herein for gesture 
discernment and processing. 

In general, software may, when loaded into processing 
system 505 and executed, transform computing device 500 
overall from a general-purpose computing system into a 60 

special-purpose computing system customized to perform 
gesture discernment and processing as described herein for 
each implementation. Indeed, encoding software on storage 
system 515 may transform the physical structure of storage 
system 515. The specific transformation of the physical 65 

structure may depend on various factors in different imple­
mentations of this description. Examples of such factors 

It should be noted that many elements of device 500 may 
be included in a system-on-a-chip (SoC) device. These 
elements may include, but are not limited to, the processing 
system 505 and elements of the storage system 515. 

Computing device 500 is generally intended to represent 
a computing system on which software is deployed and 
executed in order to implement a gesture interpreter 520 and 
associated functions. In some implementations, components 
of the system may be present on separate devices, e.g., a 
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gesture interpreter 520 may be stored and executed on one 
instance of device 500, while input devices are connected to 
different instances of device 500. Such an implementation 
might be applicable when, for example, processing for the 
gesture interpreter 520 is distributed across multiple pro- 5 

cessing units. Such an implementation might also be appli­
cable when the gesture interpreter 520 uses input data from 
multiple input devices that may be connected separately to 
multiple devices 500. In such cases, communication 
between devices or components may occur over networks or 10 

communications channels using communications interfaces 
as described. 

Alternatively, or in addition, the functionality, methods 
and processes described herein can be implemented, at least 
in part, by one or more hardware modules (or logic com- 15 

ponents). For example, the hardware modules can include, 
but are not limited to, application-specific integrated circuit 
(ASIC) chips, field progranrmable gate arrays (FPGAs), 
system-on-a-chip (SoC) systems, complex programmable 
logic devices (CPLDs) and other programmable logic 20 

devices now known or later developed. When the hardware 
modules are activated, the hardware modules perform the 
functionality, methods and processes included within the 
hardware modules. 

It should be understood that the examples and embodi- 25 

ments described herein are for illustrative purposes only and 
that various modifications or changes in light thereof will be 
suggested to persons skilled in the art and are to be included 
within the spirit and purview of this application. 

Although the subject matter has been described in Ian- 30 

guage specific to structural features and/or acts, it is to be 
understood that the subject matter defined in the appended 
claims is not necessarily limited to the specific features or 
acts described above. Rather, the specific features and acts 
described above are disclosed as examples of implementing 35 

the claims and other equivalent features and acts are 
intended to be within the scope of the claims. 

What is claimed is: 

18 
priority function, and an arc callback function for 
executing further processing including processing 
by an application layer; and 

a picking function that uses the arc priority function 
to evaluate the calculation priority among the one 
or more arcs from the same place or transition; 

execute the high-level Petri Net instance by, for each 
node in a path being traversed: 
determining, using the arc picking function, an order 

in which to evaluate arc constraints; 
evaluating the arc constraints function of a first arc in 

the order in which to evaluate the arc constraints; 
when the arc constraints of the first arc are met 

according to the arc constraints function of the 
first arc, updating the one or more tokens associ­
ated with the node by calling the arc update 
function of the first arc to obtain updated input 
data, trigger the arc callback function of the first 
arc, and traverse the next node in the high-level 
Petri Net instance indicated by the first arc; and 

when the arc constraints of the first arc are not met 
according to the arc constraints function of the 
first arc, evaluating the arc constraints function of 
the next arc in the order in which to evaluate the 
arc constraints; and 

return to the application layer an outcome gesture 
indicative of a terminal node in the path being 
traversed, 

the transition being configured to take a state of a prior 
place of the one or more places, alter the state, and 
then transfer it to another place or back to the prior 
place. 

2. The system of claim 1, wherein the input type of the at 
least one input device includes a multi-touch display device. 

3. The system of claim 2, wherein the token definition 
comprises display coordinates and touch states for the 
multi-touch display device. 

1. A system comprising: 
one or more input devices; 
one or more non-transitory computer readable storage 

media; 

4. The system of claim 1, wherein the input type of the at 
40 least one input device includes a full-body gesture input 

device. 

a processing system; 
program instructions for a gesture interpreter stored on the 

one or more non-transitory computer readable storage 
media that direct the processing system to, in response 
to receiving an activation input data from at least one 
input device of the one or more input devices: 
instantiate a high-level Petri Net instance having: 

one or more tokens, each token having a token 
definition appropriate to an input type of the input 
device from which the activation input data is 
received; 

a plurality of nodes, the plurality of nodes compris­
ing: 
one or more places, each place representing a 

gesture state and each place having at least one 
associated token that includes input data 
received through a device driver from the input 
device; and 

one or more transitions, each transition represent­
ing a possible action on the input device; 

5. The system of claim 1, wherein the picking algorithm 
randomly selects between arcs of equivalent priority. 

6. The system of claim 1, wherein the token definition 
45 comprises a function to access a history of prior token states. 

7. The system of claim 1, wherein nodes in a path are 
traversed in parallel. 

8. One or more non-transitory computer readable storage 
media comprising instructions stored thereon that when 

50 executed by a processing system direct the processing 
system to: 

55 

60 

in response to receiving an activation input data from an 
input device: 
instantiate a high-level Petri Net instance having: 

one or more tokens, each token having a token 
definition appropriate to an input type of the input 
device from which the activation input data is 
received; 

a plurality of nodes, the plurality of nodes compris­
ing: 

one or more arcs connecting between the nodes, 
wherein each arc identifies a possible route for a 
token instance to take between nodes, and wherein 65 

each arc is expressed as a tuple comprising an arc 
constraints function, an arc update function, an arc 

one or more places, each place representing a 
gesture state and each place having at least one 
associated token that includes input data 
received through a device driver from the input 
device; and 

one or more transitions, each transition represent­
ing a possible action on the input device; 
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one or more arcs connecting between the nodes, 
wherein each arc identifies a possible route for a 
token instance to take between nodes, and wherein 
each arc is expressed as a tuple comprising an arc 
constraints function, an arc update function, an arc 5 

priority function, and an arc callback function for 
executing further processing including processing 
by an application layer; and 

a picking function that uses the arc priority function 
to evaluate the calculation priority among the one 10 

or more arcs from the same place or transition; 
execute the high-level Petri Net instance by, for each 

node in a path being traversed: 
determining, using the arc picking function, an order 

in which to evaluate arc constraints; 
evaluating the arc constraints function of a first are in 

the order in which to evaluate the arc constraints; 

15 

when the arc constraints of the first arc are met 
according to the arc constraints function of the 
first arc, updating the one or more tokens associ- 20 

ated with the node by calling the arc update 
function of the first arc to obtain updated input 
data, trigger the arc callback function of the first 
arc, and traverse the next node in the high-level 
Petri Net instance indicated by the first arc; and 25 

when the arc constraints of the first arc are not met 
according to the arc constraints function of the 
first arc, evaluating the arc constraints function of 
the next arc in the order in which to evaluate the 
arc constraints; and 

return to the application layer an outcome gesture 
indicative of a terminal node in the path being 
traversed, 

30 

the transition being configured to take a state of a prior 
place of the one or more places, alter the state, and 35 

then transfer it to another place or back to the prior 
place. 

9. The storage media of claim 8, further comprising one 
or more gesture high-level Petri Nets stored thereon. 

10. The storage media of claim 8, wherein the input type 40 

of the input device is a multi-touch display device. 
11. The storage media of claim 10, wherein the token 

definition comprises display coordinates and touch states for 
the multi-touch display device. 

12. The storage media of claim 8, wherein the input type 45 

of the input device is a full-body gesture input device. 
13. The storage media of claim 8, wherein the picking 

algorithm randomly selects between arcs of equivalent pri­
ority. 

14. The storage media of claim 8, wherein the token 50 

definition comprises a function to access a history of prior 
token states. 

15. A method for facilitating gesture discernment and 
processing comprising: 

receiving an activation input data from an input device; 
instantiating a high-level Petri Net instance having: 

one or more tokens, each token having a token defini­
tion appropriate to an input type of the input device 
from which the activation input data is received; 

55 
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a plurality of nodes, the plurality of nodes comprising: 

one or more places, each place representing a gesture 
state and each place having at least one associated 
token that includes received through a device 
driver input data from the input device; and 

one or more transitions, each transition representing 
a possible action on the input device; 

one or more arcs connecting between the nodes, 
wherein each arc identifies a possible route for a 
token instance to take between nodes, and wherein 
each arc is expressed as a tuple comprising an arc 
constraints function, an arc update function, an arc 
priority function, and an arc callback function for 
executing further processing including processing by 
an application layer; and 

a picking function that uses the arc priority function to 
evaluate the calculation priority among the one or 
more arcs from the same place or transition; 

executing the high-level Petri Net instance by, for each 
node in a path being traversed: 
determining, using the arc picking function, an order in 

which to evaluate arc constraints; 
evaluating the arc constraints function of a first arc in 

the order; 
when the arc constraints of the first arc are not met, 

evaluating the arc constraints function of the next arc 
in the order; and 

when the arc constraints of the first arc are met, 
updating the one or more tokens associated with the 
place by calling the arc update function of the first 
arc to obtain updated input data, triggering the arc 
callback function of the first arc; and 
when the node is the terminal node in the path being 

traversed, returning to the application layer an 
outcome gesture indicative of the terminal node; 
or 

when the node is not the terminal node in the path being 
traversed, traversing the next node in the high-level 
Petri Net instance indicated by the first arc, 

the transition being configured to take a state of a prior 
place of the one or more laces, alter the state, and 
then transfer it to another place or back to the prior 
place. 

16. The method of claim 15, wherein the input type of the 
input device is a multi-touch display device. 

17. The method of claim 16, wherein the token definition 
comprises display coordinates and touch states for the 
multi-touch display device. 

18. The method of claim 15, wherein the picking algo­
rithm randomly selects between arcs of equivalent priority. 

19. The method of claim 18, wherein the arc priority 
function for one or more of the arcs is undefined and has an 
arc priority value of zero. 

20. The method of claim 15, wherein the token definition 
comprises a function to access. 

* * * * * 


