
c12) United States Patent
Ortega et al.

(54) GESTURE DISCERNMENT AND
PROCESSING SYSTEM

(71) Applicant: The Florida International University
Board of Trustees, Miami, FL (US)

(72) Inventors: Francisco Raul Ortega, Miami, FL
(US); Naphtali David Rishe, Miami,
FL (US); Armando Bennett Barreto,
Miami, FL (US)

(73) Assignee: The Florida International University
Board of Trustees, Miami, FL (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 623 days.

(21) Appl. No.: 14/555,854

(22) Filed:

(65)

Nov. 28, 2014

Prior Publication Data

US 2016/0091977 Al Mar. 31, 2016

Related U.S. Application Data

(60) Provisional application No. 62/055,749, filed on Sep.
26, 2014.

(51) Int. Cl.
G06F 17/00
G06N 5/00

(2006.01)
(2006.01)

(Continued)
(52) U.S. Cl.

CPC G06F 3/04883 (2013.01); G06K 9/00335
(2013.01); G06K 9/6296 (2013.01); G06F

2203/04808 (2013.01)
(58) Field of Classification Search

USPC .. 706/45
See application file for complete search history.

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111
US009886190B2

(IO) Patent No.: US 9,886,190 B2
Feb.6,2018 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

5,920,857 A * 7/1999 Rishe G06F 17/30483
5,997,482 A * 12/1999 Vaschillo A63B 71/0686

600/484

(Continued)

OTHER PUBLICATIONS

An Extension of the Interpreter Pattern to Define Domain-Paramet­
ric Rewriting Systems Lorenzo Capra; Vincenzo Stile 2013 15th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing Year: 2013 pp. 185-192 IEEE Conference
Publications.*

(Continued)

Primary Examiner - Michael B Holmes

(74) Attorney, Agent, or Firm - Saliwanchik, Lloyd &
Eisenschenk

(57) ABSTRACT

Techniques and systems are described that enable improved
gesture discernment from input devices, as well as simpli­
fied modeling and processing of gestures by application
software layers. Given data (e.g., about movements, actions,
or events) gathered from input devices, techniques and
systems allow gestures to be discerned and inferred more
formally and reliably, and processed more easily by an
application layer. A gesture interpreter is provided that, in
response to receiving an activation input data from an input
device, instantiates a high-level Petri Net instance, executes
the high-level Petri Net instance, and returns, to an appli­
cation layer, an outcome gesture indicative of a terminal
node in a path of the high-level Petri Net instance being
traversed during the execution of the high-level Petri Net
instance.

20 Claims, 6 Drawing Sheets

Terminal ~ode
in path/----

(51) Int. Cl.
G06F 3/0488
G06K 9/00
G06K 9/62

(56)

(2013.01)
(2006.01)
(2006.01)

References Cited

US 9,886,190 B2
Page 2

OTHER PUBLICATIONS

A generic framework for executable gestural interaction models
Romuald Deshayes; Tom Mens; Philippe Palanque 2013 IEEE
Symposium on Visual Languages and Human Centric Computing
Year: 2013 pp. 35-38 IEEE Conference Publications.*

U.S. PATENT DOCUMENTS

Modeling and recognition of hand gesture using colored Petri nets
Yanghee Nam; Nwangyun Wohn; Hyung Lee-Kwang IEEE Trans­
actions on Systems, Man, and Cybernetics-Part A: Systems and
Humans Year: 1999, vol. 29, Issue: 5 pp. 514-521 IEEE Journals &
Magazines.* 6,067,357 A * 5/2000

6,178,239 Bl* 1/2001

6,795,825 B2 * 9/2004
9,734,161 B2 * 8/2017

2002/0107840 Al* 8/2002
2014/0236882 Al* 8/2014

2014/0280319 Al* 9/2014

2015/0373065 Al* 12/2015

2016/0091977 Al* 3/2016

2016/0253847 Al* 9/2016

2017/0102860 Al* 4/2017
2017 /0200249 Al* 7/2017
2017/0316033 Al* 11/2017

Kishinsky . H04M 3/5183
379/265.02

Kishinsky . H04M 3/5183
379/221.15

Rishe G06F 17 /30392
Rishe G06F 17 /30241
Rishe G06F 17 /30392
Rishe G06F 17 /30241

706/50
Rishe G06F 17 /30241

707/769
Holmquist H04L 65/403

715/753
Ortega G06F 3/04883

345/173
Ullrich. GOSG 1/143

705/13
Ullrich G06F 3/04847
Ullrich. G06Q 50/30
Rishe G06F 17 /30241

Translation from Petri nets into Boolean equations for the algebraic
design of logic controllers M. Diaz-Rodriguez; E. Lopez-Mellado;
P-A. Brameret; J-M. Roussel 2011 8th International Conference on
Electrical Engineering, Computing Science and Automatic Control
Year: 2011 pp. 1-6 IEEE Conference Publications.*
Kin, K. et al., "Proton++: A Customizable Declarative Multitouch
Framework," UIST '12, Oct. 7-10, 2012, 10 pages.
Lu, H. et al., "Gesture Coder: A Tool for Progrannning Multi-Touch
Gestures by Demonstration," CHI '12, May 5-10, 2012, 10 pages.
Ortega, F. R. et al., "PeNTa: Formal Modeling for Multi-touch
Systems Using Petri Net," Human-Computer Interaction, Part I,
HCII 2014, LNCS 8510, pp. 361-372.
Ortega, F. R. et al., "Exploring Modeling Language for Multi-Touch
Systems using Petri Nets," ITS '13, Oct. 6-9, 2013, pp. 361-364.
Spano, L. D. et al., "GestIT: A Declarative and Compositional
Framework for Multiplatform Gesture Definition," EICS '13, Jun.
24-27, 2013, pp. 187-196.

* cited by examiner

U.S. Patent Feb.6,2018 Sheet 1 of 6 US 9,886,190 B2

Input Device Input Device Input Device
101 102 103

OS 110

I Device Driver 111 I
I Event APls 112 I

Gesture Interpreter
100

Application Layer 120

Application with UI Gesture Design
responsive to gestures Application

121 122

FIG.1

U.S. Patent Feb.6,2018 Sheet 2 of 6 US 9,886,190 B2

205

225

i-\~
220

FIG. 2A

260

/\
\ 265
\

270

266

271

FIG. 2B

U.S. Patent

300

301

302

Feb.6,2018 Sheet 3 of 6

Instantiate gesture HLPN

For each node in the HLPN

Use picking function to determine

the order in which to evaluate arcs

from the node

Evaluate arc constraints function of r next arc in the order

I 304 /
NO ~//,/

.... I ____ :< ~~nstraints Met?

305
Update tokens with update

function and trigger callback

function

30r / ',
'-- / '"

//Terminal nod~',,

US 9,886,190 B2

NO

< ', in path? ,//>,--------~

' ','...,

'-/

I
307 YES

~ __ R_e_t_ur_n_o_u_t_c!_m_e_g_e_st_u_r_e_

FIG. 3

U.S. Patent Feb.6,2018 Sheet 4 of 6 US 9,886,190 B2

Multi-Touch Data Structure (Token TK)

Name
id
Tid
X

y
state
holdTime
prev
get(Timet)
tSize
msg

Description
Unique Multi-Touch Identification
Touch Entry Number
X display coordinate
Y display coordinate
Touch states (e.g., DOWN, MOVE, UP)
How many milliseconds since last rest
Previous sample
Get previous sample at time t
Size of sample buffer
String variable for messages

FIG. 4A

U.S. Patent Feb.6,2018

00
0
tj

0
0
tj

~
/ \
j
!

Sheet 5 of 6

LO
0
'<:t 0
~~

y
q

\

0 ~--
!
j

z

US 9,886,190 B2

U.S. Patent Feb.6,2018

Processing System

Storage System

Software

520
Gesture

Interpreter

Input Devices

Multi-touch
display

533

Gyroscope
535

Sheet 6 of 6

521
OS

525
Application

Layer

515

530

Motion
Camera

input device
534

532

Accelerometer
536

Other User Interface Components
540

FIG. 5

US 9,886,190 B2

US 9,886,190 B2
1

GESTURE DISCERNMENT AND
PROCESSING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application No. 62/055,749, filed Sep. 26, 2014.

BACKGROUND

As the field of Human-Computer Interaction (HCI) has
matured, the development of new categories of gestural
input devices (e.g., multi-touch displays, full body motion
sensors, gyroscopes, and accelerometers) has become a
common occurrence. However, as the type and number of
these devices increases, the software engineering problems
posed by processing their data become increasingly com­
plex.

BRIEF SUMMARY

2
DETAILED DISCLOSURE

Techniques and systems are described that enable
improved gesture discernment from input devices, as well as

5 simplified modeling and processing of gestures by applica­
tion software layers. Given data (e.g., about movements,
actions, or events) gathered from input devices, techniques
and systems allow gestures to be discerned and inferred
more formally and reliably, and processed more easily by an

10 application layer. Certain techniques and systems enable
distributed processing scenarios across multiple types of
gestural input device. Certain techniques and systems enable
parallel processing of gestures. Certain techniques and sys­
tems are applicable to, for example, graphical gesture mod-

15 eling tools, programming frameworks or code libraries, or
languages.

A "gesture" is a form of communication in which bodily
actions communicate particular messages. Sometimes ges­
tures are accompanied by vocal communications. Gestures

20 refer to a full range of human body movements, including
digits and limbs, hands, face, eye, and full-body positioning.
In some cases, gestures are composed of multiple body
movements, e.g., multiple actions or movements of the same
body part or simultaneous or serial movement of different Techniques and systems are described that enable

improved gesture discernment from input devices, as well as
simplified modeling and processing of gestures by applica­
tion software layers. Given data (e.g., about movements,
actions, or events) gathered from input devices, techniques
and systems allow gestures to be discerned and inferred
more formally and reliably, and processed more easily by an 30

application layer. Certain techniques and systems enable
distributed processing scenarios across multiple types of
gestural input device. Certain techniques and systems enable
parallel processing of gestures. Certain techniques and sys­
tems may be applicable to, for example, graphical gesture
modeling tools, programming frameworks or code libraries,

25 body parts. It should be noted that these are merely
examples, and the range of human gestures is almost lim­
itless; disclosures herein pertain to systems and techniques
for discerning and processing gestures rather than being
limited to particular gesture types.

The basic actions of a gesture are sometimes determined
by the type of input device. For example, a capacitive
display device registers a few primitive actions as input,
such as an object (e.g., a finger or stylus) contacting the
surface, moving along the surface, and leaving the surface.

35 A multi-touch capacitive display registers these action
primitives in more than one place on the display at a time.
For the multi-touch kind of input device, gestures are made
up of permutations of a relatively few action primitives.

or languages.
In some implementations, a gesture interpreter is provided

that, in response to receiving an activation input data from
an input device, instantiates a high-level Petri Net instance,
executes the high-level Petri Net instance, and returns, to an
application layer, an outcome gesture indicative of a termi­
nal node in a path of the high-level Petri Net instance being
traversed during the execution of the high-level Petri Net
instance.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example component environment in
which techniques and systems may be enabled in some
implementations.

FIGS. 2A-2B show examples of processing in a Petri Net
Graph.

FIG. 3 shows an example process flow for instantiating
and executing an HLPN definition for discerning and pro­
cessing a gesture.

FIGS. 4A-4B show an example implementation for multi­
touch display device gesture processing.

FIG. 5 shows a block diagram illustrating components of
devices and systems that may be used to implement the
techniques described herein.

In some cases, these action primitives are processed into
40 gestures such as "zoom" or "swipe" or "click" by the

operating system (OS). Functions or programming inter­
faces of the OS may then broadcast events that indicate
when a gesture is occurring. Application layer code may
subscribe to the events and react to the events, as desired,

45 with their own application-specific operations.
An "input device" is a device for detecting the bodily

actions, movements, or events that may be associated with
one or more gestures. Sometimes, an input device capable of
detecting the actions or events composing a gesture may also

50 be referred to herein as a "gesture input device."
As noted, a gesture may sometimes be composed of more

than one physical action or body movement, and the mul­
tiple physical actions can occur with respect to the same
input device or on multiple different input devices. For

55 example, a "click" or select action on a touch display device
can involve a single action on the touch display device, i.e.,
the user contacting the surface of the display with a finger
atop an operative user interface element like an icon, link,
button, menu, etc. A "zoom" gesture may involve multiple

60 actions and multiple body movements, e.g., two fingers that
both contact the surface of the display and move relative to
one another.

Other types of gestures might involve multiple actions
detected across multiple input devices. For example, the

65 meaning of a "hand wave" gesture may differ based on
cultural norms (e.g., Southern European vs. Northern Euro­
pean) with respect to the speed of the wave. Therefore, to be

US 9,886,190 B2
3

culturally sens1t1ve, proper gesture determination may
depend on the input from multiple devices in that the hand
wave involves, for example, movement recognition using
3D image-based recognition and a determination of velocity
using another sensor. Another example might include a
touch screen gesture that works differently based on the
orientation of the screen with respect to the user.

Some approaches to determining and processing gestures
center on interacting with existing user interface program­
ming models, which may be predominantly event-driven.
For example, the Microsoft Windows® operating system
generates a distinct "event" for each mouse movement,
button press, etc. These approaches may be sufficient when
the gesture is discrete enough, i.e., when it has very few
possible outcomes. When a user moves a computer mouse,
for example, in many cases it is not important where the user
moves the mouse until it arrives at a final destination and a
mouse button is clicked or released.

However, a complex gesture that may involve multiple
interactions with a single device or across multiple input
devices, is more difficult for application software layers to
process. The standard event-driven programming models
suffer from several shortcomings that increase in importance
as the complexity of the gestures increases. First, a complex
gesture may be better represented as a series of actions
occurring over time; therefore, an application layer may
need to provide feedback at pivotal points during the course
of the gesture. However, in some event-driven prograniming
models, the outcome may be a single event indicative of the
gesture; or, the outcome may be multiple lower-level events
from which the gesture must be discerned with program­
ming logic. Deviating from the standard event-driven pro­
gramming models to provide intermediate feedback may
require the application layer to process low-level device
events. This mixture of gesture definition code and feedback
code results in code that is less maintainable and portable
across different application layers.

The first problem is compounded as the number of actions
or states to track in a gesture increases, as is common with,

4
techniques and systems have technical features that, in many
cases, improve certain technical problems with standard
event-driven prograniming models. For example, the use of
a mathematically sound mechanism for processing action

5 primitives means that gesture processing can yield a defini­
tive gesture outcome. Also, existing methods' use of "spa­
ghetti code" may lead to inconclusive outcomes, which may
result in "bug"-filled and unreliable programming logic.
Relatedly, the disclosed techniques allow for easier design

10 and modeling of a gesture (see, for example, the ease of
modifying an existing model in the example that includes a
"BACK-TILTED SWIPE"). Applications that use or con­
nect to implementations of the disclosed systems may con­
tain improved prograniming logic, since the feedback

15 mechanisms providing gesture output and intermediate ges­
ture states are definitive and simplified.

Furthermore, techniques and systems enable multiple
input devices to be integrated into a single mechanism by
allowing a simplified and flexible framework. Because mod-

20 els built on the disclosed techniques are mathematically
sound, gesture discernment and processing may even be
conducted in parallel across multiple processors, asynchro­
nously, and involving multiple input device types.

FIG. 1 shows an example component environment in
25 which techniques and systems may be enabled in some

implementations. According to certain implementations, a
gesture interpreter 100 is provided which performs gesture
discernment based on input from one or more input devices
(e.g., 101-103), and communicates relevant events and

30 information for use by applications.
Gesture interpreter 100 may take the form of, for

example, a software framework, programming library, com­
ponent, or service. In some cases, the gesture interpreter 100
resides on a client device. In some cases, the gesture

35 interpreter 100 resides on another device or processing
system or component, and is accessible via network or other
communications mechanism.

Input devices 101-103 are devices that collect data detect­
ing movements or other information associated with one or

40 more gestures. An input device is a device for detecting
bodily actions, bodily movements, device movements, or
other events that may be associated with one or more
gestures. Input devices may detect gestures directly, as for
example a multi-touch display does. Often a gesture input

for example, multi-touch display input devices and full-body
gesture input devices. Furthermore, particularly in cases
where multiple types of gestural input device are processed,
the application layer programming logic that responds to
events in standard event-driven programming models is
sometimes layered across different functions and different
code modules. Consequently, the application layer may be
programmed with a convoluted array of interacting data
structures, signaling flags, and cross-module messaging
functions. This can lead to complex and fragmented code
that is complex to understand, maintain, and modify, and 50

that has a higher incidence of prograniming errors or "bugs."
This kind of code is often referred to in the industry as
"spaghetti code."

45 device demarcates a working space or working field in
which the actions are conducted; that field may be a direct
mapping to a physical field or a relative mapping to a virtual
field.

Gesture input devices fall into a number of different
categories, each of which has numerous device types, ven­
dors, and implementations. Most familiar of the gesture
input devices are controller-based input devices. These
controllers act as an extension of the body so that move­
ments may be captured by software. A mouse is a type of Further, many gestures are composed of the same set of

initiating actions. For example, a touch of a single finger on 55

a multi-touch device may result in a variety of different
ultimate gestures, e.g., an activation of an icon, a "swipe,"
or in cases when a second finger is touched to the device, a
"zoom in" or "zoom out" gesture. In other words, the
beginning action determines a finite set of outcome gestures, 60

but in many cases that set is very large and evolves as
additional actions are processed. Programming logic to
handle the various permutations in a standard event-driven
model can quickly become unwieldy.

Certain techniques and systems described herein repre- 65

sent a novel improvement in the technological art of gesture
input device discernment and processing. The disclosed

controller-based input device, in that the movement of a
pointer across a virtual space is being correlated with the
movement of the user's hand holding the mouse controller.
Multi-touch display devices are another example, as the
tracking or movement of one or more fingers is correlated
not only with physical movements across a virtual space, but
may also have different semantic content in the context of
different virtual spaces (e.g., a "flick" gesture may indicate
an item of content should be deleted in one application, but
marked "complete" in another).

Another category of input device includes various kinds
of gesture devices for image-based recognition. Image­
based recognition uses optical (light sensitive) sensors to

US 9,886,190 B2
5

detect motion. Image-based recognition devices may vary
by the ability to and method of sensing motion in three
dimensions (3D). For example, a stereo camera input device
uses two cameras, for example an RGB camera and a depth
camera, whose physical location is known to one another to 5

get a 3D output by the camera. As another example, a
depth-aware camera can use structured light (e.g., strobe
flashes) to generate a depth map of what is being seen
through the camera at a short range; short range detection
(e.g., of hand gestures) can be performed using this 3D 10

representation. An example of image-based recognition is
the Microsoft Kinect®, which uses various camera sensors
to detect full-body gestures and perform facial recognition.
Some full-body gesture recognition systems use "joint"
mapping to determine body positioning based on bends in 15

the limbs.
However, sometimes an input device may also detect

other kinds of information that is useful in discerning a
gesture. Discerning a kind of gesture may in some cases
depend on other sensors that may not necessarily be thought 20

of as gesture input devices. For example, some kinds of
gesture may depend not only on what a user is doing, but
also on external factors like the speed the device is moving.

6
the input device 101-103. Once the device sends data back
to the device driver 111, the driver may invoke routines in
the original calling program. Device drivers are generally
hardware-dependent and specific to the OS 110.

Gesture interpreter 100 may also interact with one or
more application programming interfaces (APis) 112 that
may be provided by or accessible through the OS 110. An
API is an interface implemented by a program code com-
ponent or hardware component (hereinafter "API-imple­
menting component") that allows a different program code
component or hardware component (hereinafter "API-call­
ing component") to access and use one or more functions,
methods, procedures, data structures, classes, and/or other
services provided by the API-implementing component. An
API can define one or more parameters that are passed
between theAPI-calling component and theAPI-implement­
ing component. The API and related components may be
stored in one or more computer readable storage media.

Gesture interpreter 100 may call functions in event APis
112, which in some cases may provide coarser-grained or
higher-level capabilities than OS 110 or device driver 111
functions. For instance, the device driver 111 that commu­
nicates with a multi-touch display input device may process

25 low-level sensor information about the distortion of the
If a user were driving an automobile while wearing a device
that senses eye movement tracking (such as Google®
Glass), a quick movement of the eye to the top right corner
might not be an indication to perform a gesture on the
device, but might instead be a quick check by the user of the
automobile's rear view mirror. In a case such as this, gesture
recognition might include input from not only the eye 30

movement tracking device, but also the device's GPS sensor
(for speed detection).

Another type of input device may be a device sensor that
detects positioning or relative motion of the device. An
accelerometer, which measures proper acceleration, is one 35

example of such an input device. An accelerometer may be
used, for example, for detecting free-fall or collision (i.e.,
rapid deceleration) of a device or the orientation of the
device. A gyroscope, which measures orientation based on
the principles of angular momentum, is another example of 40

a device sensor input device.
It should be noted that FIG. 3 shows three input devices

101, 102, and 103. The use of three input devices is
indicative of the fact that a gesture may be composed of
input from multiple devices and/or multiple device types. 45

The use of three input devices is not intended to limit the
component environment to any particular number of input
devices.

sensor's electrostatic field when a finger or other electrical
conductor contacts the display. The OS 110 may determine
that that distortion perceived by the device driver 111 is
significant enough to register as a "touch" for the purposes
of the OS functions. OS 110 may then notify other software
layers of the "touch" event by exposing an event API 112
that allows interested software layers to subscribe to sig­
nificant events occurring on input devices like the multi­
touch display. When significant events occur, the events are
published and the subscribing software layers, in this case
the gesture interpreter 100, are notified.

While interpreting a gesture from input from one or more
input devices, gesture interpreter 100 may also communicate
with components in the application layer 120. The applica­
tion layer 120 contains other software layers, such as appli­
cations or other APis or frameworks, that perform user-
oriented activities on the device. Some familiar examples of
applications in the application layer 120 are email applica­
tions, word processors, and spreadsheet applications. In
some cases an application layer 120 may include an inter­
mediate layer that makes certain capabilities easier or acces-
sible to application software. An example is the Microsoft®
.NET Framework, which acts as an intermediate component
within the application layer 120 to make software written In some implementations, gesture interpreter 100 may,

instead of communicating with input devices 101-103
directly, interact with intermediate software layers provided
by the operating system (OS) 110 of a device with which
input devices 101-103 are connected or integrated.
Examples of operating systems include Microsoft Win­
dows®, Apple iOS®, and Google Android®. OS 110 may
include device drivers 111 that communicate sensor data to
the software layers of the device.

50 across multiple device types more uniform.

A "device driver" 111 operates or controls a particular
type of device that is attached to a computer. A device driver
111 provides a software interface to hardware devices,
enabling operating systems and other computer programs to
access hardware functions without needing to know precise
details of the hardware being used. A device driver 111
typically communicates with the device through the com­
puter bus or communications subsystem to which the hard­
ware connects. When a calling program invokes a routine in
the device driver, the device driver 111 issues commands to

The activities and capabilities that may be part of a
gesture interpreter 100 will be discussed in more detail in
later figures and accompanying text. In general, however,
gesture interpreter 100 may communicate with software in

55 the application layer 120 by, for example, exposing API
functions that allow software in the application layer 120 to
be informed when gestures have been discerned and/or at
relevant points of feedback within the gesture. For example,
say that software in the application layer 120 would like to

60 be notified when a "swipe" (the "outcome gesture") is
performed on the device's multi-touch display. The software
would also like to be notified when the "move" phase of the
swipe action is occurring so that it can show a directional
arrow of the swipe. The gesture interpreter 100 may expose

65 one or more API functions that may be called by the
application layer 120 software to indicate that the software
would like to be notified of these happenings.

US 9,886,190 B2
7 8

state to state. To put it another way, a Petri Net represents a
system by showing the transition of states over the life of the
system as the system executes under different conditions.

In a standard Petri Net, the state of the system is repre-

In FIG. 1, examples of two types of applications within
the application layer 120 that may make use of the capa­
bilities provided by the gesture interpreter 100 are shown.
The first type, an application with a user interface (UI)
responsive to gestures 121, is illustrative of the software
example immediately above relating to the swipe gesture.
This kind of application includes nearly any user-oriented
application, including email applications, to-do list applica­
tions, etc.

5 sented with simple, lower level data types (e.g., integer
values). A high-level Petri Net (HLPN), such as used in the
described implementations, is a type of Petri Net that allows
tokens having complex data types to be associated with the
places in the net. An HLPN also allows more complex

In some cases, gesture interpreter 100 includes the ability
to design new gestures or gesture models. In some cases,
software in the application layer 120 may provide an inter­
face with which to design or model new types of gestures.

10 conditions to be associated with an arc (the association of
conditions with an arc are sometimes called "arc annota-

A gesture design application 122 may, for example, be
capable of designing new gestures graphically or visually, 15

and may call API functions to instruct the gesture interpreter
100 to model the new gesture. In some cases, the gesture
interpreter 100 contains a library of gestures that have been
developed by third parties using such tools.

According to certain implementations, gesture interpreter 20

100 uses high-level "Petri Nets" to achieve a formal math­
ematical representation of a given gesture model that may
execute to perform gesture discermnent and processing.

A Petri Net is a type of state transition model which can
be helpful to represent a system's possible state changes as 25

the system responds to events or input. One advantage of a
Petri Net is that it formally represents all possible state
changes in the system in response to varying input. Hence,

tions").
Certain techniques and systems described herein define a

particular type ofHLPN, which is a variation of a Predicated
Transitions Net (PrT Net), that has a particular model for arc
functions, token definitions associated with the types of
input device, and a picking algorithm for discerning the
processing order for arcs. Implementations of this HLPN
model create distinct gesture HLPNs for different kinds of
gestures discerned and processed by the gesture interpreter
100. Of course embodiments are not limited to the PrT
Net-type HLPN. For example, Coloured Petri Nets (CPN)
may be used.

As noted, each arc is defined as a function F denoting
constraints. Each function F is defined as a tuple of functions
such that F=(B, U, C, R). The tuple B, U, C, and R describe
the conditions for selecting a particular arc's path to the next
node as well as the functions that will occur after it has been
selected. The characteristics ofB, U, C, and R, are described a Petri Net is mathematically sound. A Petri Net includes a

definition (or specification) and an execution model.
Embodiments described herein define particular high­

level Petri Net models that execute in specific technical
environments to coordinate and process gesture-related
input from various input devices.

30 below, but it should be noted for clarity that B, U, C, and R
denote a function specification or template. A given imple­
mentation of an HLPN for a specific gesture can call
different functions and operate differently in the case of each

A Petri Net is usually described using its graphical 35

representation. The graphical representation of a Petri Net is
sometimes called a Petri Net Graph. FIG. 2A shows a very
simple example of a generic Petri Net Graph. To briefly
s=arize, a Petri Net includes states, sometimes known as
"places" 200, 225 which are joined to "transitions" 205 by 40

"arcs" 210, 220. Places 200 and transitions 205 are both a
type of "node," which are the vertexes of a Petri Net Graph.
During the execution of the Petri Net, each "place" 200, 225
in the Petri Net is "marked" with one or more data elements
called "tokens" T. Each place accepts tokens of a specified 45

token definition that defines the structure of the token's data
elements. A transition 205 takes as input a state of the place
200 it was joined to, and in some cases alters the system
state, transitioning it to another place 225, or in some cases
back to the prior place with possibly different token values. 50

In other words, a place 200, 225 may contain one or more
tokens T, which are "consumed" during a transition 205; the
transition 205 yields one or more new tokens T to the next
place 225 indicated by the output arc 220.

Connections between nodes are indicated by "arcs," 55

which are represented in the Petri Net Graph as arrows (e.g.,
210, 220), but which are defined mathematically as func­
tions. Each node (i.e., place or transition) may have multiple
input arcs and multiple output arcs, though only one of each
is shown in FIG. 2A. An Input arc 210 to a node indicates 60

the possible paths taken to arrive at the node from other
nodes, and an output arc 220 indicates the possible paths
taken to leave the node and enter other nodes. An arc 210,
220 defines the conditions under which a particular state
transition may occur as the system "moves" from place to 65

place. Here, "move" is used primarily figuratively, as the
"motion" of the system is the transition of the system from

arc function, though the HLPN for the gesture adheres to the
overall function template for the model as described. Fur­
thermore, functions in the arc tuple may be null operations
for some individual arcs.

B denotes the "arc constraints function" that evaluates to
TRUE or FALSE as a precondition of the arc being selected
as the path to the next node.

U denotes the "arc update function," which instantiates a
code block for setting values to data elements within the
current token. For instance, the update function may obtain
a next sample of data from the input device (e.g., the current
X, Y location of the finger on the multi-touch display
device).

C denotes the "arc callback function," which allows the
HLPN to have a function callback with conditional IF
statements, local variable assignments, and calls to external
functions. If no callback event is provided, a default generic
callback event may be called. The callback function may
provide, for instance, the capability of application layer 120
software to receive notifications of gesture events from a
gesture interpreter 100, both during execution of the gesture
and at the gesture's termination or final outcome.

R denotes the "arc priority function" that instantiates a
code block for the purpose of assigning an arc priority value
to the arc.

The priority value is used by the "picking function" to
discern the highest-priority arc to process when multiple
arcs exit a node. Picking the next transition or place for the
case when there is only one possible arc is trivial. However,
when there are multiple arcs, a function to pick the next one
to check may be important.

Some implementations may use a "picking" function that
combines random selection with the use of priority func­
tions. This picking function may compute the priority func-

US 9,886,190 B2
9

tion for arcs leading from a node, sort them by ascending
value, and then group them if the values are equivalent (e.g.,
Gl=lO, 10, 10, G2=1, 1). Selection between nodes with
equivalent priorities is chosen at random among the mem­
bers of the highest-ranking group (e.g., one of the nodes of 5

Gl with priority value 10 will be randomly chosen first). In
some cases, an arc priority function can be undefined, and
the arc priority for an undefined arc priority function is zero.
In these cases, the picking function can randomly select
between arcs of priority value zero. Naturally, other picking 10

functions are possible and may be appropriate in other
implementations.

Some implementations may use parallel processing so
that multiple paths may be traversed simultaneously. This
may be advantageous when multiple processing units are 15

available, when nodes are expensive to traverse due to
complex constraints, or when data from input devices arrive
sporadically or asynchronously.

FIG. 28 shows an example of parallel processing. In FIG.
28, place 250 having a token Tl moves via arc 255 into 20

transition 260. Transition 260 can create multiple identical
copies of the token Tl based on the original and effectively
pass the tokens to two places 270, 271 simultaneously via
two output arcs 265, 266. Processing using identical token
data may then proceed in parallel along two paths. Since an 25

HLPN is mathematically sound, a single definitive outcome
will emerge, even when the nodes are traversed in parallel.

FIG. 3 shows an example process flow for instantiating
and executing an HLPN definition for discerning and pro­
cessing a gesture. Techniques expressed by the process flow 30

may be appropriate for implementation in a gesture inter­
preter 100, described with respect to FIG. 1.

10
and/or events of the input device. Note that in some cases,
all the nodes in a given HLPN might not be traversed, as the
path traversed through the nodes is determined by the token
data and function outcomes at each possible path.

For each node in the HLPN for a path being traversed
(301), several processing steps may be performed. Initially,
the picking function may be applied to determine the order
in which to evaluate arcs from the node (302). The picking
function may perform this operation by calling the priority
function of each arc emerging from the node, and then
ranking the priority values. The picking function may in
some cases choose randomly between arcs of equivalent
priority. For example, the priority function may not be
defined (or may be defined to equivalent priorities of 0),
resulting in the picking function picking randomly between
the arcs. This aspect was described in more detail above in
reference to the definition of a picking function.

Having ordered the output arcs on a node, the arc con­
straints function can be evaluated for the next arc (here, the
first arc) in the order (303). The arc constraints function is
determinative of whether conditions for taking a particular
path out of a node have been met. The precise requirements
in a given arc constraints function are determined by the
gesture design. For example, a "zoom" motion often
requires two fingers to be on a multi-touch display. Thus, a
condition for determining a "zoom" motion may require two
tokens, each one representing an individual finger trace on
a multi-touch display, to be present in a place. Unless two
tokens are in the place, the "zoom" transition may not be
called. A detailed example of arc constraints function pro-
cessing is shown in FIG. 4A-48.

Constraints are tested as described above (304). If con­
straints are not met (NO), then the arc constraints on the next
arc in the order (303), as determined by the picking function,
are tested.

If the constraints are met (YES), then that particular arc
is chosen, meaning that processing for the arc executes by
calling the arc update function and triggering the arc call­
back function (305). As noted with respect to FIG. 2A, the
arc update function may in some cases retrieve additional
samples of data from an input device to update values in the
token(s) associated with a place. For example, a new sample

In FIG. 3, a "gesture HLPN," i.e., an HLPN that describes
the discernment and processing for a particular set of
actions, movements, or events that make up a gesture, is 35

instantiated (300). The general description of a gesture
HLPN was described above with respect to FIG. 2, and
includes token definitions, places, transitions, arcs and their
associated function tuple, and a picking function. In other
words, to design a gesture HLPN for a given gesture, places 40

are defined and associated with specific tokens that capture
data relevant to the type of input devices that provide action
primitives to the gestures. Transitions are also described that
show the transitions from state to state. Arcs and their
associated function tuples describe the "path" of possible
states through the system to ultimately arrive at a gesture
outcome through the gesture HLPN. Note that a detailed
example of an HLPN for a multi-touch display device is
described below with respect to FIGS. 4A-48.

45 may indicate that the position of a user's finger on a
multi-touch display has moved to a new location and the x,
y coordinates of the finger may be updated accordingly in
the token.

Instantiating the gesture HLPN (300) occurs when, in 50

response to receiving activation input data from an input
device, a gesture HLPN is initialized by having tokens
associated with places (sometimes referred to as "marking"
the HLPN). The tokens initially contain data values appro­
priate to the types of input devices and types of gesture 55

action primitives that the gesture HLPN is designed to
discern and process.

Having instantiated the gesture HLPN, the gesture HLPN
may now be "executed." The gesture HLPN is executed by
traversing the nodes (places and transitions) of the HLPN in 60

a given path until termination of the nodes in the path, which
describes a final gesture outcome. The objective of execut­
ing the gesture HLPN is to apply appropriate transitions to
the state at important junctures, update the state with new
information from input devices when appropriate, and arrive 65

at a final determination as to the outcome gesture for the
particular set of actions and movements taken by the user

An arc callback function may also be triggered with
respect to the arc. As noted with respect to FIG. 2A, an arc
callback function may allow for additional processing and
may provide, for instance, the capability of application layer
120 software to receive notifications of gesture events both
during execution of the gesture and at the gesture's termi-
nation or final outcome.

If the node being traversed is a terminal node (306), i.e.,
the last node in a given path for traversing the gesture
HLPN, then a final outcome gesture is determined by the
path and returned (307). In some cases, the final state of a
token arriving at the terminal node may represent the
outcome gesture, and in some cases the arc callback function
on the arc leading to the final node may indicate to software
in the application layer 120 that an outcome gesture has been
determined in this instance.

If the node being traversed is not a terminal node in the
path being traversed, then execution of the gesture HLPN
continues with the next node (306 returning to 301).

US 9,886,190 B2
11

Example: Multi-Touch Display Device Gesture Process­
ing

One example implementation of techniques and systems
described herein is appropriate to gesture processing for
multi-touch displays. Multi-touch displays (e.g., a touch
panel of a tablet or display) may be capacitive, resistive,
heat-based, or infra-red based as some examples. In some
cases, camera tracking may be used. Furthermore, some
multi-touch displays may also be vision-based, such as
Microsoft® PixelSense or even a device that tracks eye
movements such as Google® Glass. This example specifi­
cally discusses capacitive multi-touch displays, but the
techniques discussed in this example may also be applied to
gestures detectable from eye movements tracking devices or
other kinds of multi-touch input devices, particularly when
they are analogous to finger-based gestures.

12
In some cases, the ability to obtain a history of prior token

states may be relevant to an implementation. Depending on
the implementation, a previous history of token states may
be stored within the token, or it may be stored in a buffer

5 accessible through a function. The token definition in this
example includes a reference "prev" to the token describing
the previous sample. This example token data structure
includes a pointer function "get(Time t)" to access a previ­
ous history of token states at a particular time "t" contained

10 in a buffer of size "tSize".
It should be noted that the token definition depicted in

FIG. 4A is exemplary only and is not intended to limit either
multi-touch display device gesture processing, or gesture

15
input device processing in general, to a specific token
definition.

Implementation includes a specific gesture HLPN, includ­
ing token definitions appropriate to multi-touch display
gesture processing; places that have tokens; transitions; arcs
with pre- and post-condition functions appropriate to the 20

display; and a picking function for determining the arc
traversal priority.

Take, for example, an interaction that has two possible
gestures using two fingers: "swipe" and "zoom". FIG. 48
shows an example HLPN "graph" (a graphical representa­
tion of the HLPN's mathematical expression) for processing
the two possible gestures of the multi-touch display device.
A swipe implies that the user moves two fingers in any
direction. In the case of "zoom," zoom-in and zoom-out
could be modeled separately, but are modeled together in
FIG. 48.

In this example implementation, a capacitive multi-touch
display can detect multiple finger strokes at the same time.

FIG. 48 shows places denoted by circular elements;
transitions denoted by rectangular elements that are labeled
for clarity to indicate the transition; arcs represented by
directional arrows (labeled with letters); and two tokens (al
and a2), representing two active traces in place 405. FIG. 48
is described with reference to Table 1, which contains more
detailed descriptions of activities occurring with respect to
each arc. Table 1 shows each arc expression with the
Boolean condition function and other relevant information.

A "trace" is generated when a finger touches down onto the 25

surface, moves (or stays static), and is eventually lifted from
the surface. Therefore, a trace is a set of touches or actions
that are part of a continuous stroke. A set of traces may
define a gesture. For example, a simple gesture on a multi­
touch display may be two fingers moving on the same path, 30

creating a swipe. Another example gesture is the "zoom
out," when two fingers are detected as moving away from
one another. Another example gesture is the "zoom in," in
which two fingers are detected as moving toward one
another. 35 In Table 1, TK denotes a generic token of a given definition,

of which al and a2 are instances. A token is the data structure for capturing system state in
the gesture processing system. In some implementations, a
single token definition may sufficiently represent the neces­
sary unit of gesture processing. Here, a token represents the
action of a single finger trace. Turning first to the definition
of the token T=TK for this example implementation, FIG.
4A describes an example token definition. The description in
FIG. 4A shows several data elements and a textual descrip­
tion of their meaning.

The gesture processing system can assign, for example, an
"id" or unique identification code. Depending on the imple­
mentation, the "id" may be a unique number or consecutive
integer assigned while the system is operating. The "tid"
may denote an identifier within a particular gesture process­
ing instance, for example representing the individual move­
ments such as traces or finger strokes that compose the
gesture.

Display coordinates, i.e., the location of the touch or
action on the virtual space of the multi-touch display, are
given by "x" (for the horizontal coordinate) and "y" (for the
vertical coordinate). The "state" variable represents the
current mode of the token. In this example, the state variable
has one of several discrete values such as DOWN, MOVE,
and UP.

The "holdTime" tracks how many milliseconds have
elapsed since the generation of the token, so that it may be
determined if the finger has remained static at the current
position on the display. Note that, since the token in this
implementation represents a trace rather than a movement,
if a touch interaction is not moving or is not moving beyond
a threshold amount, it will not create additional samples but
increment the holding time of the finger.

40

45

50

55

Arc From

A 400
B DOWN
C 402
D 402
E MOVE
F 405
G 405
H MOVE'

405

ZOOM
K 405

L SWIPE
M UP'
N UP
0 410
p END

To

DOWN
402
MOVE
UP
405
UP'
MOVE'
405
ZOOM

405
SWIPE

405
410
410
END
412

TABLE 1

Condition

TK.state -- DOWN
update(TK)
TK.state -- MOVE
TK.state -- UP
update(TK)
TK.state -- UP
TK.state -- MOVE
update(TK)
TK.state -- MOVE &&
IsZoom(al, a2)
Update(al, a2)
TK.state -- MOVE &&
IsSwipe(al, a2)
Update(al, a2)
TK.state -- UP
TK.state -- UP
true
true

Token Count

2

2
2

2

The system begins with an empty initial marking (no
tokens) awaiting an action to be registered on the gesture
input device. Once the user touches down onto the surface,

60 tokens are created (e.g., based on available token defini­
tions) and placed in START 400. Many multi-touch display
devices would initiate by registering a finger on the display,
so given that the tokens will start with a DOWN state, they
will move from place 400 into place 402, using arcs A and

65 B to move through transition 401. Arc A consumes the token,
and arc B updates the token with the next touch data sample
into place 402. Once in place 402, since the token was

US 9,886,190 B2
13

updated with the next touch sample, the system infers the
next transition using the constraints provided. It has two
options, either arc C or arc D. If the token's state is MOVE,
each token is moved into place 405 using arc E, and another
updated touch data sample is taken.

FIG. 48 shows the system at this time, with both tokens
al and a2 (each representing a finger trace) at place 405.
The system infers the next transition (406, 407, 408, or 409)
by using the picking algorithm to determine which arc (F, G,
I, or K) has priority. For this example, assume that MOVE'
406, ZOOM 407, SWIPE 408, and UP' 409 each have
priority functions that calculate to values 1, 10, 10, and 2,
respectively. This means that the group with ZOOM and
SWIPE are the first to be checked for constraints, since they
have the highest values. Using the picking algorithm, the
system will randomly choose one of the two equivalent­
priority arcs and check the arc's constraints function to see
if it can be enabled (or "fired").

14
moves the system through transition END 411, which con­
sumes the final token and executes necessary operations for
final token state 412. Node 412 represents the terminal node
for the path.

Example: Multiple Gesture Input Devices
One example implementation of techniques and systems

described herein may be appropriate to gesture processing
for multiple input devices. This example shows the advan­
tages of the techniques and systems by showing the ease of

10 modeling, discerning, and processing gesture models with
multiple input devices.

Consider, for example, a gesture that is determined from
a combination of action primitives across multiple input
devices, a "back-tilted swipe". This hypothetical gesture

15 requires both a "swipe" gesture involving two fingers and
that the device be tilted such that the bottom of the device

Assume, for example, that the picking function deter­
mines that SWIPE 408 should be checked to see if the 20

is higher than the top of the device at an angle of more than
30 degrees of horizontal. In such an example, the tilt may be
determined from the state of the gyroscope input device on
the device, and the "swipe" gesture may require input from
the multi-touch display input device. constraints are met. In the example in FIG. 48, at place 405,

evaluating arc K, the constraints include a TRUE return
from the Boolean function "IsSwipe (al, a2)" (the arc's
definition of the function B pre-condition), which accepts
two tokens and returns TRUE or FALSE. The constraints are
true if two tokens are in place 405, both tokens are in state
MOVE, and the function IsSwipe returns TRUE. If the
constraints are met, the callback function indicating a
SWIPE 408 transition has occurred will be called. The

To address this example, the gesture HLPN described in
FIGS. 4A-4B for the multi-touch display is simply modified
by including a new token definition for the gyroscope, an

25 additional place associated with the new token definition for
the gyroscope, and an additional transition called "BACK­
TILTED SWIPE." Modifications to the HLPN also include
appropriate arcs for connecting the new nodes and their
associated arc functions.

callback function may, for example, indicate the direction of 30

the swipe and pass a copy of the token data for use by the
application layer. The token data will then be updated to the
next sample via an update function associated with arc L.
This brings back both tokens into place 405.

The new token definition for the gyroscope input device
may include a data element indicating the position of the
gyroscope in degrees. The new place GYRO may be asso­
ciated with tokens of the "gyroscope" type.

The new gesture can be integrated with the HLPN in FIG.
Alternatively, during execution of the system, ZOOM 407

may be chosen by the picking function and arc I may be
evaluated. If arc I's constraints have been met, i.e., if the
state of both tokens is MOVE and the IsZoom(al, a2)
evaluates to TRUE, then the callback function indicating a
ZOOM 407 transition has occurred will be called. The
callback function will pass a copy of the token data for use
by the application layer. The token data will then be updated
to the next sample via an update function associated with arc
J. This brings back both tokens into place 405.

Alternatively, during execution of the system, likely
because constraints on higher-priority arcs are not met,
MOVE' 406 may be chosen by the picking function and arc
G may be evaluated. Arc G's constraints have been met if the
state of the token is MOVE. There is no Boolean function
constraint, hence MOVE' 406 may represent a fallback state
when one or both fingers are moving, but neither are moving
in a discernable SWIPE or ZOOM motion (e.g., the fingers
are not moving together, only one finger is moving, or both
fingers are not moving towards or away from one another).
A callback function may be called which may pass a copy of
the token data. The token data will then be updated to the
next sample via an update function associated with arc H,
which brings the token(s) back to place 405.

Eventually, from place 405, a finger may be lifted from
the multi-touch display device. When that occurs, a token al
and/or a2 will have the UP state, and the token(s) will move
via arc F into transition UP' 409, and then to place 410 via
arc M. The system may also arrive at place 410 via arc N,
for example if a finger was initially lifted from place 402
without ever having been moved. In that case, the system
would have moved through transition UP 404 to arrive at
place 410. From place 410, arc 0, which has no constraints,

35 48 by connecting the new GYRO place to the SWIPE
transition 408 with an arc. GYRO is given a token ~1,
indicating the state of the gyroscope. Connected to GYRO
by a new arc might be the new transition BACK-TILTED
SWIPE. The new arc may have an arc constraints function

40 requiring that the gyroscope token have data indicating a
reading of 30 degrees or more. BACK-TILTED SWIPE
might be connected with an output arc leading directly back
to place 405. Naturally, other implementations are possible.

FIG. 5 shows a block diagram illustrating components of
45 devices and systems that may be used to implement the

techniques described herein.
Referring to FIG. 5, device 500 may represent a comput­

ing device such as, but not limited to, a personal computer,
a tablet computer, a reader, a mobile device, a personal

50 digital assistant, a wearable computer, a smartphone, a
laptop computer (notebook or netbook), a gaming device or
console, a desktop computer, or a smart television. Accord­
ingly, more or fewer elements described with respect to
device 500 may be incorporated to implement a particular

55 computing device.
Device 500, for example, includes a processing system

505 of one or more processors to transform or manipulate
data according to the instructions of software 510 stored on
a storage system 515. Examples of processors of the pro-

60 cessing system 505 include general purpose central process­
ing units, application specific processors, and logic devices,
as well as any other type of processing device, combina­
tions, or variations thereof.

The software 510 can include an operating system 521
65 and components such as a gesture interpreter 520 and

application layer software 525 (100 and 120 of FIG. 1,
respectively). The gesture interpreter 520 may implement

US 9,886,190 B2
15

aspects of systems and techniques herein, and software in
the application layer 525 may interact with the gesture
interpreter 520 to discern and process gestures. Software in
the application layer may include user oriented applications
that wish to process gestures and gesture design applications 5

(121 and 122 of FIG. 1, respectively).

16
may include, but are not limited to the technology used to
implement the storage media of storage system 515 and
whether the computer-storage media are characterized as
primary or secondary storage.

The storage system 515 can further include a gesture store
containing HLPN models for a plurality of gestures. The
gesture store may be one or more files or databases con­
taining graph models, function definitions, data structures,
or other information used by the gesture interpreter 520 to

Device operating systems 521 generally control and coor­
dinate the functions of the various components in the
computing device, providing an easier way for applications
to connect with lower level components like input devices or
capabilities. An OS 521 may provide device drivers (111,
described with respect to FIG. 1) for communicating with
input devices and assisting in the interchange of data
between the input devices 530 and other software layers.
Non-limiting examples of operating systems include Win­
dows® from Microsoft Corp., Apple® iOS™ from Apple,
Inc., Android® OS from Google, Inc., and the Ubuntu
variety of the Linux OS from Canonical.

10 perform gesture discernment and processing.

It should be noted that the operating system 521 may be
implemented both natively on the computing device and on
software virtualization layers running atop the native device
operating system (OS). Virtualized OS layers, while not
depicted in FIG. 5, can be thought of as additional, nested
groupings within the operating system space, each contain­
ing an OS, application programs, and APis.

Storage system 515 may comprise any computer readable
storage media readable by the processing system 505 and
capable of storing software 510, including the gesture inter­
preter 520.

Storage system 515 may include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data.

Examples of storage media include random access
memory (RAM), read only memory (ROM), magnetic disks,
optical disks, CDs, DVDs, flash memory, solid state
memory, phase change memory, or any other suitable stor­
age media. Certain implementations may involve either or
both virtual memory and non-virtual memory. In no case do
storage media consist of a propagated signal or carrier wave.
In addition to storage media, in some implementations,
storage system 515 may also include communication media
over which software may be communicated internally or
externally.

The device 500 can further include input devices 530
which may enable different types of actions, movements, or
events to be detected for use by the gesture interpreter 520.
Input devices can include, for example, a camera 532 for

15 detecting visual input, a multi-touch display device 533 for
receiving a touch gesture from a user, and a motion input
device 534 for detecting non-touch gestures and other
motions by a user. Input devices may also include a gyro­
scope 535 and an accelerometer 536. These input devices are

20 exemplary only.
Other user interface components 540 may include other

input components such as a mouse, keyboard, and display.
Other user interface components 540 may also include
output devices such as display screens, speakers, haptic

25 devices for tactile feedback, and other types of output
devices. In certain cases, the input and output devices may
be combined in a single device, such as a touchscreen
display which both depicts images and receives touch ges­
ture input from the user. Visual output may be depicted on

30 the display in myriad ways, presenting graphical user inter­
face elements, text, images, video, notifications, virtual
buttons, virtual keyboards, or any other type of information
capable of being depicted in visual form.

Other user interface components 540 may also include
35 user interface software and associated software (e.g., for

graphics chips and input devices) executed by the OS in
support of the various user input and output devices. The
associated software assists the OS in communicating user
interface hardware events to application programs using

40 defined mechanisms. The user interface system 530 includ­
ing user interface software may support a graphical user
interface, a natural user interface, or any other type of user
interface.

A communication interface (not shown) may be included,
45 providing communication connections and devices that

allow for communication between device 500 and other Storage system 515 may be implemented as a single
storage device but may also be implemented across multiple
storage devices or sub-systems co-located or distributed
relative to each other. Storage system 515 may include
additional elements, such as a controller, capable of com- 50

municating with processor 505.

computing systems (not shown) over a communication
network or collection of networks (not shown) or the air.
Examples of connections and devices that together allow for
inter-system communication may include network interface
cards, antennas, power amplifiers, RF circuitry, transceivers,
and other communication circuitry. The connections and
devices may communicate over communication media to
exchange communications with other computing systems or
networks of systems, such as metal, glass, air, or any other
suitable communication media. The aforementioned com­
munication media, network, connections, and devices are
well known and need not be discussed at length here.

Software 510 may be implemented in program instruc­
tions and among other functions may, when executed by
device 500 in general or processing system 505 in particular,
direct device 500 or the one or more processors of process- 55

ing system 505 to operate as described herein for gesture
discernment and processing.

In general, software may, when loaded into processing
system 505 and executed, transform computing device 500
overall from a general-purpose computing system into a 60

special-purpose computing system customized to perform
gesture discernment and processing as described herein for
each implementation. Indeed, encoding software on storage
system 515 may transform the physical structure of storage
system 515. The specific transformation of the physical 65

structure may depend on various factors in different imple­
mentations of this description. Examples of such factors

It should be noted that many elements of device 500 may
be included in a system-on-a-chip (SoC) device. These
elements may include, but are not limited to, the processing
system 505 and elements of the storage system 515.

Computing device 500 is generally intended to represent
a computing system on which software is deployed and
executed in order to implement a gesture interpreter 520 and
associated functions. In some implementations, components
of the system may be present on separate devices, e.g., a

US 9,886,190 B2
17

gesture interpreter 520 may be stored and executed on one
instance of device 500, while input devices are connected to
different instances of device 500. Such an implementation
might be applicable when, for example, processing for the
gesture interpreter 520 is distributed across multiple pro- 5

cessing units. Such an implementation might also be appli­
cable when the gesture interpreter 520 uses input data from
multiple input devices that may be connected separately to
multiple devices 500. In such cases, communication
between devices or components may occur over networks or 10

communications channels using communications interfaces
as described.

Alternatively, or in addition, the functionality, methods
and processes described herein can be implemented, at least
in part, by one or more hardware modules (or logic com- 15

ponents). For example, the hardware modules can include,
but are not limited to, application-specific integrated circuit
(ASIC) chips, field progranrmable gate arrays (FPGAs),
system-on-a-chip (SoC) systems, complex programmable
logic devices (CPLDs) and other programmable logic 20

devices now known or later developed. When the hardware
modules are activated, the hardware modules perform the
functionality, methods and processes included within the
hardware modules.

It should be understood that the examples and embodi- 25

ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application.

Although the subject matter has been described in Ian- 30

guage specific to structural features and/or acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as examples of implementing 35

the claims and other equivalent features and acts are
intended to be within the scope of the claims.

What is claimed is:

18
priority function, and an arc callback function for
executing further processing including processing
by an application layer; and

a picking function that uses the arc priority function
to evaluate the calculation priority among the one
or more arcs from the same place or transition;

execute the high-level Petri Net instance by, for each
node in a path being traversed:
determining, using the arc picking function, an order

in which to evaluate arc constraints;
evaluating the arc constraints function of a first arc in

the order in which to evaluate the arc constraints;
when the arc constraints of the first arc are met

according to the arc constraints function of the
first arc, updating the one or more tokens associ­
ated with the node by calling the arc update
function of the first arc to obtain updated input
data, trigger the arc callback function of the first
arc, and traverse the next node in the high-level
Petri Net instance indicated by the first arc; and

when the arc constraints of the first arc are not met
according to the arc constraints function of the
first arc, evaluating the arc constraints function of
the next arc in the order in which to evaluate the
arc constraints; and

return to the application layer an outcome gesture
indicative of a terminal node in the path being
traversed,

the transition being configured to take a state of a prior
place of the one or more places, alter the state, and
then transfer it to another place or back to the prior
place.

2. The system of claim 1, wherein the input type of the at
least one input device includes a multi-touch display device.

3. The system of claim 2, wherein the token definition
comprises display coordinates and touch states for the
multi-touch display device.

1. A system comprising:
one or more input devices;
one or more non-transitory computer readable storage

media;

4. The system of claim 1, wherein the input type of the at
40 least one input device includes a full-body gesture input

device.

a processing system;
program instructions for a gesture interpreter stored on the

one or more non-transitory computer readable storage
media that direct the processing system to, in response
to receiving an activation input data from at least one
input device of the one or more input devices:
instantiate a high-level Petri Net instance having:

one or more tokens, each token having a token
definition appropriate to an input type of the input
device from which the activation input data is
received;

a plurality of nodes, the plurality of nodes compris­
ing:
one or more places, each place representing a

gesture state and each place having at least one
associated token that includes input data
received through a device driver from the input
device; and

one or more transitions, each transition represent­
ing a possible action on the input device;

5. The system of claim 1, wherein the picking algorithm
randomly selects between arcs of equivalent priority.

6. The system of claim 1, wherein the token definition
45 comprises a function to access a history of prior token states.

7. The system of claim 1, wherein nodes in a path are
traversed in parallel.

8. One or more non-transitory computer readable storage
media comprising instructions stored thereon that when

50 executed by a processing system direct the processing
system to:

55

60

in response to receiving an activation input data from an
input device:
instantiate a high-level Petri Net instance having:

one or more tokens, each token having a token
definition appropriate to an input type of the input
device from which the activation input data is
received;

a plurality of nodes, the plurality of nodes compris­
ing:

one or more arcs connecting between the nodes,
wherein each arc identifies a possible route for a
token instance to take between nodes, and wherein 65

each arc is expressed as a tuple comprising an arc
constraints function, an arc update function, an arc

one or more places, each place representing a
gesture state and each place having at least one
associated token that includes input data
received through a device driver from the input
device; and

one or more transitions, each transition represent­
ing a possible action on the input device;

US 9,886,190 B2
19

one or more arcs connecting between the nodes,
wherein each arc identifies a possible route for a
token instance to take between nodes, and wherein
each arc is expressed as a tuple comprising an arc
constraints function, an arc update function, an arc 5

priority function, and an arc callback function for
executing further processing including processing
by an application layer; and

a picking function that uses the arc priority function
to evaluate the calculation priority among the one 10

or more arcs from the same place or transition;
execute the high-level Petri Net instance by, for each

node in a path being traversed:
determining, using the arc picking function, an order

in which to evaluate arc constraints;
evaluating the arc constraints function of a first are in

the order in which to evaluate the arc constraints;

15

when the arc constraints of the first arc are met
according to the arc constraints function of the
first arc, updating the one or more tokens associ- 20

ated with the node by calling the arc update
function of the first arc to obtain updated input
data, trigger the arc callback function of the first
arc, and traverse the next node in the high-level
Petri Net instance indicated by the first arc; and 25

when the arc constraints of the first arc are not met
according to the arc constraints function of the
first arc, evaluating the arc constraints function of
the next arc in the order in which to evaluate the
arc constraints; and

return to the application layer an outcome gesture
indicative of a terminal node in the path being
traversed,

30

the transition being configured to take a state of a prior
place of the one or more places, alter the state, and 35

then transfer it to another place or back to the prior
place.

9. The storage media of claim 8, further comprising one
or more gesture high-level Petri Nets stored thereon.

10. The storage media of claim 8, wherein the input type 40

of the input device is a multi-touch display device.
11. The storage media of claim 10, wherein the token

definition comprises display coordinates and touch states for
the multi-touch display device.

12. The storage media of claim 8, wherein the input type 45

of the input device is a full-body gesture input device.
13. The storage media of claim 8, wherein the picking

algorithm randomly selects between arcs of equivalent pri­
ority.

14. The storage media of claim 8, wherein the token 50

definition comprises a function to access a history of prior
token states.

15. A method for facilitating gesture discernment and
processing comprising:

receiving an activation input data from an input device;
instantiating a high-level Petri Net instance having:

one or more tokens, each token having a token defini­
tion appropriate to an input type of the input device
from which the activation input data is received;

55

20
a plurality of nodes, the plurality of nodes comprising:

one or more places, each place representing a gesture
state and each place having at least one associated
token that includes received through a device
driver input data from the input device; and

one or more transitions, each transition representing
a possible action on the input device;

one or more arcs connecting between the nodes,
wherein each arc identifies a possible route for a
token instance to take between nodes, and wherein
each arc is expressed as a tuple comprising an arc
constraints function, an arc update function, an arc
priority function, and an arc callback function for
executing further processing including processing by
an application layer; and

a picking function that uses the arc priority function to
evaluate the calculation priority among the one or
more arcs from the same place or transition;

executing the high-level Petri Net instance by, for each
node in a path being traversed:
determining, using the arc picking function, an order in

which to evaluate arc constraints;
evaluating the arc constraints function of a first arc in

the order;
when the arc constraints of the first arc are not met,

evaluating the arc constraints function of the next arc
in the order; and

when the arc constraints of the first arc are met,
updating the one or more tokens associated with the
place by calling the arc update function of the first
arc to obtain updated input data, triggering the arc
callback function of the first arc; and
when the node is the terminal node in the path being

traversed, returning to the application layer an
outcome gesture indicative of the terminal node;
or

when the node is not the terminal node in the path being
traversed, traversing the next node in the high-level
Petri Net instance indicated by the first arc,

the transition being configured to take a state of a prior
place of the one or more laces, alter the state, and
then transfer it to another place or back to the prior
place.

16. The method of claim 15, wherein the input type of the
input device is a multi-touch display device.

17. The method of claim 16, wherein the token definition
comprises display coordinates and touch states for the
multi-touch display device.

18. The method of claim 15, wherein the picking algo­
rithm randomly selects between arcs of equivalent priority.

19. The method of claim 18, wherein the arc priority
function for one or more of the arcs is undefined and has an
arc priority value of zero.

20. The method of claim 15, wherein the token definition
comprises a function to access.

* * * * *

