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Abstract 
Object storage and retrieval is one of the challenging 
problems in object-based information system!J. It re­
quire!J the efficient and reliable !lati!Jfaction of the in­
herent and proce!l!ling requirement!J of the object!J . In 
thill paper, we di!JCuu different propertie!J and require­
ments of object!J which nece!J!Jitate their decompo!lition 
for distribution and parallel retrievability. These in­
clude the object 1S llize, data availability rate, and par­
allel processing requirement!l. We present the con­
ditions and criteria for determining the number and 
sizes of an object's segment!l and allocatability of each 
segment to a particular storage device . We al!Jo dill­
cuss the implications of !lome of the!Je allocation tech­
nique!J with re!lpect to parity placement in RAID ar­
chitecture and al!Jo their impact on certain interactive 
video on demand functionalitie!J !Juch a!J fa!Jt forward 
and rewind. We introduce Staggered RAID, a data 
placement scheme that provide!l both fault tolerance 
and load balancing in multimedia !ltorage information 
system!J. 

1 Introduction 
Numerous problems in the management of "ob­

jects" have emerged with the advent of multimedia 
information processing. Some of these include ob­
ject storage, retrieval, synchronization, consistency, 
and transport. The storage allocation strategies for 
multimedia systems have attracted a lot of attention 
[5, 6, 10, 11]. Most of the techniques and strategies 
that have been proposed [3, 7, 9] are extensions to 
techniques used in traditional (non-multimedia) data 
processing environments. However, given the tem­
poral characteristics of multimedia data, these tech­
niques have serious implications on various function­
alities of multimedia systems. Consequently, it is im­
portant that these performance implications be seri­
ously considered in the design of algorithms for the 
storage and retrieval of multimedia objects. 

Disk striping was studied in [13, 7] and found to 
be an effective technique for satisfying the high band­
width requirements of certain supercomputing appli­
cations. However, Redundant Array of Inexpensive 
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Disks (RAID) [12] was introduced to address the fault 
tolerance limitations of stripped disk arrays. In this 
technique, a parity disk is added to the stripped sys­
tem so that fault tolerance can be maintained for a 
single disk failure . 

Interactive video-on-demand (IVOD) applications 
are likely to become commonplace in the not too dis­
tant future. IVOD applications require high perfor­
mance storage servers which support parallel access 
to data. Recent studies have shown that proper data 
placement and allocation techniques are central to the 
provision of certain IVOD functionalities [2, 8]. The 
data layout technique used greatly affects system per­
formance when functionalities such as fa!Jt forward and 
rewind are supported. 

In this paper, we discuss the placement or alloca­
tion and retrieval issues of objects in multimedia infor­
mation systems. The different properties and require­
ments of an object which necessitate its decomposi­
tion for parallel retrievability are described. These 
include the object's size, data availability rate, and 
parallel processing requirements. We present the con­
ditions and criteria for determining the number and 
sizes of the segments and allocatability of each seg­
ment to a particular storage device. In Section 2 we 
discuss techniques for object decomposition in systems 
with heterogeneous and homogeneous storage devices. 
We develop a framework for efficient object decompo­
sition in a heterogeneous storage device environment. 
In Section 3 we discuss stream control in interactive 
multimedia systems and discuss problems arising from 
certain data placement techniques. In Section 4 we in­
troduce Staggered RAID, a data placement technique 
that provides both fault tolerance and load balance for 
IVOD environments. Our conclusions are presented in 
Section 5. 

2 Storage Requirements for Objects 
In this section we study the storage requirements 

of objects which foster their parallel retrievability. We 
also discuss the properties, characteristics, or process­
ing requirements of an object which impact its storage. 

2 .1 Inherent properties and requirements 
Characteristics that necessitate the decomposition 

of a large object include the size of the object, the 



data availability rate, and the parallel processing re­
quirements. 

2.1.1 Object size 

The problems associated with multimedia objects are 
often due to their continuous characteristics. For ex­
ample video objects need to be digitized in order to 
store or transport them. The digitization of video sig­
nals results in objects of enormous sizes. Different 
encoding standards have been established to reduce 
the sizes of these objects. For example, the MPEG­
I (Motion Picture Expert Group) encoding standard 
can encode 100 Mb to 1.5 Mb, while MPEG-II can 
encode the same original data to about 3 Mb. There­
fore, given a 2 hour movie encoded with MPEG-II, a 
21.6Gb object results. Ignoring other requirements of 
the object, a storage device of at least the size of the 
object is needed to store it. 

2.1.2 Data availability rates 

Most of the multimedia objects require a mm1mum 
amount of data utilization per unit time. The data uti­
lization rate is the amount of data consumed per unit 
time to satisfy operating requirements. For example, 
if a television display requires :z: frames per second, 
and if each frame is y bits, then, the data utilization 
rate is :z:.y bits/sec. It is, therefore, necessary that 
this amount of data be available when needed for the 
object to be meaningfully processed. Table 1 shows 
examples of some of the throughput requirements for 
some types of multimedia objects and standards such 
as compressed MPEG I & II, PAL (Phase Alterna­
tion by Line- European Television Standard), NTSC 
(National Television Standard) and HDTV (High Def­
inition TV). 

Table 1: Examples of Multimedia Object 
Throughput Requirements 

In this paper, we refer to the throughput require­
ment of an object aJ itJ Data Availability Rate (DAR). 
Assuming that network latency is negligible, the sat­
isfiability of an object's data availability rate depends 
primarily on the bandwidths of the storage devices . 
The bandwidth of a device is the amount of data that 
can be retrieved from the Jtorage device per unit time 

under an optimal allocation policy. An optimal allo­
cation entails the minimization of seek and rotational 
latencies during data retrieval. To model the relation­
ship between data availability and bandwidth of stor­
age device, we assume that whenever necessary, each 
object can be optimally stored in a storage device. We 
let 

oi = the ith multimedia object, 
o{ = the jth subobject or segment of oi, 
si = the size of oi (i.e., 1 oi 1), 
sf = the size of a{ (i.e., 1 o{ 1), 
DA~ = the data availability rate of Oi, 
DAR{ = the data availability rate of 0{, 
Qi = the amount of data associated with DA~. ' 

Qb~ = the amount of data associated with DAR1 , 

S J: = the kth storage device, and ' 
BW(SDJ:) =the bandwidth of SDJ:. 

Therefore, an object Oi can be stored in m 
storage devices (assuming the existence of m sub­
partsfsubobjects of Oi) if 

m 

I: BW(SDJ:) > DA~ · (1) 
J:=1 

2.1.3 Parallel processing 

In some parallel or distributed computing environ­
ments, different parts of an object may be needed by 
different machines or computing systems simultane­
ously. In other to localize object storage, the object 
must be decomposed and stored in the storage devices 
attached to different systems. For example, let Ta­
ble 2 represent the decomposition matrix of an object, 
OJ:, where -'i,j (assuming row/major ordering) repre­
sents ith row and jth column, and mu represents the 
number of storage segments (target storage locations). 
Each row of 01e can be modeled as: 

Vj (j = 1. .. 4] Si,j E Oi, i = 1, .. . ,m., (2) 

and each column of 01e as: 

Vj [j = 1 0 0 0 4] Sj,i E ot i = 1, 0 0 0' m,. (3) 

s1 1 s1 :1 s1 3 S1 4 I 
S:;j 1 S:;~ 2 92 3 S2 4 

S3 1 S3 2 S3 3 33 4 

S4 1 34 2 S4 3 S4 4 

Table 2: An Example Decomposition for Paral­
lel Processing 

All the segments composed from a given row or col­
umn or diagonal can be stored in a storage device at­
tached to a different site or different storage device 
within a single machine. For example, it is possible 
to extract all the diagonal elements of the object, i.e., 
s1,1, 82,2, s3

1
3, 3 4 ,4 , by concurrent issue of 1/0 requests 

to the applicable sites or devices. 



2.2 Network implications 
When satisfying the data availability rate of a mul­

timedia object , we assume that the data is being trans­
ported only from permanent storage via the server to 
the client without any intervening transport medium. 
However, nowadays, the configuration usually involves 
various users connected to one or more servers via 
a Local, Metropolitan or Wide Area Network (LAN, 
MAN, WAN). In that case, even if the I/0 devices to 
server data transmission satisfies the data availability 
rate, the network latency could present problems. 

The bandwidth of a network is the amount of data 
that it can deliver from source to destination per unit 
time. The bandwidth of any network is affected by the 
amount of traffic (requests) generated per unit time. 
Retransmissions due to data loss while in transit over 
the network also affect the volume of traffic. For cer­
tain multimedia data types, especially those that are 
continuous, data retransmissions adversely affect on­
time data delivery and utilization. 

Even in the presence of efficient buffering strategy, 
the number of retransmissions and their temporal im­
plications can become non-deterministic making it dif­
ficult for them to be accounted for by a buffering strat­
egy. Consequently, network reliability becomes an im­
portant element in a multimedia delivery system. 

Although studies such as that reported in [4) have 
demonstrated the effectiveness of statistical reser­
vation_ schemes in certain multimedia environments, 
there 1s no doubt that for many multimedia applica­
tions, it is still necessary that the underlying trans­
mission networks have the capability of guaranteed 
resource reservation. This implies that the bandwidth 
for the data transmission from source to destination 
must be guaranteed prior to data leaving its storage 
site. This may become a problem when heterogeneous 
networks are involved. An example is suggested in 
Figure 1 where the various networks T1 , ••• , T4 may 
be different types of networks with different protocols. 

Figure 1: An Example of a Heterogeneous Net­
work Environment 

Figure 1 can be used to illustrate a temporal im­
plication of multimedia delivery over heterogeneous 
networks. Let N1. ... , N4 be multimedia servers with 
permanent storage devices. Each Ni ( i = 1 .. . 4) is 
connected to a network Tk (k = 1 ... 4) as shown. U1 
is a client site where multimedia data requests are ini­
tiated. 
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Let rPi,j be the network bandwidth between nodes 
i and j, and p~ the retrieval time of object Ok at N11 • 

We assume that each Nh achieves any multimedia ob­
ject's data availability rate. Therefore, if tcurr is the 
current time, and 0 1 , 02 (stored at N2 and N3 , re­
spectively) are required at ul at time (tcurr + o) for 
synchronized presentation, then, the following tempo­
ral condition must be satisfied: 

T ma:z:(p~ , p;) + ma:z:h, e3 ) + 
ma:z:(l Ql l' r Q2 l) < 0 

¢>2,4 rP3,4 
(4) 

where f2, e3 are the times for the requests to get to 
N2, N3, respectively. Note that concurrent processing 
at the various nodes is assumed, hence the use of the 
maximum time for each set of concurrent events. 
2.3 Object decomposition 

In this section, we present the conditions and cri­
teria for determining the number and sizes of the seg­
ments and allocation of each data/object segment to 
a particular storage device. 

2.3.1 Determining storage units 

For each object that must be decomposed, the num­
ber of Storage Units (SUs) and size of each SU must 
be determined. An SU is the amount of data that is 
allocated to a single storage device or site. Table 2 
illustrates that the number of SUs depends on the (i) 
s~~.e of an object, (i~) number ?f usable storage devices, 
(m) DAR of an obJect, and (1v) degree of parallelism, 
w~ile the size of each SU depends on the (i) band­
Wldth of the usable storage devices, and (ii) degree of 
parallelism. 

If the object cannot fit in a single storage device, 
the number of SUs and sizes of SU solely depend on 
the size of the object and the number of usable storage 
devices. Suppose an object, a, can be or is optimally 
allocated to device, b, denoted by a ::::} b, and that 
there are m storage devices in a system. Given an 
object, oi, we can decompose it into n object segments 
such that 

Vj [j = 1 ... n) 3 SDk such that 

o{::::} SDk, 1 ~ 1e ~ m. (5) 

If the DAR of the object cannot be satisfied by a 
single storage device, then the number of SUs depends 
on the DAR of the object and the bandwidths of the 
storage devices, while the size of each SU depends on 
the bandwidth of the target storage device. The cri­
teria are that ( 1) no storage device should be required 
to retrieve an amount of data, per unit time, that is 
greater than its bandwidth; and, (2) the cumulative 
bandwidths of the applicable storage devices must be 
as large as the DAR. Therefore, given Oi we can de­
compose it into n segments (n ~ m) such that 

Vj [j = 1 ... n) 3 SDk such that 

BW(SDk) ~ DAR{ and o{::::} SDk 



n 

and 2:: BW(SD~e) ~ DAR. (6) 
le=l 

In a homogeneous storage device environment, we can 
simply determine n as 

(7) 

However, for the remainder of this section we focus on 
a heterogeneous (storage device) environment. In this 
type of environment where the storage devices may 
have different bandwidths, there are usually many de­
composition alternatives. There is, therefore, the need 
to impose some constraints on permissible decomposi­
tions. A number of factors such as homogeneity of ob­
jects, the device types, and the number of each device 
type available may influence allowable decomposition 
alternatives. We describe our heterogeneous decom­
position algorithm with an example. 

Consider a heterogeneous environment with eight 
storage devices SD1 to SD8 . We group all identical 
devices into a storage device group (SDG), yielding 
(for our example), the following three groups: 

• SDG1 = {SD11 SD2, SD3} 

• SDG2 = {SD4, SDs} 

• SDG3 = {SDs, SD1, SDa} 

The !to rage !et {!!) of an object is the set of the 
number! of !torage device! needed to achieve the ob­
ject's DAR. Given a heterogeneous environment, mul­
tiple storage sets are possible. Therefore, the size of 
an object's storage set is bounded by 2"' -1, where w 
is the number of different device storage groups, and 
hence different bandwidth values for the storage de­
vices in the system. For our working example with 
w = 3, the size of the storage set = 7. Formally, ss1e 
= {y1 , Y2, ... } is the kth storage set of an object, and 
Yi is the number of storage devices from storage de­
vice group i ( S DGi) needed to satisfy the DAR of the 
object. 

We enumerate below key aspects of our decompo­
sition algorithm. 

1. Given a storage set, every device group that be­
longs to the set must have at least a device in the 
set. In other words, a storage set cannot have a 
member with zero participation. 

2. Given a storage set, we wish to minimize the 
amount of data transferred by the devices in each 
group with the constraint that the DAR is satis­
fied. 

3. Given that the DAR of an object has been met , 
the amount of data retrieved should not exceed 
that required to satisfy the DAR by an amount 
greater than the amount of data cont ributed by 
any of the devices - in that event we could do 
without the device. 

4. The storage device groups (SDGs) are arranged 
in order of decreasing bandwidth. Thus to satisfy 
a given DAR, the number of devices required are 
by implication arranged in increasing numerical 
order. 

5. A storage set cannot have a device group that 
contains more than the available number of de­
vices in the group. 

6. A storage set is valid if removing any member of a 
storage device group causes any of the preceding 
minimization rules to be violated. 

For example, given DARj and ss1e = {Yl. Y2, YJ}, the 
following conditions must hold: 

1. BW(SDG1) > BW(SDG2) > BW(SDG3), 

2. [y1BW(SDGl) + Y2BW(SDG2) 
y3BW(SDG3)] ~ DARj and 

+ 

(a) ((Yl - 1)BW(SDG1) + Y2BW(SDG2) + 
y3BW(SDG3)] < DARj, 

(b) [y1BW(SDG1) + (y2 - 1)BW(SDG2) + 
y3BW(SDG3)] < DARj, · 

(c) [y1BW(SDG1) + Y2BW(SDG2) + (YJ 
1)BW(SDGJ)] < DARj. 

3. Y1 ~ Y2 ~ YJ· 

If any of the conditions above is violated, then the 
corresponding storage set is invalid. The above con­
ditions are enshrouded in the following integer linear 
programming problem: 

Y1BW(SDG1) + Y2BW(SDG2) + y3BW(SDG3) ~ 
DARj, 

Y1 ~ Y2, Y2 ~ Y3, Y3 > 0. (8) 

An ss1e with I ss1e I = g is acceptable if 
(1) 'Lf=l Yi ~ m, and 
(2) 'Vj (j = 1. . . g] Yj ~ I SDGj I 
where SDGi is the set of homogeneous storage de­
vices: {SD1 , ... , SD11.} for some h. 

For example, consider an object of size 120K B 
and bandwidth requirement of 60K B / s. Given that 
SDG1 = {SD1 , SD2, SD3}, SDG2 = {SD4, SDsJ, 
SDG3 = {SD6 , SD7 , SD8 } , BW(SDG!) = 30KB s 
(i.e. the bandwidth of each of the devices in the 
group), BW(SDG2) = 20KB/s, and BW(SDG3) = 
10KB/s. 

Since there are three storage device groups ( w 
= 3), there are 23-1 or 7 possible permutations 
of groups of storage devices numbered ss1, ... ss7 . 
These are respectively, {SDGl}, {SDG2}, {SDG3}, 
{SDG1, SDG2}, {SDG1, SDG3}, {SDG2, SDG3} , 
and {SDG1, SDG2, SDG3}. The possible storage sets 
are: 

• ss1 = {2}: any two of the three devices from 
SDG1. 

• s s2 = { 3}: three devices from S DG2. 



• ss3 = {6}: six devices from SDG3. 

• ss4 = {1, 2}: one device from SDG1 and two from 
SDG2. 

• ss5 = {1, 3}: one device from SDG1 and three 
from SDG3. 

• ss6 = {2, 2}: two devices from SDG2 and two 
from SDG3. 

• ss7 = {1, 1, 1}: one from each of the groups. 

Obviously, ss2 , and ss3 are invalid. Each requires 
more than the number of available devices. Further­
more, without the constraints discussed above, it is 
evident that 9iven {SDG2 , SDG3 }, the storage sets 
{3, 0}, {1, 4},\ 0, 6}, {2, 3}, and {1, 5} can achieve the 
I/0 or display requirements. However, a~plyinf the 
constraints limits the option to {2, 2}. 3, 0}, 0, 6} 
violate the zero membership constraint, 1, 4}, 1, 5} 
require more than the available number of devices in 
SDG3, and {2, 3} uses one unit from SDG3 that is 
unnecessary. If none of the storage sets of an object 
is acceptable, then we cannot allocate the object. In 
the case where an object is decomposed for parallel 
processing, an additional constraint is that the degree 
of parallelism (dp) must equal the number of SUs. 

2.3.2 Allocating storage units 

After the storage devices have been determined, there 
is often the need to make judicious choices of the spe­
cific devices that would be used in a storage set. Al­
though a detailed treatment of the factors that in­
fluence these choices cannot be undertaken here (see 
[9]), one important requirement for storing an object 
m a storage device is the availability of contiguous 
space to accommodate the object. In some conven­
tional techniques, an object may be fragmented into 
blocks of static or variable sizes and stored in different 
locations in storage device wherever space is available. 
Some techniques for increasing system performance by 
minimizing I/0. latencies, require that object be con­
tiguously allocated at some optimally determined lo­
cations in the storage device. 

In the remainder of this paper, we return to the 
more common case of homogeneous storage device en­
vironment. First we briefly describe the RAID tech­
nique which has become the acceptable method of 
stripping data across multiple disks and provides fault 
tolerance for a single disk failure. Next we describe 
some important functionalities of interactive video­
on-demand systems and show the problem presented 
by the RAID technique in these situations. We then 
suggest Staggered RAID as a possible solution to the 
problem. 

2.4 Object decomposition in a homoge­
neous storage device environment: 
The RAID scheme 

In a homogeneous storage device environment, data 
is often decomposed to facilitate parallel access. This 
technique is referred to as data or disk stripping (13). 
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In theory, the I/0 bandwidth of a system can be in­
creased N times if data is striped across N disks in the 
system. One of the major problems with disk strip­
ping is that it has poor reliability since the failure of 
any of the disks in the array results to a loss of data 
since the data in the failed disk is unavailable. As a 
result, while it is attractive to increase the degree of 
parallelism, this also increases the probability of data 
loss. 

Disk 0 Disk 1 Disk 2 Disk 3 

:-:&o:-:::-:o: :-:·a·t:>:-::: -:1:·:· 
, , , , , " , 

Rl. 2 -:-:r!<t-:-:-, , ,, , , , Rl. .l. Rl. 1. 
' ' 

: -~2- ~·:0 · 

Figure 2: RAID-5 

In a RAID system (12), redundant parity informa­
tion is used to recover from a single disk failure. A 
number of RAID levels were defined in (12), but we 
use the term RAID to refer to the level 5 or rotated 
parity RAID. This scheme does not replicate data as 
in mirroring and hence has lower storage overhead, but 
depending on the workload it could have lower perfor­
mance as well. In a RAID scheme a unit of data is 
8triped across multiple drives and can be accessed in 
parallel, resulting in a significant increase in transfer 
rate. Figure 2 illustrates a RAID scheme with four 
disks. Ri.j is the /" fragment of Ri. Ri.O, Ri.l, and 
Ri.2 together form a 8tripe. Pi is the parity associated 
with Ri. If a disk fails, a missing sector can be recon­
structed by computing the exclusive OR ("xor") of all 
data sectors in the stripe. Observe that the parity 
sectors are spread evenly over all the disks to prevent 
a parity disk from becoming a bottleneck during up­
dates. A detailed treatment of RAID is beyond our 
scope here. 

3 Stream Control in Interactive Mul­
timedia Systems 

Multimedia applications require inter activity in the 
form of stream playout control that allows a user to do 
fa8t forward {if), rewind {rw), 8low play, 8low rewind, 
pau.8e, and 8top-and-retu.rn on a media stream as is 
done in video cassettes. A user may also access the 
media streams in a random manner. These operations 
have implications for data layout and scheduling in 
an interactive video-on-demand (IVOD) environment. 
Two ways of implementing stream control for some of 
these operations are (2): 

• Rate Variation Scheme (RVS): In this tech­
nique, the rate of display at the client, and hence 
the rate of data retrieval at the server, is changed. 
For if the data retrieval at the server is increased. 
A performance study of this type of scheme is 
presented in (4). 
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• Sequence Variation Scheme (SVS): In this 
technique, the sequence of frame display, and 
hence the sequence of data retrieval and trans­
mission from the server, is varied. The display 
rate at the client side is unaltered. 

There are three disadvantages of the RVS implemen­
tation for ff and rw [2]. These include (1) Increased 
network and storage bandwidth requirement since the 
data rate is increased; (2) Increased data handling re­
quirement for real-time decoders which may be unable 
to handle the increased throughput they now face; and 
(3) Increased buffer requirement at the client since the 
arrival rate of data has increased. 

Because of these drawbacks, the SVS implementa­
tion appears to be the preferred alternative. How­
ever, as noted in [2], scheduling for ff (rw) is prob­
lematic with the SVS approach. Consider a system 
with storage nodes D = 6 and a ff implementation 
that skips alternate frames. In normal playout, the 
frame sequence is {0, 1, 2, 3, 5, 6, ... }, whereas for the 
ff the same sequence is {0, 2, 4, 6, 8, 10, ... }. If data 
layout is simple round robin (modulo D) algorithm, 
then the set of nodes visited during normal playout is 
{0, 1, 2, 3, 4, 5, ... }, whereas in ff mode the nodes vis­
ited are {0, 2, 4, 0, 2, 4, ... }. There are two problems 
with this simple example. First, the stream control al­
ters the sequence of node-visits from the normal linear 
(modulo D) sequence. Second, it creates "hot-spots" 
and in turn requires bandwidth to be reserved at each 
node to deal with the overloads. 

To address this problem a number of data layout al­
gorithms have been suggested. In (8] the prime round 
robin (PRR) layout policy was introduced. The PRR 
uses arbitrary number of disks (N) with uniform load 
balance for fast retrievals as well as display and slow 
retrievals, but the rounding distance is the biggest 
prime number Np (~ N) instead of N. Using their 
model , the /h segment of the ith object would be 
stored in disk k of N, where k is given by 

k _ { (o + j mod (N- Np + 1)) mod N 
- ( o + N - Np + (j mod Np)) mod N 

if j = cNp 
otherwise 

where o = (N- Np + 1) x i. 
PRR allows fast retrieval as well as play at any 

speed s # eN to access N distinct disks provided N 
is prime. There are, however, a number of problems 
with the PRR algorithm. First, it is wasteful of disk 
space. For example, an installation that has an array 
of 10 disks uses only 7 of them to store a stripe (since 7 
is the greatest prime number less than or equal to 10). 
This is a 30% underutilization of available storage and 
also a 30% decrease in parallel I/0 transfers. Second , 
it complicates the parity placement algorithm and in 
some cases causes the parity disk(s) to become a per­
formance bottleneck. As an example, consider a PRR 
placement scheme with N = 6 and Np = 5. Although 
this choice minimizes space overhead (it does not in­
cur additional space overhead besides the parity disk 
associated with the RAID scheme), it has some im­
plication for parity placement . Using the PRR place­
ment algori t hm , we show in Table 3 the placement of 

the segments of three multimedia objects in the disk 
array. Table 4 shows the placement of the segments 
of one large multimedia object in the disk array. T he 
parity for each stripe is indicated by P in the tables. 

Obj# 

p 
0 10 

p 
20 
p 

8 
1 13 

18 
23 
28 
1 
6 7 8 9 p 5 

2 11 12 13 14 10 p 
16 17 18 19 p 15 
21 22 23 24 20 . P 
26 27 28 29 p 25 

Table 3: Placement of Segments of Three Ob­
jects Across 6 Disks Using PRR Algorithm. 
Each row is a stripe, and P is parity for a stripe. 

A look at the tables will reveal the problems with 
PRR. Observe from Table 3 that for each object, the 
parity is not evenly distributed across the disk array. 
Note that the parity of all segments of a single object 
map to only two disks. For example the parity for all 
the segments of Object 0 map to only disks 0 and 1, the 
parity for Object 1 to only disks 2 and 3. The pattern 
starts to repeat when we get to Object 3 (not shown). 
In fact, in the case of a single large obJect, all the 
parity blocks map to only two disks (see Table 4). This 
could present serious problems if updates are allowed 
since the parity disks would become a bottleneck. 

4 Load Balancing, Fault Tolerance and 
Data Layout Algorithms 

A number of multimedia data layout schemes were 
defined in (2]. Two of these are the Distrib-uted Cyclic 
Layout (DCL} and the Staggered Distributed Cyclic 
Layout (SDCL). Table 5 shows an example. These 
are, essentially different forms of disk striping (131, 
and while they increase the I/0 throughput of mul­
timedia systems, they provide no fault tolerance. We 
note that DCL is basically analogous to the modulo D 
algorithm (Dis number of disks in array), while SDCL 
is a slightly modified version of DCL where data place­
ment for the next stripe starts at disk ( k + s) modulo D 
given that the current stripe starts at disk k. s is the 
stagger distance. In Table 5, s = 1. SDCL is also simi­
lar to staggered striping introduced in (1] . The starting 
block in each stripe is shown in bold in Table 5. 
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Obj# 

p 5 6 7 8 9 
10 p 11 12 13 14 
p 15 16 17 18 19 
20 p 21 22 23 24 
p 25 26 27 28 29 
30 p 31 32 33 34 
p 35 36 37 38 39 

0 40 p 41 42 43 44 
p 45 46 47 48 49 
50 p 51 52 53 54 
p 55 56 57 58 59 
60 p 61 62 63 64 
p 65 66 67 68 69 
70 p 71 72 73 74 
p 75 76 77 78 79 
80 p 81 82 83 84 
p 85 86 87 88 89 

Table 4: Placement of Segments of a Single 
Large Object Across 6 Disks Using PRR AI-
gorithm. Each row is a stripe, and P is parity for a 
stripe. 

A set of D frames is said to be load-balanced if 
the set of nodes from which these frames are retrieved 
contains each of the D nodes only once [2]. Using 
this definition, a number of important load balancing 
theorems in distributed data layout were proved in 
[2] . We summarize the key features of the theorems 
as follows: 

1. If the number of storage nodes is finite, no dis­
tributed (multimedia) data layout scheme will 
support fast forward (rewind) of arbitrary skip­
ping distance without violating the load balance 
condition. 

2. For a D.CL over D storage nodes, if the fast for­
ward (rewind) distance d1 is relatively prime to 
D, then the set of nodes Sn from which consec­
utive D frames in fast forward frame set s1 are 
retrieved is load-balanced. For example, if D = 
16, DCL will produce load-balanced node sets for 
d1 = 3,5,7,11,13,15. These numbers are prime 
to 16. A corollary to this is that if D is prime 
and the ff (rw) distance is not a multiple of D, 
then the set of nodes from which D frames are 
retrieved is load-balanced. For example, for D = 
11, DCL will produce load-balanced node sets for 
d1 = 2,3,4,5,6,7,8,9,10 for consecutive D frames 
retrieved. 

3. For a SDCL over D storage nodes with stagger 
distance s = 1, load-balancing will be achieved 
under certain conditions. For example, if the ff 
starts at a node corresponding to a pivot frame­
shown in bold in Table 5 (or 2D - 1 nodes from 
pivot for rw), and if the ff {rw) distance d1 is a 
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6 7 8 9 10 11 
12 13 14 15 16 17 

DCL 18 19 20 21 22 23 
24 25 26 27 28 29 
30 31 32 33 34 35 
36 37 38 39 40 41 
42 43 44 45 46 47 

1 
11 6 7 8 9 10 
16 17 12 13 14 15 

SDCL 21 22 23 18 19 20 
26 27 28 29 24 25 
31 32 33 34 35 30 
36 37 38 39 40 41 
47 42 43 44 45 46 

Table 5: DCL and SDCL Placement Schemes 

1 
11 p 6 7 8 9 10 
16 17 p 12 13 14 15 

RAIDS+ 21 22 23 p 18 19 20 
SDCL 26 27 28 29 p 24 25 

31 32 33 34 35 p 30 
36 37 38 39 40 41 p 
p 42 43 44 45 46 47 

Table 6: Staggered RAID 

factor of D, then the set of nodes from which D 
frames are retrieved is load-balanced. For exam­
ple, if D = 16, SDCL will produce load-balance 
node sets for d1 = 2,4,8,16 . 

The problem with the DCL and SDCL schemes is 
that they provide no fault tolerance even to a single 
disk failure. In the prime round robin (PRR) algo­
rithm it was possible to store the parity of a stripe in 
one of the unused disks in the group - even though 
as already noted, the parity data so stored was not 
evenly spread over all the disks as suggested in the 
RAIDS architecture. However, in the DCL and SDCL 
schemes there are no unused disks, hence a parity disk 
must be added to the schemes. 

For the DCL algorithm, since every stripe starts 
from the same disk - disk 0 in Table 5, a disk dedi­
cated entirely for parity must be added. Such a scheme 
is analogous to what was described as RAID level 4 
in [12] and presents performance problems since the 
parity disk becomes a bottleneck during updates. 

However, it is rather straightforward to add a parity 
disk to the SDCL scheme. Table 6 is an example. We 
refer to this scheme combining SDCL and RAIDS as 



Staggered RAID. The example in Table 6 has a stagger 
distances= 1. Note that the parity in a current stripe 
is placed in disk ( k + 1) modulo D where the parity in 
the preceding stripe is m disk k and there are D disks 
in the array. The location of the first (pivot) block 
(frame) in each stripe is similarly determined. 

The Staggered RAID architecture provides fault 
tolerance for a single disk failure. Moreover, unlike 
the PRR scheme where the parity blocks are likely to 
be unevenly placed in all the disks in the array, the 
parity blocks (frames) in the Staggered RAID scheme 
are evenly spread over the entire disks in the array. 
With respect to load balance, the Staggered RAID 
provides load balance like the underlying SDCL algo­
rithm. However, to compute the fast forward (rewind) 
distances over which load balance would be main­
tained, the number of disks D must be taken as the 
total number of disks minus one (the parity disk). 
For example, from Table 6 if we recognize that D = 
6, it is straightforward to verify that load-balanced 
node sets for retrieving D frames will be produced 
for d1 = 2,3 (the factors of 6). Assume we wish to 
use the SVS scheme to perform fast forward starting 
with frame 0. For d1 = 2 the first D frames retrieved 
would be {0,2,4,6,8,10}, and these would require ac­
cess to nodes {1,3,5,2,4,6}. Similarly for dJ = 3, the 
first D frames would be {0,3,6,9,12,15} requiring ac­
cess to nodes {1,4,2,5,3,6}. 

5 Conclusions 
In this paper, we have discussed and proposed 

efficient strategies and techniques for the allocation 
of multimedia objects in heterogeneous and homoge­
neous storage device environments. An optimal al­
location of objects is important for maintaining mul­
timedia system performance. In the presence of non­
decomposable data, the size of an object is the primary 
parameter for determining its allocation for optimiza­
tion. In the presence of multimedia information sys­
tems and objects, it has become necessary to account 
for the many properties of these objects. We outlined 
criteria for decomposing objects for distributed and 
parallel retrievability. We also discussed performance 
consequences of some data layout schemes. It was 
noted that a number of data layout schemes addressed 
the issues of performance and fault tolerance in isola­
tion. We introduced Staggered RAID - a novel archi­
tecture that provides fault tolerance like the RAIDS 
scheme and at the same time provides load balancing 
features supported by the Staggered DiJtributed Cyclic 
Layout (SDCL) technique. 

References 
(1] S. Berson and S. Ghandeharizadeh. Dynamic File 

Allocation in Disk Arrays. In ProceedingJ of the 
International Conference of the ACM SIGMOD, 
Minneapolis, Minnesota, May 1994. 

[2] M. Buddhikot and G. Parulkar. Distributed Data 
Layout, Scheduling and Playout Control in a 
Large Scale Multimedia Storage Server. Tech­
nical Report WUCS-94-33, Dept. of Computer 

Science, Washington University, St. Louis, MO 
63130, 1994. 

[3] C. Chen, K. Nwosu, and P. Bruce Berra. Mul­
timedia Object Modeling and Storage Allocation 
Strategies for Heterogeneous Parallel Storage De­
vices in Real Time Multimedia Computing Sys­
tems. In ProceedingJ IEEE 17th Annual Interna­
tional Computer Software and Applications Con­
ference {COMPSAC), pages 216- 223, 1993. 

[4] J. Dey-Sircar, J. Salehi, J. Kurose, and 
D. Towsley. Providing VCR Capabilities in Large­
Scale Video Servers. In ProceedingJ of A CM Mul­
timedia International Conference, pages 25-32, 
San Franscisco, CA, October 1994. 

[5] B. Furht, D. Kaira, F. Kitson, A. Rodriguez, and 
W. Wall. Design Issues for Interactive Televi­
sion Systems. IEEE Computer, pages 25-38, May 
1995. 

[6] D. Gemmell, H. Vin, D. Kandlur, P. Rangan, and 
L. Rowe. Multimedia Storage Servers: A Tuto­
rial. IEEE Computer, pages 40-49, May 1995. 

[7] M. Kim. Synchronized Disk Interleaving. In IEEE 
TranJactionJ on ComputerJ, Vol. C-35, No. 11, 
November 1986. 

[8] T . Kwon and S. Lee. Data Placement for Con­
tinuous Media in Multimedia DBMS. In Pro­
ceedingJ 1995 International Worbhop on Multi­
Media DatabaJe Management SyJtemJ, 1995. 

[9] K. Nwosu. Data Storage Modeling and Manage­
ment for Multimedia Information SyJtemJ. PhD 
thesis, Syracuse University, Syracuse, New York, 
December 1993. 

[10] C. Orji, P. Bobbie, and K. Nwosu. Decomposing 
Multimedia Data Objects for Parallel Storage Al­
location and Retrieval. Submitted to Journal of 
Intelligent Information Systems (JIIS). 

[11] C. Orji, P. Bobbie, and K. Nwosu. Spatio­
Temporal Effects of Multimedia Objects Storage 
and Delivery for Video-On-Demand Systems. To 
appear in Multimedia Systems Journal (MSJ). 

[12] D. Patterson, P. Chen, G. Gibson, and R. Katz. A 
Case for Redundant Arrays of Inexpensive Disks 
(RAID). In ProceedingJ of the International Con­
ference of the ACM SIGMOD, pages 109 - 116, 
Chicago, Illinois, June 1988. 

[13] K. Salem and H. Garcia-Molina. Disk Striping. 
In Proceedingll of the IEEE International Con­
ference on Data Engineering, pages 336-345, Los 
Angeles, California, February 1986. 



I ' 

[[j Information Processing Society of Japan (IPSJ) 


