
Multi-Touch Gesture Recognition Using Feature
Extraction

Francisco R. Ortega, Naphtali Rishe, Armando Barreto, Fatemeh Abyarjoo,
and Malek Adjouadi

Abstract

We are motivated to find a multi-touch gesture detection algorithm that is efficient, easy to

implement, and scalable to real-time applications using 3D environments. Our approach

tries to solve the recognition for gestures with the use of feature extraction without the need

of any previous learning samples. Before showing our proposed solution, we describe some

algorithms that attempt to solve similar problems. Finally, we describe our code to

accomplish off-line gesture recognition.

Keywords

Multi-touch � Feature extractions � User interfaces � 3D user interfaces � Human-computer

interaction � Multi-touch recognition

Introduction

We present the initial development of our approach to

detected gestures in a multi-touch display using a finite

state machine and feature extraction. We described our

methods in the context of important previous work, like the

$1 algorithm [1] and the Rubine algorithm [2]. Our first

approach to the problem is demonstrated with off-line data.

Gesture detection algorithms are not a new problem in

Human-Computer Interaction (e.g., [3, 4]) and some have

derived from stroke detection algorithms [5], as will be

shown in our brief review of previous work. With the avail-

ability of multi-touch devices such as the iPad, iPhone and

desktop multi-touch monitors (e.g., 3 M M2256PW 2200

Multi-Touch Monitor) new concepts have developed in

order to help the transition to a post-Windows-Icon-Menu-

Pointer (WIMP) era. The development of Natural User

Interfaces (NUIs) presents many exciting challenges.

To solve the problem, we first reviewed previous work in

the area of stroke and gesture detection relevant to our solu-

tion. After the related work section, we cover our proposed

solution, and future direction.

Background

There have been various approaches to gesture recognition,

like the use of finite state machines [6, 7], Hidden Markov

Models [8], neural networks [9], dynamic programming [10],

featured-based classifiers [2], and template matching [1,

11–13]. Thorough reviews can be found in [14–16]. For our

work, we have looked in-depth at feature extraction recogni-

tion methods like the Rubine and $1 algorithms [1, 2].

Some of the methods used in handwriting recognition

[15] can be used for gesture recognition [17]. While hand-

writing recognition efforts date as far back as the 1950s [15],

it has been the work of Rubine [2] that has been used as a

foundation by some in the gesture recognition area [1, 18]

including us. While the Rubine algorithm [2] uses training

with its features, we aim at finding features that can be used

without training samples.

F.R. Ortega (*) � N. Rishe
School of Computing and Information Sciences,

Florida International University, Miami, FL, USA

e-mail: Forte007@fiu.edu; NDR@acm.org

A. Barreto � F. Abyarjoo � M. Adjouadi

Electrical and Computer Engineering Department,

Florida International University, Miami, FL, USA

e-mail: BarretoA@fiu.edu; Fabya001@fiu.edu; Adjouadi@fiu.edu

T. Sobh and K. Elleithy (eds.), Innovations and Advances in Computing, Informatics,
Systems Sciences, Networking and Engineering, Lecture Notes in Electrical Engineering 313,

DOI 10.1007/978-3-319-06773-5_39, # Springer International Publishing Switzerland 2015

291

mailto:Forte007@fiu.edu
mailto:NDR@acm.org
mailto:BarretoA@fiu.edu
mailto:Fabya001@fiu.edu
mailto:Adjouadi@fiu.edu

We called the “$ algorithms” a partial list of approaches
derived or inspired by work from $1 algorithm [1] such as

[12, 13, 19, 20]. The $1 algorithm [1] provides a simple way

to develop a basic gesture detection method. In contrast,

algorithms based on Hidden Markov Models or neural

networks [9] involve a high level of complexity for the

developer and the system as well. $1 provides a very fast

solution to interactive gesture recognition with less than 100

lines of code [1] and requires a simple training set. However,

this is not meant for the recognition of multi-touch gestures

and for prospective real-time gesture recognition. This does

not diminish in any way the importance of the $1 algorithm

because there are several features that make it important. For

example, the obvious resampling of the gesture, the indica-

tive angle (“the angle formed between the centroid of the

gesture and [the] gesture’s first point” [1]), and the re-scaling
and translation to a reference point to keep the centroid at

(0,0). Another important contribution is the use of the

Golden Section Search [21] to find the right gesture. The

“$ Algorithms” provide a rich set of contributions for the

multi-touch research community.

The $N algorithm [12], with the double amount of code

(240 lines), improves the $1 algorithm [1] to allow single

strokes and rotation invariance discrimination. For example,

to make a distinction between A and 8, rotation must be

bounded by less than �90� [12]. The $N algorithm [12] was

extended primarily to allow single strokes to be recognized.

This algorithm also supports automatic recognition between

1D and 2D gestures by using “the ratio of the sides of a

gestured’s oriented bounding box (MIN-SIDE vs. MAX-

SIDE)” [12]. In addition, to better optimize the code, it

only recognizes a sub-set of the templates to process. This

is done by determining if the start directions are similar, by

computing the angle formed from the start point through the

eighth point. A common feature of the $1 and $N

Algorithms [1, 12] is the utilization of the Golden Section

Search [21].

Additional algorithms provide great resources for future

work. Dean Rubine provides an excellent set of features to

be tested with multi-touch data. In addition to the Rubine

algorithm [2], we can use Wang et al. [22] to find if the

gesture was created with fingers in oblique position or not.

Additional information can be found in our previous

work [23].

Proposed Solution

Motivation

We are motivated to find a low-complexity implementation

and a fast algorithm that can be utilized for high-demanding

applications. In our case, our end goal is to use it with high-

demanding 3D navigation environments using multi-touch

displays. First, we are motivated by the work of Rubine [2]

to find the best features to characterize a gesture while

keeping the complexity low, as done by the $1 algorithm

[1]. Second, we are motivated to find an unsupervised

method of recognition that can be used in high-demanding

real-time applications such as 3D synthetic worlds. Finally,

we came across a multi-touch gesture detection problem

statement created by Greg Hamerly in the ICPC 2012 Com-

petition1 [24] which resembles some of the work we have

been doing with gesture detection. It is the combination of

all the great work already mentioned plus our application

needs, that have given us the path to follow in this proposed

solution. Therefore, we believe that the path we propose,

could serve as another building block for the development of

POST-WIMP era interfaces.

Setup

We used Windows 7 multi-touch technology [25] with

Microsoft Visual Studio and a 3 M M2256PW Multi-

Touch Monitor to test our work and we have tested our

approach with off-line data. Windows 7 provides either

pre-defined touches or raw touches when using their tech-

nology. We chose to work with raw touches because it gives

us the flexibility to create custom gestures and to test differ-

ent methods for detection.

When using raw touches, most systems where multi-

touch is available (e.g., iOS, Windows) will provide a

“trace” which contains a set of points with coordinates x

and y as well as a timestamp for each point. The system will

also generate events when the trace is created, moved, and

finished. Each touch has a unique identification (ID) that is

given at the moment of TOUCHDOWN, to be used during

the TOUCHMOVE, and to end when TOUCHUP has been

activated. The ID gives us a way to group points from each

finger. For specific information on how Windows 7 handles

multi-touch technology, please see [25].

Method

We begin by combining feature extraction with a finite state

machine [26], as shown in Fig. 1. The idea is to allow a state

machine to keep control of the process in order to find a

common system to make the changes. The state starts as idle

like for any other input device. Here we have a state transi-

tion to the touch state with either down or move events. Once

1 Francisco Ortega led one of the programming competition tutoring

sessions (Fall 2012) at Florida International University.

292 F.R. Ortega et al.

the finger has been lifted, we have a state transition back to

idle with the event up. Once the touch state has been

reached, the decision must be made to identify it as either a

tap (e.g., double tap, 2 finger tap) or a trace. (Note that

the user will either be creating traces for a given gesture or

a tap. It is our choice not to consider the tap as a gesture). If it

is a trace, a transition follows to add this trace data to a

thread-safe queue [27]. The queue is used to keep storing the

traces while a specific window of data is processed. We can

think of this window as a buffer. Once the queue is full, a

transition will take place to the “process” state, where Algo-
rithm 1 takes over.

Figure 2 gives more details about the queue and how we

are using it. In the left side of the figure, we can see a user

creating a three-finger gesture. One option for the user is to

create a desired gesture and lift the hand. If this was the only

case, then one can just process trace data as they are coming

in with a small buffer. However, this brings us to the second

case. Here the user can perform multiple gestures while

leaving the hand in the screen. This is the reason that we

need to have a window size long enough to detect a gesture

while keeping the rest in the queue. Figure 2 shows this

thread-safe queue to have a window size, for a given

gesture.

Algorithm

Algorithm 1 detects swipe (translation), rotate, and pinch in/

out (zoom in/out). If a system does not provide traces, one of

the many clustering techniques available can be used to

create them [28]. Because of the importance of a fast

Fig. 1 State machine

Fig. 2 Queue

Multi-Touch Gesture Recognition Using Feature Extraction 293

detection, any necessary pre-computations must be

performed while the traces are added to the queue. This is

why, when running the algorithm, is it expected to have the

grip computed.

Our primary motivation is to lower the running time of

the gesture detection in order to use it with demanding 3D

applications. Therefore, the running time of the algorithm is

as important as the complete utilization of all the resources

available in the system. In this context, it is important to note

that the gesture detection runs in its own thread. For more

details about this multi-threaded approach, a C++ implemen-

tation can be found in [27] or a more detailed explanation

with Java code can be found in The Art of Multiprocessor

Programming [29].

Algorithm 1 starts by popping the buffer window in line

1. Because there are no clear initial and final snapshots, we

assume that by popping the first half of the buffer and

popping the rest of the buffer we can obtain an initial and

final state of the traces. Because this was tested with off. line

data, the data was already created with initial and final

snapshots. Lines 2 and 3 assign each snapshot. Before we

continue, we must define the variables grip, spread, trace,

trace vector, angle rotation and traces.

Traces is a set that contains information for the path taken

by each finger. In other words, for each finger, a set of

properties is pre-computed, which is called trace in the algo-

rithm. For example, the x and y coordinates is the average of a

given trace, as shown in Eqs. 1 and 2 (for the y coordinate,

replace the x for the y) already calculated per trace. Note that

the variable n in the formulas refer to the total x,y points for a

given trace. Because we are dividing the buffer into two

snapshots, each snapshot has its own average. A grip is

defined by the average of all points in each snapshot. A

trace vector is defined as trace minus the grip, as shown in

Algorithm 1 lines 12 through 15. The spread is given by lines

18–19 in Algorithm 1, which calculate the spread as the

average difference between the grip point and the touch vec-

tor. Finally, the angle rotation is the average of the angle

obtained by atan2 [30]. In other words, this is the angle

between the final touch vector and the initial touch vector.

Finally, the chosen gesture is given by any of the three

distance variables (swipeDistance, rotDistance, or

zoomDistance) with the highest values found in Algorithm

1. The swipe distance is given by the spread of the first trace

and the grip. The rotate distance is given by the arc length.

This is the average angle obtained in line 20 and the radius of

the swipe distance. Remember that atan2 [30] values range

between � π. In order to obtain the distance, the proper

factor 2 must be multiplied as shown in Eq. 3. The zoom

distance is given by the average final spread distance and the

average initial spread distance.

Once everything is computed in the for loop, all we have

left to do is to determine the correct gesture. The gesture

detected is assigned according to the higj1est distance value

of the swipe distance, rotation distance or zoom distance.

Additional information can be obtained for specific detected

gestures. For example, if the gesture detected is a zoom

gesture, then additional information can be found, such

as if the direction of the user is inward or outward. While

the primary goal of the algorithm is to find the correct

gesture, additional information is important to be precise

about the gesture. Algorithm 1 concentrates in finding the

gesture type.

iTrace id½ �:x¼ 1

n=2

Xn2�1

i¼0

trace id½ � i½ �:x ð1Þ

fTrace id½ �:x¼ 1

n=2

Xn�1

i¼n
2

trace id½ � i½ �:x ð2Þ

rot Distance¼ Θ

360
2πr ð3Þ

294 F.R. Ortega et al.

Future Work

We believe that the combined approach of feature extraction

and state machine for gesture detection provides a fast and

easy-to-implement solution. In the quest of searching for

different solutions, one can only hope to reach such elegant

solution as the seminal work by Buxton [31]. Can we find a

one-model-fits-all approach? This is a question that we hope

to answer in the near future.

A follow up question that we would like to address in our

future work is: Can we detect all possible multi-touch

gestures with a combination of feature extraction and finite

state machine in real time? We believe that this can be done.

Our next phase will be to expand our work and test it in

real time.

Conclusion

Multi-touch displays have become more widely used and are

a standard of one of the de-facto NUI devices that will shape

the post-WIMP era. In this paper, we have outlined some

valuable previous contributions to the area of stroke and

gesture recognition. This review of the literature provides a

context for our approach and the reasoning behind our

algorithm.

We proposed an algorithm and a set of concepts to allow

gesture detection while using off-line data for multi-touch

displays. This paper defined concepts such as grip, touch

vector, trace and traces to allow the understanding of our

algorithm. We explained how to implement Algorithm 1

with the emphasis on an efficient and easy to implement

approach.

The next step in the development of our approach is to

evaluate its efficiency using real-time data while adding

more gestures. As already expressed, our end goal is to use

fast gesture detection algorithms for high-demanding

applications running in 3D environments.

Acknowledgments This work was sponsored by NSF grants HRD-

0833093, and CNS-0959985. Mr. Francisco Ortega is the recipient of a

GAANN fellowship, from the US Department of Education, at Florida

International University.

References

1. J. Wobbrock and A. Wilson, “Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes,”
Proceedings of the 20th annual ACM symposium on User interface
software and technology (UIST ’07), 2007.

2. D. Rubine, “Specifying gestures by example,” ACM SIGGRAPH
Computer Graphics, vol. 25, no. 4, pp. 329–337, 1991.

3. G. Nielson and D. Olsen Jr, “Direct manipulation techniques for 3D

objects using 2D locator devices,” Proceedings of the 1986 work-
shop on Interactive 3D graphics, pp. 175–182, 1987.

4. M. Chen, S. J. Mountford, and A. Sellen, “A study in interactive 3-d

rotation using 2-d control devices,” in Proceedings of the 15th

Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH ’88. New York, NY, USA: ACM,

1988, pp. 121–129.

5. H. Lü and Y. Li, “Gesture avatar: a technique for operating mobile

user interfaces using gestures,” in CHI ’11: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems.
ACM Request Permissions, May 2011.

6. P. Hong and T. Huang, “Constructing finite state machines for fast

gesture recognition,” 15th International Conference on Pattern
Recognition (ICPR’00), vol. 3, p. 3695, 2000.

7. P. Hong, T. Huang, and M. Turk, “Gesture modeling and recogni-

tion using finite state machines,” IEEE Conference on Face and
Gesture Recognition, Mar. 2000.

8. T. Sezgin and R. Davis, “HMM-based efficient sketch recognition,”
Proceedings of the 10th international conference on Intelligent user
interfaces (IUI ’05), 2005.

9. J. Pittman, “Recognizing handwritten text,” in Human factors in
computing systems: Reaching through technology (CHI ’91), New
York, NY, 1991, pp. 271–275.

10. S. MacLean and G. Labahn, “Elastic matching in linear time and

constant space,” International Workshop on Document Analysis
Systems 2010 (DAS ’10), 2010.

11. L. Kara and T. Stahovich, “An image-based, trainable symbol

recognizer for hand-drawn sketches,” Computers & Graphics, vol.
29, no. 4, pp. 501–517, 2005.

12. L. Anthony and J. Wobbrock, “A lightweight multistroke recog-

nizer for user interface prototypes,” in Proceedings of Graphics
Interface 2010 (GI’10), Toronto, ON, 2010.

13. Y. Li, “Protractor: a fast and accurate gesture recognizer,” in

Proceedings of the 28th international conference on Human factors
in computing systems (CHI ’10), New York, NY, 2010.

14. G. Johnson, M. Gross, and J. Hong, “Computational support for

sketching in design: a review,” Foundations and Trends in Human-
Computer Interaction 2, 2009.

15. C. C. Tappert, C. Y. Suen, and T. Wakahara, “The state of the art in

online handwriting recognition,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 12, no. 8, pp. 787–808, Aug. 1990.

16. R. Plamondon and S. N. Srihari, “Online and off-line handwriting

recognition: a comprehensive survey,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 22, no. 1, pp.
63–84, 2000.

17. M. Blumenstein, B. Verma, and H. Basli, “A novel feature extrac-

tion technique for the recognition of segmented handwritten

characters,” in Document Analysis and Recognition, 2003.
Proceedings. Seventh International Conference on, 2003, pp.

137–141.

18. B. Signer, U. Kurmann, and M. C. Norrie, “iGesture: A General

Gesture Recognition Framework,” in Document Analysis and Rec-
ognition, 2007. ICDAR 2007. Ninth International Conference on,
2007, pp. 954–958.

19. S. Kratz and M. Rohs, “Protractor3d: A closed-form solution to

rotation-invariant 3d gestures,” in Proceedings of the 16th Interna-

tional Conference on Intelligent User Interfaces, ser. IUI ’11. New
York, NY, USA: ACM, 2011, pp. 371–374.

20. S. Kratz and M. Rohs. “The $3 recognizer: Simple 3d gesture

recognition on mobile devices,” in Proceedings of the 15th Interna-
tional Conference on Intelligent User Interfaces, ser. IUI ’10.
New York, NY, USA: ACM, 2010, pp. 419–420.

21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes 3rd Edition: The Art of Scientific Computing,

3rd ed. New York, NY, USA: Cambridge University Press, 2007.

Multi-Touch Gesture Recognition Using Feature Extraction 295

22. F. Wang, X. Cao, X. Ren, and P. Irani, “Detecting and leveraging

finger orientation for interaction with direct-touch surfaces,”
Proceedings of the 22nd annual ACM symposium on User interface
software and technology, pp. 23–32, 2009.

23. F. R. Ortega, A. Barreto, N. Rishe, and M. Adjouadi, “To- wards 3D
Data Environments using Multi-Touch Screens,” in ACHI 2012:

The Fifth International Conference on Advances in Computer-

Human Interactions, 2012, pp. 118–121.

24. (2012, 11). [Online]. Available: http://cs.baylor.edu/�hamerly/

icpc/qualifier2012/

25. Y. Kiriaty, L. Moroney, S. Goldshtein, and A. Fliess, Introducing
Windows 7 for Developers. Microsoft Pr, Sep. 2009.

26. M. Sipser, Introduction to Theory of Computation, 2nd ed.

Cengage, 2006.

27. A. Williams, C++ Concurrency in Action: Practical
Multithreading, 1st ed. Manning Publications, Feb. 2012.

28. G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms,
and Applications (ASA-SIAM Series on Statistics and Applied Prob-
ability). SIAM, Society for Industrial and Applied Mathematics,

May 2007.

29. M. Herlihy and N. Shavit, The Art of Multiprocessor Programming,
1st ed. Morgan Kaufmann, Mar. 2008.

30. F. Dunn and I. Parberry, 3D Math Primer for Graphics and Game
Development, 2nd Edition, 2nd ed. A K Peters/CRC Press,

Nov. 2011.

31. W. Buxton, “A three-state model of graphical input,”
Human-computer interaction-INTERACT, vol. 90, pp. 449–456,
1990.

296 F.R. Ortega et al.

http://cs.baylor.edu/~hamerly/icpc/qualifier2012/
http://cs.baylor.edu/~hamerly/icpc/qualifier2012/
http://cs.baylor.edu/~hamerly/icpc/qualifier2012/

	: Multi-Touch Gesture Recognition Using Feature Extraction
	Introduction
	Background
	Proposed Solution
	Motivation
	Setup
	Method
	Algorithm

	Future Work
	Conclusion
	References

