
Exploring Modeling Language for
Multi-Touch Systems using Petri
Nets

Francisco R. Ortega
Florida International University
Miami,FL. USA
forte007@fiu.edu

Malek Adjouadi
Florida International University
Miami,FL. USA
adjouadi@fiu.edu

Frank Hernandez
Florida International University
Miami,FL. USA
fhern006@fiu.edu

Su Liu
Florida International University
Miami,FL. USA
sliu002@fiu.edu

Armando Barreto
Florida International University
Miami,FL. USA
barretoa@fiu.edu

Naphtali Rishe
Florida International University
Miami,FL. USA
ndr@acm.org

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s). Copyright is held by the author/owner(s).
ITS’13 , October 6–9, 2013, St. Andrews, United Kingdom.
ACM 978-1-4503-2271-3/13/10.
http://dx.doi.org/10.1145/2512349.2512400

Abstract
The motivation in this research endeavor is to design a
flexible and compact modeling language for multi-touch
gesture recognition using Petri Nets. The findings
demonstrated that a Petri Net can be used effectively for
gesture detection, with the potential for such a model to
be composed of many Petri Nets for faster and user
friendly applications.

Author Keywords
Multi-Touch, Gesture Recognition, Petri Nets

ACM Classification Keywords
H.5.2 [Input devices and strategies]: Interaction styles

Introduction
We are inspired by a couple of recognition systems for
multi-touch devices. For example: proton++[6] and
Gesture Coder[9]. We continue to be inspired by the
simplicity of the $1 algorithm by Woobrock et al.[15]. We
are motivated to continue to look for a more extensible,
simple and uniform gesture recognition method that
allows developers and HCI researchers to easily integrate
it into their systems. In addition, our approach will be
used for studies with different input devices.

Posters ITS'13, October 6–9, 2013, St. Andrews, UK

361

In our initial exploratory approach towards a new modeling
language for input devices (e.g., Multi-Touch), we present
IRML (Input Recognition Modeling Language). While
this approach currently uses multi-touch devices only, the
system will be extended for additional input devices.

We based our contribution in the state of the art for
multi-touch gesture recognition. In addition, our work
uses well established computer science theory, such as
finite-state machines, regular expressions (RegEx) and
Petri Net (PN)[14, 4]. For IRML, we use Petri Nets to
represent multi-touch gestures.

Background
Formalism for input systems can be found in Newman’s
pioneer work (1968), using a state diagram to represent a
graphical system[12]. In 1990, the seminal work by
Buxton in a Three-State Model of Graphical Input[1] used
finite-state machines (FSM). The same year, Myers
published a well-rounded model for input[10].

Formalism for input multi-touch gesture detection or
touch events has also been explored. Recently, proton and
proton++ showed the use of RegEx to accomplish gesture
detection[6]. The use of state-diagram for multi-touch
events was shown by Lao et al[7]. Kammer et al. used
context-free grammar (CFG) to describe multi-touch
gestures at a high level[5]. Gesture coder[9] creates FSMs
by demonstration to later use them to detect gestures.
Gesture Works and Open Exhibits by Ideum (Open
Exhibits has a free non-open source product and Gesture
Works sells commercial libraries) have a high-level
language description using XML, called GestureML (or
GML)1. Midas’ framework[13], utilizes a rule-based
language to define gestures.

1www.GestureML.org

Petri Nets have also been used to detect gestures. Nam et
al. showed how to use colored Petri Nets to achieve hand
(data glove) gesture modeling and recognition[11], using
Hidden Markov Models (HMM) to recognize movements
before feeding them to the PN. Our approach is created
for multi-touch devices (at this stage) with the ability to
define gestures without HMM. Our vision is a general
modeling tool for input devices. Petri Nets exist in many
flavors and they are widely used in the industrial and
communication fields[16].

Exploring IRML
We define a few terms and concepts about multi-touch
and Petri Nets. A touch point (tp) is a representation of
a 2D point on the screen. A trace (T) is a set of
continuos touch points. Each trace has an ID (e.g., tp1)
and a state which can be down, moving, or up. For each
trace there can be one down state, many move states, and
one up state. A Petri Net is visually represented with
tokens (small solid gray circle), transitions (rectangle),
places (large circle), and arcs connecting places to
transitions.

Originally, we wanted to expand the work by Kin et al.[6]
using RegEx. However, we found a couple of reasons to
use Petri Nets instead. First, some gestures can be
difficult to implement with RegEx. Take a gesture where
the angle produced by two touches must be maintained in
a given range while performing the action. For example,
given a set of points forming lines, the angle between
those must be between 30 to 40 degrees. The reason why
this is complicated to represent in RegEx is that the
attributes are defined for each trace (touch). A possible
solution may be to group the traces, but this makes
RegEx become lengthy. Second, RegEx while useful, can
become large for complicated models. Another approach

Posters ITS'13, October 6–9, 2013, St. Andrews, UK

362

that we looked into was FSM. FSM can become larger
than PN to accomplish the same tasks. One can represent
a FSM with a PN but not the other way around.
Therefore, Petri Nets were chosen.

Figure 1 shows a pseudo Petri Net that will work with
high level Petri Nets, such as Coloured Petri Nets
(CPN)[4], first-order-logic PN[8] and Priority Petri Nets
(see [2] for types of PN). This figure is an example of a
Petri Net for the two-finger swipe gesture. The swipe
gesture consists of the user moving the fingers in the
same direction. In the example, we use each trace as the
token. This behaves as a trace pointer at the position of
the current sample. It is possible to design our proposed
PetriNet using the elements of the set T, similar to [6]. In
other words, the tokens will be individual trace events
such as ’dmmmu’ for down, move three times and up one
time. However, this makes the design lengthier and more
prone to error. Figure 1 has additional labels (A to E) to
simplify the discussion.

The two-finger swipe gesture requires two tokens to move
forward. Transition A determines if the tokens are in down
state. If they are, they move to the PROCESS Place.
Once in process, the Petri Net determines the next path
by using one of the correct transitions. For example, if the
state of a given trace is ’up’, then it will move to the EXIT
Place via Transition D. If the two fingers are not moving
in the same direction, then the tokens are consumed via
Transition E to the EXIT Place. Otherwise, it will move
to the SWIPE Place, via Transition B, to trigger an action
for this event. The token will automatically move forward,
using Transition C for the next iteration. It is important
to notice that this example represents a pseudo Petri Net
allowing for conflicts to be resolved[2].

From this basic example, we can construct a series of
Petri Nets. Given a set of PN, named P, we can construct
a model P = (PN1, PN2, PN3, ...PNn). Once the model
is constructed, it can be executed. Once the gesture is
complete, the model can be reset. For the
implementation, the model is stored in an XML file to be
loaded and executed in the language of choice (e.g.,
C++, Java). However, at this time, we have not tested
multiple gestures simultaneously.

EXIT

T2

E

D

Figure 1: Two-Finger Swipe Gesture Petri Net.

Conclusion and Future Work
This study proposed an alternative solution to multi-touch
gesture detection using Petri Nets. The results show that
transition and high-level Petri Nets (e.g., CPN) can
provide a powerful, flexible and compact approach to solve
input detection in general. Future work will need to
include two additional tasks: (1) Creating a full-fledge
Petri Net framework that will work with different input

Posters ITS'13, October 6–9, 2013, St. Andrews, UK

363

devices, such as multi-touch, gyroscopes, and leap motion
with pseudo-code and concrete code (e.g., C++) required
to run a full-fledge system; (2) Involving a visual approach
using domain-specific language (DSL) as demonstrated in
other domains, such as game development[3].
Furthermore, the DSL approach will include usability
testing with developers.

Acknowledgements
This work was sponsored by NSF grants HRD-0833093,
CNS-0959985, CNS-0821345, and CNS-1126619. Frank
Hernandez and Francisco Ortega are recipients of GAANN
fellowships (US Department of Education). Mr. Ortega is
also a recipient of the McKnight Dissertation Fellowship.

References
[1] Buxton, W. A three-state model of graphical input.

Human-computer interaction-INTERACT 90 (1990),
449–456.

[2] David, R., and Alla, H. Discrete, Continuous, and
Hybrid Petri Nets. Springer, Nov. 2010.

[3] Hernandez, F. E., and Ortega, F. R. Eberos GML2D:
a graphical domain-specific language for modeling
2D video games. In DSM ’10: Proceedings of the
10th Workshop on Domain-Specific Modeling, ACM
(Oct. 2010).

[4] Jensen, K., and Kristensen, L. Coloured Petri Nets.
Basic Concepts, Analysis Methods and Practical Use.
Springer, 1996.

[5] Kammer, D., Wojdziak, J., Keck, M., Groh, R., and
Taranko, S. Towards a formalization of multi-touch
gestures. In ITS ’10: International Conference on
Interactive Tabletops and Surfaces, ACM (Nov.
2010).

[6] Kin, K., Hartmann, B., DeRose, T., and Agrawala,
M. Proton++: a customizable declarative

multitouch framework. In UIST ’12: Proceedings of
the 25th annual ACM symposium on User interface
software and technology, ACM (Oct. 2012).

[7] Lao, S., Heng, X., Zhang, G., Ling, Y., and Wang, P.
A gestural interaction design model for multi-touch
displays. 440–446.

[8] Liu, S., Zeng, R., and He, X. PIPE-A Modeling Tool
for High Level Petri Nets.

[9] Lü, H., and Li, Y. Gesture coder: a tool for
programming multi-touch gestures by demonstration.
2875–2884.

[10] Myers, B. A. A new model for handling input. ACM
Transactions on Information Systems (TOIS) 8, 3
(1990), 289–320.

[11] Nam, Y., Wohn, N., and Lee-Kwang, H. Modeling
and recognition of hand gesture using colored Petri
nets. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 29, 5
(1999), 514–521.

[12] Newman, W. M. A system for interactive graphical
programming. 47–54.

[13] Scholliers, C., Hoste, L., Signer, B., and De Meuter,
W. Midas: a declarative multi-touch interaction
framework. 49–56.

[14] Sipser, M. Introduction to the Theory of
Computation. Cengage Learning, June 2012.

[15] Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures
without libraries, toolkits or training: a $ 1
recognizer for user interface prototypes. In UIST ’07:
Proceedings of the 20th annual ACM symposium on
User interface software and technology, ACM (Oct.
2007).

[16] Zurawski, R., and Zhou, M. Petri nets and industrial
applications: A tutorial. Industrial Electronics, IEEE
Transactions on 41, 6 (1994), 567–583.

Posters ITS'13, October 6–9, 2013, St. Andrews, UK

364

	Introduction
	Background
	Exploring IRML
	Conclusion and Future Work
	Acknowledgements
	References

