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a b s t r a c t

Intuitionistic fuzzy sets are useful for modeling uncertain data of realistic problems. In this paper, we
generalize and expand the utility of complex intuitionistic fuzzy sets using the space of quaternion
numbers. The proposed representation can capture composite features and convey multi-dimensional
fuzzy information via the functions of real membership, imaginary membership, real non-membership,
and imaginary non-membership. We analyze the order relations and logic operations of the complex
intuitionistic fuzzy set theory and introduce new operations based on quaternion numbers. We also
present two quaternion distance measures in algebraic and polar forms and analyze their properties.
We apply the quaternion representations and measures to decision-making models. The proposed
model is experimentally validated in medical diagnosis, which is an emerging application for tackling
patient’s symptoms and attributes of diseases.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In 1965, fuzzy sets (FSs) were introduced as an extension of
the crisp sets by Zadeh [1], in order to address uncertainty and
ambiguity. A membership function whose range is the [0, 1] in-
terval defines a fuzzy set. Fuzzy logic and fuzzy sets have numer-
ous applications in signal processing [2], control theory [3], and
data mining [4–7]. Applications are of recent interest include the
fuzzy linguistic modeling used in information accessing systems
in order to increase flexibility [8] and the fuzzy S-tree applied to
medical image retrieval [9]. Besides, some other nonlinear mod-
eling approaches were proven effective in various problems, such
as modeling derived from Bayesian filtering [10] or training Echo
State Neural Network based on harmony search methods [11].
Further, they have significant applications in consistency and con-
sensus processes [12–15] and also large scale decision problems
and social networks [16,17]. In the present paper, we expand the
fuzzy set theory into multi-dimensional space and consider an
application in a medical diagnosis problem.
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In 1986, intuitionistic fuzzy sets (IFSs) were proposed by
Atanassov [18], extending the notion of an FS by adding a non-
membership function. Overcoming the restrictions of fuzzy sets
in handling conflicting information concerning membership of
objects, this concept is used in modeling imprecision [19], pattern
recognition [20], computational intelligence [21], and decision
making [22]. Specifically, intuitionistic fuzzy sets are quite useful
in medical applications, such as medical diagnosis problems [23]
and medical image segmentation (breast cancer, dental X-ray
images, etc.) [24,25].

Ramot et al. [26] introduced the CFS — complex fuzzy sets in
2002. The proposed formalism was based on the polar representa-
tion of complex numbers, where the amplitude is a fuzzy function
and the phase is a general function [26]. CFSs are useful in solving
complicated problems, such as multiple periodic factor prediction
problems [27]. Alkouri et al. [28,29] used complex grades of mem-
bership and non-membership to construct a generalization of IFSs
and CFSs called complex intuitionistic fuzzy set (CIFS). The initial
approach for CIFS used the Ramot CFS [26], where the functions
of membership and non-membership employ the Ramot-based
complex fuzzy sets. The range of the complex degree of member-
ship is a unit disk in a complex plane. A decision-making model
using the distance measure of CIFSs was presented by Alkouri and
Salleh [30], as an example of the theory.
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Nevertheless, Ramot’s formalism and the derived CIFS [26,28]
are limited to the polar representation, where the amplitude
term is in the interval [0, 1], that conveys indistinct informa-
tion [31]. To overcome this problem, Tamir et al. [31] proposed
a new concept of complex fuzzy class (CFC) via pure complex
fuzzy membership degree; here the range of both the real and
imaginary components is the unit interval. Furthermore, Tamir
et al. [31,32] successfully applied complex fuzzy classes to prob-
lems emerging from physics and stock markets. In 2016, Mumtaz
et al. [33] applied the definitions proposed by Tamir et al. and
extended the work presented in [31,32] to the new concept of
complex intuitionistic fuzzy classes. One drawback of this formal-
ism, however, is that the operations defined are complicated and
not readily accessible.

Recently, Tamir et al. [34] introduced a method for complex
number representation of IFS with important properties. Evolving
from [34], in this paper, a generalization of IFSs, as presented
in [34] is introduced by representing complex intuitionistic fuzzy
sets in a quaternion number system, a number system that ex-
tends the complex number system. A quaternion number has the
form of a + bi + cj + dk, where quaternion units i, j, k are the
square roots of −1, complying with the conditions i2 = j2 = k2 =

ijk = −1, and a, b, c, d are real values. Although the quaternion
multiplication has associative property, it has not commutative
property. For examples, jk = −kj = i and i2 = (jk)2 = (jk) . (jk) =

(jk) . (−kj)= −j
(
k2

)
j = −j (−1) j = j2 = −1, hence i2 ̸= j2k2.

Quaternion number representation can capture composite fea-
tures and convey fuzzy information in four dimensions rather
than in two, as in the complex number representation.

Particularly, we use the concept of quaternion numbers to
combine the degrees of complex membership with complex non-
membership, i.e., combine the degrees of real membership, imag-
inary membership, real non-membership, with imaginary non-
membership. The addition of these degrees of freedom provides
a deep layer of expressiveness and enables efficient approach
toward uncertainty and ambiguity. Moreover, this methodology
enables flexibility in evaluating uncertain information from dif-
ferent aspects because quaternion numbers can be represented
in two forms: algebraic form and polar form.

In this new development, we define order relations, set-
theoretic operations, and some other operations of Quaternion
Complex Intuitionistic Fuzzy Sets (CIFS-Q) and show their prop-
erties. We propose quaternion distance measures in both the
algebraic form and polar form. Some of their important properties
are shown. Moreover, in order to illustrate the applicability of
the introduced approach, we build a new decision-making model
for medical diagnosis based on the proposed representations and
Quaternion Distance Measures (QDM). QDM is developed from
the model proposed in our previous research [7]. The model
addresses relevant problems via the quaternionification process,
i.e., a pair of real and imaginary components is used to represent
the input information, and makes diagnostic suggestions based
on quaternion distance measures.

The main contributions of the QDM algorithm compared to the
previous representation and distance measure methods (SM1-
1, SM1-2, SM1-3, SM1-4 [35], SM2 [23], WXM [36], VSM [20],
ZJM [37], WM [38,39], JM [40], SAM [41], and H-max [7]) include:

• QDM represents complex intuitionistic fuzzy information by
quaternion numbers. This broadens the representability of
fuzzy information.

• QDM introduces flexibility in evaluating information be-
cause the information can be represented in the algebraic
(Cartesian) form (C-QDM) or in the polar form (P-QDM).

• In the IFSs generalization, the representation used in QDM
via quaternion numbers is simpler than that of CFCs.

• In the QDM model, the quaternionification process is used
for encoding information instead of the fuzzification process
used in previous methods; thereby, it provides two more pa-
rameters for complex intuitionistic fuzzy sets representation
for the handling of multidimensional fuzzy information.

• The QDM applies the Pearson correlation coefficient func-
tion for constructing the knowledge base in the polar form
of quaternion numbers in the training process.

• New four-dimensional distance measures proposed for the
QDM decision-making model, namely the Euclidean quater-
nion distance measure and θ−distance measure, are empir-
ically shown to be better than the existing fuzzy distance
measures.

We apply the proposed model to medical diagnosis problem,
with ability to handle highly complex patient’s symptoms and
attributes of diseases. Specifically, we have experimentally val-
idated the QDM model on benchmark medical diagnosis datasets
and have shown advantage in comparison to previously known
methods.

The remainder of the paper includes the following sections.
Background concepts are defined in Section 2. Section 3 intro-
duces a new representation of CIFS based on quaternion numbers
(CIFS-Q). Algebraic operations on CIFS-Qs are shown in Section 4.
Section 5 studies quaternion distance measures. Section 6 in-
troduces a new decision-making model based on the proposed
quaternion distance measures. Experiments on benchmark medi-
cal diagnosis datasets are presented in Section 7. Finally, Section 8
draws conclusions and proposes further research.

2. Preliminary

In this section, we present basic definitions and related no-
tions used in the paper. Under the early work on fuzzy set theory,
a FS over a space Ẍ has been defined via a function of membership
on Ẍ as follows:

Definition 1 ([1]). A fuzzy set F over Ẍ is formed by:

F =
{
(x, µF (x)) : x ∈ Ẍ

}
,

where µF (x) ∈ [0, 1] is the membership degree of x in F .

The IFSs theory introduced by Atanassov [18] adds a fuzzy
function of non-membership to the fuzzy set in the following
way:

Definition 2 ([18,42]). An intuitionistic fuzzy set I over Ẍ is
formed by:

I =
{
(x, µI (x) , νI (x)) : x ∈ Ẍ

}
, (1)

where µI : Ẍ → [0, 1] and νI : Ẍ → [0, 1], the membership and
non-membership functions, satisfy

0 ≤ µI + νI ≤ 1. (2)

In order to clarify the proposals of this paper, the previ-
ously introduced definitions of representations of IFs and IFSs via
complex numbers are mentioned as follows.

In 2002, Ramot et al. [26] introduced the concept of complex
fuzzy set, where the membership function is the complex func-
tion in the polar form including the fuzzy amplitude function and
the general phase function.

Definition 3 ([26,43]). A complex fuzzy set S over X , is formed by

S = {(x, ηS (x)) : x ∈ X} , (3)

where the complex-valued membership function, ηS , has the form
pS .ej.µS , here, j =

√
−1, the amplitude function, pS , satisfies

pS : X → [0, 1], and the function µS is real-valued on X .
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In 2012, Alkouri et al. [28,29] proposed the complex intu-
itionistic fuzzy set based on the Ramot CFS [26] by accreting the
complex-valued non-membership function.

Furthermore, Tamir et al. [31] (2011) and Mumtaz et al. [33]
(2016) proposed the complex fuzzy and complex intuitionistic
fuzzy classes by combining the relation of an element and a set
and the relation of a set and a class.

Definition 4 ([31]). A complex fuzzy class Γ over Ẍ has the
representation as follows

Γ =

{
(E, x, µΓ (E, x)) : E ∈ 2Ẍ , x ∈ Ẍ

}
, (4)

where 2Ẍ is the power-set of Ẍ . The pure complex member-
ship degree is the degree of membership of E in Γ and the
membership degree of x in E, which is

µΓ (E, x) = µr (E) + jµi (x) , (5)

where µr (E),µi (x)∈ [0, 1].

Similarly, the concept of complex intuitionistic fuzzy class was
introduced by adding to the concept of complex fuzzy class the
pure complex non-membership degree [33].

In 2016, complex numbers in the Cartesian form were used
more simply in the representations of IFSs.

Definition 5 (Tamir et al. [34]). Let Ä be an IFS characterized by the
complex number function z̈ = µ̈ + jν̈, where µ̈, ν̈: Ẍ → [0, 1]
satisfying µ̈ + ν̈ ∈ [0, 1] are the functions of membership and
non-membership, respectively. As a set of ordered pairs, the IFS
Ä can be represented as:

Ä =
{
(ẍ, z̈)| ẍ ∈ Ẍ, z̈ = µ̈ (x) + jν̈ (x)

}
. (6)

Further, an IFS Ä is defined to be a subset of an IFS B̈ iff
z̈A ≤ z̈B,i.e.

Ä ⊆ B̈ ⇔ µ̈A (x) ≤ µ̈B (x) , ν̈A (x) ≥ ν̈B (x) , ∀x ∈ Ẍ . (7)

3. New representation of complex intuitionistic fuzzy sets
based on quaternion numbers

In 4-dimensional space, the quaternion number system was
introduced by Hamilton in 1943 [44] as an extension of the
complex number system. We propose to expand representation
of complex intuitionistic fuzzy sets via quaternion numbers. This
model advances the prior model [34] by using the quaternion
numbers instead of complex numbers in representing intuitionis-
tic fuzzy sets. Section 3 shows that the proposed model with four
representative parameters is more powerful than the representa-
tion of IFSs based on complex numbers introduced in [34] with
two representative parameters.

Definition 6. Let
...
U be a space.

...
F Q is the complex intuitionistic

fuzzy set on
...
U defined by a quaternion function (CIFS-Q) with the

quaternion function Q =
...
q =

...
α + i

...
β + j

...
ω + k

...
γ , where i, j, k are

complex roots, i2 = j2 = k2 = ijk = −1. Here,
...
α,

...
β,

...
ω, and

...
γ are

the functions of real membership, imaginary membership, real
non-membership, and imaginary non-membership, respectively.
For all u ∈

...
U , the functions

...
α,

...
β ,

...
ω and

...
γ satisfy the following

conditions:
...
α(u),

...
β(u),

...
ω(u),

...
γ (u) ∈ [0, 1] , (8)

...
α(u) +

...
β(u) ≤ 1, (9)

...
ω(u) +

...
γ (u) ≤ 1, (10)

...
α(u) +

...
ω(u) ≤ 1, (11)

...
β(u) +

...
γ (u) ≤ 1. (12)

Fig. 1. Graphical representation of the products of unit quaternions as a
90◦-rotation in 4D-space.

The values
...
α(u),

...
β(u),

...
ω(u), and

...
γ (u) are the degrees of real

membership, imaginary membership, real non-membership, and
imaginary non-membership, respectively, of u in

...
F Q . Then, the

complex intuitionistic fuzzy set
...
F Q represented by the quaternion

function
...
q is

...
F Q =

{
(u,Q (u)) : u ∈

...
U

}
. (13)

Q =
...
q is called the characteristic quaternion function of CIFS-

Q. The quaternion function Q =
...
q is also written as follows:

...
q =

(...
α + i

...
β
)

+ j
(...
ω − i

...
γ
)

=
...
µ + j

...
ν, (14)

here,
...
µ =

...
α + i

...
β is the complex membership function, and...

ν =
...
ω − i

...
γ is the complex non-membership function. For each

u ∈
...
U , the values

...
µ(u) and

...
ν (u) are the complex membership and

complex non-membership degrees of u in
...
F Q , respectively.

Definition 6 characterizes a CIFS on
...
U by a quaternion function

Q . This is a direct extension of Definition 5. It can be seen that
in (14) if

...
β =

...
γ = 0, then

...
q =

...
µ + j

...
ν =

...
α + j

...
ω where...

α,
...
ω ∈ [0, 1] and

...
α +

...
ω ∈ [0, 1]. Hence, the representation of

IFSs based on complex numbers [34] in Definition 5 is a special
case of the proposed model.

The following example serves as a way to check the inequality
‘‘µ̈ + ν̈ ∈ [0, 1]’’ of Definition 5 for the introduced sets, i.e., the
inequalities (9)–(12) of Definition 6.

Example 1. Let
...
F Q be a CIFS-Q on

...
U with Q =

...
q = 0.5 +

0.1i+0.3j+0.6k.
...
F Q indeed satisfies the conditions of a complex

intuitionistic fuzzy set as follows
...
α+

...
β ≤ 1,

...
ω+

...
γ ≤ 1,

...
α+

...
ω ≤ 1,

and
...
β +

...
γ ≤ 1,which are 0.5+ 0.1 = 0.6 ≤ 1, 0.3+ 0.6 = 0.9 ≤

1,0.5 + 0.3 = 0.8 ≤ 1, and 0.1 + 0.6 = 0.7 ≤ 1.

Remark 1. A quaternion function is defined to be
...
q =

...
α + i

...
β +

j
...
ω + k

...
γ , where i, j and k comply with the condition i2 = j2 =

k2 = ijk = −1. The products of unit quaternions are intuitively
illustrated in Fig. 1.

The complex membership and complex non-membership func-
tions in formula (14) are illustrated by Fig. 2.

The residual 2 − (
...
α +

...
β +

...
ω +

...
γ ) implies the existence of

another fuzzy set referred as the No Man Zone (NMZ) of a CIFS-Q
(see Definition 7).

Definition 7. Let
...
F Q be a CIFS-Q with Q =

...
q =

...
α + i

...
β +

j
...
ω + k

...
γ , where

...
α,

...
β,

...
ω, and

...
γ are the functions of real member-

ship, imaginary membership, real non-membership, and imagi-
nary non-membership, respectively. The NMZ of

...
F Q is defined as:
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Fig. 2. Graphical representation of the complex degrees.

NMZ(
...
F Q ) =

{⟨
u, 2 − (

...
α +

...
β +

...
ω +

...
γ )

⟩
: u ∈

...
U

}
. (15)

Now, we consider the set Q ∗ defined by

Q ∗
= {

...
q = (

...
α,

...
β,

...
ω,

...
γ ) =

...
α + i

...
β + j

...
ω + k

...
γ |

...
α,

...
β,

...
ω,

...
γ ,

...
α +

...
β,

...
ω +

...
γ ,

...
α +

...
ω,

...
β +

...
γ ∈ [0, 1]}.

Hereinafter it is assumed that if
...
q t ∈ Q ∗ then

...
q t has the

representation
...
q t = (

...
αt ,

...
β t ,

...
ωt ,

...
γ t ) or

...
q t =

...
αt + i

...
β t + j

...
ωt +

k
...
γ t , (t = 1, 2, . . .).
The order relation on Q ∗ is defined by:

...
q1 ≤

...
q2 ⇔

...
α1 ≤

...
α2,

...
β1 ≥

...
β2,

...
ω1 ≥

...
ω2 and

...
γ 1 ≤

...
γ 2. (16)

The units of Q ∗ are denoted as follows 1Q ∗ = (1, 0, 0, 1) and
0Q ∗ = (0, 1, 1, 0).

Definition 8. Let Qt =
...
q t =

...
αt + i

...
β t + j

...
ωt + k

...
γ t ∈ Q ∗ and...

F Qt be the CIFSs-Q on
...
U , where

...
αt ,

...
β t ,

...
ωt ,

...
γ t (t = 1; 2) are the

functions of real membership, imaginary membership, real non-
membership, and imaginary non-membership, respectively. The
set

...
F Q1 is defined to be a subset of

...
F Q2, denoted as

...
F Q1 ⊆

...
F Q2,

if and only if
...
q1 ≤

...
q2.

Remark 2. In the proposed quaternion IFS model, the real mem-
bership and real non-membership degrees have the same mean-
ing as the membership and non-membership degrees in Complex
Number Representation of IFSs [34]. To illustrate this, let A =

...
F Q

be a CIFS-Q on
...
U with Q =

...
q =

...
α + i

...
β + j

...
ω + k

...
γ , then A

comprises a complex IFS characterized by the complex number
function z̈ =

...
α + j

...
ω. The proposed quaternion model extends

the expressive power of IFSs to four degrees (the real member-
ship, imaginary membership, real non-membership, and imag-
inary non-membership degrees), compared to the two degrees
of complex IFSs (the membership and non-membership degrees
according to [34]). If At(t=1,2) =

...
F Qt are two CIFSs-Q on

...
U ,

where each Q has the form Q =
...
q =

...
α + i

...
β + j

...
ω + k

...
γ ,

and
...
q1 ≤

...
q2, as defined by (16), then z̈1 ≤ z̈2, as defined by

(7), where each z̈ =
...
α + j

...
ω. Hence, the proposed quaternion

representation allows to assess the relations between IFSs more
closely with four dimensions. For example, let u ∈

...
U ,

...
q1(u) =

0.5 + 0.1i + 0.3j + 0.6k, and
...
q2(u) = 0.5 + 0.2i + 0.3j + 0.5k.

From (16) we have:
...
q1(u) <

...
q2(u). However, from (7) we have:

z̈1(u) = z̈2(u) = 0.5 + 0.3j.

The proposed quaternion representation of IFSs provides a
broader multi-dimensional information representation capability.
For example, voting results can be divided into three groups
according to the number of voters that ‘‘vote for’’, ‘‘vote against’’,
and ‘‘abstain from voting’’. This problem was approached by the
traditional intuitionistic fuzzy theory via the membership, non-
membership, and hesitancy degrees. There is also an identifiable
category of voters who do not really want to support or oppose
but they vote nevertheless due to secondary factors, such as
following the crowd, voting unconsciously, etc. It can be observed
that the previous representation of IFSs cannot model this aspect
in a compact way, while the quaternion representation naturally
models this phenomenon.

4. Logic and algebraic operations

In Section 4 logic operations and algebra operations based on
the proposed representation are studied. Here, new logic opera-
tions are generalization of the previous intuitionistic fuzzy ones
which were proposed by Atanassov [18].

Definition 9. A negation N on Q ∗ is a non-increasing Q ∗
→ Q ∗

function that satisfies:

N(0Q ∗ ) = 1Q ∗ ,N(1Q ∗ ) = 0Q ∗ . (17)

A negation N is called an involution if N(N(
...
q)) =

...
q, ∀

...
q ∈ Q ∗.

Proposition 1. The following operation is an involutive negation on
Q ∗, called the standard negation on Q ∗:

Ns(
...
q) = (

...
ω,

...
γ ,

...
α,

...
β) =

...
ω + i

...
γ + j

...
α + k

...
β, ∀

...
q ∈ Q ∗. (18)

Proof. Firstly, since
...
q ∈ Q ∗, therefore

...
ω +

...
γ ≤ 1,

...
α +

...
β ≤ 1,

...
ω +...

α ≤ 1, and
...
γ +

...
β ≤ 1. Hence, we obtain N(

...
q) ∈ Q ∗. Secondly, we

have Ns(0Q ∗ ) = 1Q ∗ ,Ns(1Q ∗ ) = 0Q ∗ . Now, let
...
q1 ≤

...
q2, that means

...
α1 ≤

...
α2,

...
β1 ≥

...
β2,

...
ω1 ≥

...
ω2, and

...
γ 1 ≤

...
γ 2, therefore N(

...
q1) ≥

N(
...
q2). Finally, we observe that Ns(Ns(

...
q)) =

...
q, ∀

...
q ∈ Q ∗. □

Definition 10. Let
...
F Q be a CIFS-Q on

...
U with Q =

...
q =

...
α + i

...
β +

j
...
ω + k

...
γ ∈ Q ∗. The negation (the complement) of

...
F Q , denoted as...

F N
Q , is the set represented by the complement of Q , i.e.,

Q N
= N(

...
q), (19)

where N is a negation on Q ∗.

Remark 3. From Definition 10, we have Q Ns = Ns(
...
q) =

...
µ

c
+ j

...
ν c ,

where
...
µ

c
=

...
ω + i

...
γ and

...
ν c

=
...
α − i

...
β are the complex member-

ship and complex non-membership functions of
...
F Ns
Q , respectively.

From Proposition 1, we have
(...
F Ns
Q

)Ns
=

...
F Q .

Definition 11. A t-norm T on Q ∗ is a Q ∗
× Q ∗

→ Q ∗ mapping
and

1. T (
...
q, 1Q ∗ ) =

...
q (the boundary condition),

2. T (
...
q1,

...
q2) = T (

...
q2,

...
q1),

3. T (
...
q1, T (

...
q2,

...
q3)) = T (T (

...
q1,

...
q2),

...
q3),

4. T (
...
q1,

...
q2) ≤ T (

...
q1,

...
q3), ∀

...
q2 ≤

...
q3, here

...
q,

...
q1,

...
q2,

...
q3 ∈ Q ∗.

Definition 12. A t-conorm S on Q ∗ is a Q ∗
× Q ∗

→ Q ∗ mapping
satisfying the boundary condition S(

...
q, 0Q ∗ ) =

...
q, ∀

...
q ∈ Q ∗ and

the remaining conditions of a t-norm.
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Proposition 2. The following operations are t-norms on Q ∗. For all...
q1,

...
q2 ∈ Q ∗,

1. T1(
...
q1,

...
q2) = ((

...
α1 ∧

...
α2), (

...
β1 ∨

...
β2), (

...
ω1 ∨

...
ω2), (

...
γ 1 ∧

...
γ 2)).

2. T2(
...
q1,

...
q2) = (

...
α1

...
α2,

...
β1+

...
β2−

...
β1

...
β2,

...
ω1+

...
ω2−

...
ω1

...
ω2,

...
γ 1

...
γ 2).

3. T3(
...
q1,

...
q2) = (0 ∨ (

...
α1 +

...
α2 − 1), 1 ∧ (

...
β1 +

...
β2), 1 ∧ (

...
ω1 +...

ω2), 0 ∨ (
...
γ 1 +

...
γ 2 − 1)).

4. T4(
...
q1,

...
q2) = (0∨ (

...
α1 +

...
α2 −1),

...
β1 +

...
β2 −

...
β1

...
β2,

...
ω1 +

...
ω2 −...

ω1
...
ω2, 0 ∨ (

...
γ 1 +

...
γ 2 − 1)).

Proof. Firstly, we have to prove T1(
...
q1,

...
q2) ∈ Q ∗, i.e., (

...
α1 ∧

...
α2)+

(
...
β1∨

...
β2) ≤ 1, (

...
ω1∨

...
ω2)+(

...
γ 1∧

...
γ 2) ≤ 1, (

...
α1∧

...
α2)+(

...
ω1∨

...
ω2) ≤ 1,

and (
...
β1 ∨

...
β2) + (

...
γ 1 ∧

...
γ 2) ≤ 1. Secondly, we check the four

conditions of Definition 11. Clearly, these properties are obtained
from the validity of t-norm Min and t-conorm Max of the FSs
defined by Zadeh [1] and the IFSs defined by Atanassov [5]. □

Proposition 3. For all
...
q1,

...
q2 ∈ Q ∗, the following operations are

t-conorms on Q ∗.

1. S1(
...
q1,

...
q2) = ((

...
α1 ∨

...
α2), (

...
β1 ∧

...
β2), (

...
ω1 ∧

...
ω2), (

...
γ 1 ∨

...
γ 2)).

2. S2(
...
q1,

...
q2) = (

...
α1+

...
α2−

...
α1

...
α2,

...
β1

...
β2,

...
ω1

...
ω2,

...
γ 1+

...
γ 2−

...
γ 1

...
γ 2).

3. S3(
...
q1,

...
q2) = (1 ∧ (

...
α1 +

...
α2), 0 ∨ (

...
β1 +

...
β2 − 1), 0 ∨ (

...
ω1 +...

ω2 − 1), 1 ∧ (
...
γ 1 +

...
γ 2)).

4. S4(
...
q1,

...
q2) = (

...
α1 +

...
α2 −

...
α1

...
α2, 0∨ (

...
β1 +

...
β2 − 1), 0∨ (

...
ω1 +...

ω2 − 1),
...
γ 1 +

...
γ 2 −

...
γ 1

...
γ 2).

Proof. Similar to Proposition 2. □

Proposition 4. Let t-norms t1, t2 and t-conorms s1, s2 satisfy the
values of the sumst1 + s1, t2 + s2, t1 + s2, and t2 + s1 belong to
[0, 1]. Then, the following operations are t-norm and t-conorm on
Q ∗:

T (
...
q1,

...
q2) = (t1(

...
α1,

...
α2), s1(

...
β1,

...
β2), s2(

...
ω1,

...
ω2), t2(

...
γ 1,

...
γ 2)), (20)

S(
...
q1,

...
q2) = (s1(

...
α1,

...
α2), t1(

...
β1,

...
β2), t2(

...
ω1,

...
ω2), s2(

...
γ 1,

...
γ 2)). (21)

Definition 13. A t-norm T and a t-conorm S are called dual via a
negation N if the triple (N, T , S) satisfies two following conditions

N(T (
...
q1,

...
q2)) = S(N(

...
q1),N(

...
q2)), (22)

N(S(
...
q1,

...
q2)) = T (N(

...
q1),N(

...
q2)), (23)

and then (N, T , S) is called a De Morgan triple on Q ∗.

Proposition 5. The (Ns, Ti, Si) are De Morgan triples on Q ∗, where
i = 1, 2, 3, 4.

Proof. We prove that (Ns, T1, S1) is a De Morgan triple on Q ∗.
Indeed, we have

Ns(T1(
...
q1,

...
q2)) = ((

...
ω1 ∨

...
ω2), (

...
γ 1 ∧

...
γ 2), (

...
α1 ∧

...
α2), (

...
β1 ∨

...
β2)).

Since Ns(
...
q t ) = (

...
ωt ,

...
γ t ,

...
αt ,

...
β t )(t = 1; 2), hence

S1(N(
...
q1),N(

...
q2)) = ((

...
ω1 ∨

...
ω2), (

...
γ 1 ∧

...
γ 2), (

...
α1 ∧

...
α2), (

...
β1 ∨

...
β2)).

Therefore, Ns(T1(
...
q1,

...
q2)) = S1(Ns(

...
q1),Ns(

...
q2)).

Similarly, we obtain: Ns(S1(
...
q1,

...
q2)) = T1(Ns(

...
q1),Ns(

...
q2)).

Now, we prove that (Ns, T2, S2) is a De Morgan triple on Q ∗.
Indeed, we have

Ns(T2(
...
q1,

...
q2)) = (

...
ω1 +

...
ω2 −

...
ω1

...
ω2,

...
γ 1

...
γ 2,

...
α1

...
α2,

...
β1 +

...
β2 −

...
β1

...
β2).

Since N(
...
q t ) = (

...
ωt ,

...
γ t ,

...
αt ,

...
β t )(t = 1; 2),hence Ns(T2(

...
q1,

...
q2)) =

S2(Ns(
...
q1),Ns(

...
q2)).

Similarly, we obtain (Ns, T3, S3) and (Ns, T4, S4) are De Morgan
triples. □

Proposition 6. Let t-norm t and t-conorm s satisfy the condition
t + s ∈ [0, 1], and

T (
...
q1,

...
q2) = (t(

...
α1,

...
α2), s(

...
β1,

...
β2), s(

...
ω1,

...
ω2), t(

...
γ 1,

...
γ 2)), (24)

S(
...
q1,

...
q2) = (s(

...
α1,

...
α2), t(

...
β1,

...
β2), t(

...
ω1,

...
ω2), s(

...
γ 1,

...
γ 2)), (25)

then (Ns, T , S) is a De Morgan triple.

Proof. Similar to Proposition 5. □

Definition 14. Let Qt =
...
q t ∈ Q ∗ (t = 1; 2) be quaternion

functions and
...
F Q1,

...
F Q2 be two CIFSs-Q on

...
U . The intersection of...

F Q1 and
...
F Q2 based on the t-norm T on Q ∗, denoted as

...
F Q1∩T

...
F Q2,

is the set represented by the function T (
...
q1,

...
q2).

Definition 15. Let Qt =
...
q t ∈ Q ∗ (t = 1; 2) be quaternion

functions and
...
F Q1,

...
F Q2 be two CIFSs-Q on

...
U . The union of

...
F Q1

and
...
F Q2 based on the t-conorm S on Q ∗, denoted as

...
F Q1 ∪S

...
F Q2,

is the set represented by the function S(
...
q1,

...
q2).

Example 2. Let
...
F Q1 and

...
F Q2 be two CIFSs-Q on

...
U with Q1 =

...
q1 =

0.5 + 0.1i + 0.3j + 0.6k and Q2 =
...
q2 = 0.2 + 0.1i + 0.1j + 0.4k,

respectively. Thus,
...
F Q1 ∩T1

...
F Q2 and

...
F Q1 ∪S1

...
F Q2 are complex

intuitionistic fuzzy sets on
...
U defined by quaternion functions as

follows:

T1(
...
q1,

...
q2) = (0.5 ∧ 0.2, 0.1 ∨ 0.1, 0.3 ∨ 0.1, 0.6 ∧ 0.4)

= 0.2 + 0.1i + 0.3j + 0.4k,
S1(

...
q1,

...
q2) = (0.5 ∨ 0.2, 0.1 ∧ 0.1, 0.3 ∧ 0.1, 0.6 ∨ 0.4)

= 0.5 + 0.1i + 0.1j + 0.6k.

Remark 4. Let Qt =
...
q t ∈ Q ∗ (t = 1; 2) be quaternion functions

and
...
F Q1,

...
F Q2 be two CIFSs-Q on

...
U . For all t-norm T and t-conorm

Son Q ∗, clearly,
...
F Q1 ∩T

...
F Q2 and

...
F Q1 ∪S

...
F Q2 are two CIFSs-Q on

...
U .

Proposition 7. Let Qt =
...
q t ∈ Q ∗ (t = 1; 2; 3) be quaternion

functions. Let
...
F Q1,

...
F Q2, and

...
F Q3 be three CIFSs-Q on

...
U. It follows

that, for all t-norm T , t-conorm S and negation N on Q ∗,

1.
...
F Q1∩T1

...
F Q1 =

...
F Q1,

...
F Q1∪S1

...
F Q1 =

...
F Q1 (reflectivity property),

2.
...
F Q1 ∩T

...
F Q2 =

...
F Q2 ∩T

...
F Q1,

...
F Q1 ∪S

...
F Q2 =

...
F Q2 ∪S

...
F Q1

(commutative property),
3. (

...
F Q1 ∩T

...
F Q2)∩T

...
F Q3 =

...
F Q1 ∩T (

...
F Q2 ∩T

...
F Q3), (

...
F Q1 ∪S

...
F Q2)∪S...

F Q3 =
...
F Q1 ∪S (

...
F Q2 ∪S

...
F Q3) (associative property),

4. If
...
F Q1 ⊆

...
F Q2, then

...
F Q1 ∩T

...
F Q3 ⊆

...
F Q2 ∩T

...
F Q3 and

...
F Q1 ∪S...

F Q3 ⊆
...
F Q2 ∪S

...
F Q3 (monotone property),

5. (
...
F Q1 ∪S1

...
F Q2) ∩T1

...
F Q3 = (

...
F Q1 ∩T1

...
F Q3) ∪S1 (

...
F Q2 ∩T1

...
F Q3),

(
...
F Q1 ∩T1

...
F Q2) ∪S1

...
F Q3 = (

...
F Q1 ∪S1

...
F Q3) ∩T1 (

...
F Q2 ∪S1

...
F Q3)

(distributive property),
6. If (N, T , S) is a De Morgan triple, then (

...
F Q1 ∩T

...
F Q2)N =...

F N
Q1 ∪S

...
F N
Q2, (

...
F Q1 ∪S

...
F Q2)N =

...
F N
Q1 ∩T

...
F N
Q2 (De Morgan’s law).

Proof. These properties are deduced from the properties of N, T ,
and S on Q ∗. □

These set-theory operations are the generalization of previous
set-theory operations on IFSs [18]. Now, let us consider other
interesting operators along with their properties derived from
properties of the quaternion numbers.

Definition 16. Let
...
q be a quaternion function defined by:

...
q =

...
α + i

...
β + j

...
ω + k

...
γ = (

...
α + i

...
β) + j(

...
ω − i

...
γ ),

where the functions
...
µ =

...
α + i

...
β and

...
ν =

...
ω − i

...
γ are of com-

plex membership and complex non-membership, respectively.
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The norm of
...
q is,⏐⏐...q⏐⏐ =

√
...
α2

+
...
β

2
+

...
ω

2
+

...
γ

2
. (26)

Definition 17. The conjugate of a quaternion function
...
q is,

...
q =

...
α − i

...
β − j

...
ω − k

...
γ = (

...
α − i

...
β) − j(

...
ω − i

...
γ ). (27)

Definition 18. The inverse of a quaternion function
...
q is,

...
q−1

=

...
q⏐⏐...q⏐⏐2 . (28)

The formula (28) makes intuitive sense when understanding
some basic properties of the norm, as

...
q ×

...
q =

⏐⏐...q⏐⏐2.
Definition 19. Let Qt =

...
q t (t = 1; 2) be quaternion functions

and
...
F Q1,

...
F Q2 be two CIFSs-Q on

...
U . The sum of

...
F Q1 and

...
F Q2

denoted as
...
F Q1 +

...
F Q2, is

...
F Q1 +

...
F Q2 =

{
(u, (Q1 + Q2) (u)) : u ∈

...
U

}
, (29)

where

Q1 + Q2 =
...
q1 +

...
q2

= (
...
α1 +

...
α2) + i(

...
β1 +

...
β2) + j(

...
ω1 +

...
ω2) + k(

...
γ 1 +

...
γ 2). (30)

Definition 20. Let Qt =
...
q t (t = 1; 2) be quaternion functions

and
...
F Q1,

...
F Q2 be two CIFSs-Q on

...
U . The difference of

...
F Q1 less

...
F Q2

denoted
...
F Q1 −

...
F Q2, is:

...
F Q1 −

...
F Q2 =

{
(u, (Q1 − Q2) (u)) : u ∈

...
U

}
, (31)

where

Q1 − Q2 =
...
q1 −

...
q2 = |

...
α1 −

...
α2| + i

⏐⏐⏐...β1 −
...
β2

⏐⏐⏐
+ j

⏐⏐...ω1 −
...
ω2

⏐⏐ + k
⏐⏐ ...γ 1 −

...
γ 2

⏐⏐ . (32)

Definition 21. Let Qt =
...
q t (t = 1; 2) be quaternion functions

and
...
F Q1,

...
F Q2 be two CIFSs-Q on

...
U . The product of

...
F Q1 and

...
F Q2

denoted
...
F Q1 ×

...
F Q2, is:

...
F Q1 ×

...
F Q2 =

{
(u, (Q1 × Q2) (u)) : u ∈

...
U

}
, (33)

where

Q1 × Q2 =
...
q1 ×

...
q2 = (

...
α1

...
α2 −

...
β1

...
β2 −

...
ω1

...
ω2 −

...
γ 1

...
γ 2)

+ i(
...
α1

...
β2 +

...
α2

...
β1 +

...
ω1

...
γ 2 −

...
γ 1

...
ω2)

+ j(
...
α1

...
ω2 −

...
β1

...
γ 2 +

...
ω1

...
α2 +

...
γ 1

...
β2)

+ k(
...
α1

...
γ 2 +

...
β1

...
ω2 −

...
ω1

...
β2 +

...
γ 1

...
α2). (34)

Proposition 8. Let
...
q1 and

...
q2 be the two characteristic quaternion

functions of CIFSs-Q. The properties of the quaternion algebra are still
preserved, such as

...
q =

...
q,

...
q1 ±

...
q2 =

...
q1±

...
q2,

...
q1 ×

...
q2 =

...
q1×

...
q2,

and
(...
q1 ×

...
q2

)−1
=

...
q−1
1 ×

...
q−1
2 .

Proof. These assertions follow from Definitions 16–21

5. Quaternion distance measure

In Section 5 we propose and study the Euclidean quaternion
distance measures in Cartesian form, a novel order relation, and
a novel distance measure, which we have named θ-distance
measure, in Polar form of the characteristic quaternion functions
of CIFSs-Q.

5.1. Distance measure in Cartesian Form

Definition 22. Let
...
q1,

...
q2 ∈ Q ∗ be two quaternion functions.

The Euclidean quaternion distance measure between
...
q1 and

...
q2

is defined as:

dE(
...
q1,

...
q2) =

⏐⏐...q1 −
...
q2

⏐⏐
=

√
(
...
α1 −

...
α2)2 + (

...
β1 −

...
β2)2 + (

...
ω1 −

...
ω2)2 + (

...
γ 1 −

...
γ 2)2.

(35)

Proposition 9. For all
...
q1,

...
q2,

...
q3 ∈ Q ∗, the Euclidean quaternion

distance measure satisfies the following features:

1. 0 ≤ dE(
...
q1,

...
q2), dE(

...
q1,

...
q2) = 0 ⇔

...
q1 =

...
q2,

2. dE(
...
q1,

...
q2) = dE(

...
q2,

...
q1),

3. dE(
...
q1,

...
q2) + dE(

...
q2,

...
q3) ≥ dE(

...
q1,

...
q3).

4. max
(
dE(

...
q1,

...
q2), dE(

...
q2,

...
q3)

)
≤ dE(

...
q1,

...
q3), if

...
q1 ≤

...
q2 ≤

...
q3,

the order in Q ∗ is defined by (16).

Proof. Evidently,

dE(
...
q1,

...
q3)2 = (

...
α1 −

...
α2)2 + 2(

...
α1 −

...
α2)(

...
α2 −

...
α3)

+(
...
α2 −

...
α3)2 + (

...
β1 −

...
β2)2

+2(
...
β1 −

...
β2)(

...
β2 −

...
β3) + (

...
β2 −

...
β3)2

+(
...
ω1 −

...
ω2)2 + 2(

...
ω1 −

...
ω2)(

...
ω2 −

...
ω3)

+(
...
ω2 −

...
ω3)2 + (

...
γ 1 −

...
γ 2)2 + 2(

...
γ 1 −

...
γ 2)(

...
γ 2 −

...
γ 3)

+(
...
γ 2 −

...
γ 3)2.

Furthermore, due to the Cauchy–Schwarz inequality, we have(
(
...
α1 −

...
α2)(

...
α2 −

...
α3) + (

...
β1 −

...
β2)(

...
β2 −

...
β3)

+(
...
ω1 −

...
ω2)(

...
ω2 −

...
ω3) + (

...
γ 1 −

...
γ 2)(

...
γ 2 −

...
γ 3)

)2
≤

(
(
...
α1 −

...
α2)2 + (

...
β1 −

...
β2)

2
+ (

...
ω1 −

...
ω2)2 + (

...
γ 1 −

...
γ 2)2

)
×

(
(
...
α2 −

...
α3)2 + (

...
β2 −

...
β3)

2

+(
...
ω2 −

...
ω3)2 + (

...
γ 2 −

...
γ 3)2

)
.

Hence, dE(
...
q1,

...
q3)2 ≤ (dE(

...
q1,

...
q2) + dE(

...
q2,

...
q3))2.

Now, we obtain that
...
α1 ≤

...
α2 ≤

...
α3,

...
β1 ≥

...
β2 ≥

...
β3,

...
ω1 ≥

...
ω2 ≥...

ω3,
...
γ 1 ≤

...
γ 2 ≤

...
γ 3 from the order

...
q1 ≤

...
q2 ≤

...
q3. Therefore,

(
...
α1 −

...
α2)2 ≤ (

...
α1 −

...
α3)2, (

...
β1 −

...
β2)

2
≤ (

...
β1 −

...
β3)

2,

(
...
ω1 −

...
ω2)2 ≤ (

...
ω1 −

...
ω3)2, and (

...
γ 1 −

...
γ 2)2 ≤ (

...
γ 1 −

...
γ 3)2.

Thus, we get the final property of Proposition 9. □

5.2. New order relation and distance measure based on polar form
of quaternion numbers

Definition 23. Let
...
q =

...
α+i

...
β+j

...
ω+k

...
γ =

(...
α + i

...
β
)
+j

(...
ω − i

...
γ
)

=
...
µ + j

...
ν ∈ Q ∗ be a quaternion function on Q ∗, then the Polar form

of
...
q is:

...
q =

...
r µeiθµ + j

...
r νeiθν , (36)

where
...
µ =

...
r µeiθµ , and

...
ν =

...
r νeiθν are the polar forms of the

complex functions
...
µ and

...
ν , respectively. Here,

...
r µ =

⏐⏐...µ⏐⏐ =

√
...
α2

+
...
β

2
,
...
r ν = |

...
ν | =

√
...
ω

2
+

...
γ

2
. (37)
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Fig. 3. The graphical representation of complex degrees in Polar form.

θµ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arctan

...
β
...
α

if
...
α > 0

π

2
if

...
α = 0,

...
β > 0

0 if
...
α = 0,

...
β = 0

,

θν =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arctan

−
...
γ
...
ω

if
...
ω > 0

−
π

2
if

...
ω = 0,

...
γ > 0

0 if
...
ω = 0,

...
γ = 0

. (38)

We can write the polar form of a quaternion function
...
q as:

...
q = (

...
µ,

...
ν ) = ([[

...
r µ, θµ]], [[

...
r ν, θν]]), (39)

where
...
r µ,

...
r ν are the modulus functions of

...
µ,

...
ν , and θµ, θν

are the argument functions of
...
µ,

...
ν , respectively, and

...
µ =

[[
...
r µ, θµ]],

...
ν = [[

...
r ν, θν]].

Note that
...
r µ = 0 if and only if

...
α = 0 and

...
β = 0, and

in this case we conventionalize in the proposed representation
of

...
µ that θµ = 0. Hence, the pairs of the modulus

...
r µ = 0

and the argument θµ = 0 have no meaning in this proposed
representation. Likewise, we get the case of

...
r ν = 0 in the

proposed representation of
...
ν .

Fig. 3 represents the Polar form of the complex membership
and complex non-membership degrees. Further, Figs. 2 and 3 in
this paper and Figure 3.18 in the paper of Atanassov [45] in 2012
all mentioned the complex plane, but with different ideas. Herein,
we discuss them as follows.

• Figs. 2 and 3 show a graphical representation of the complex
membership degree

...
µ =

...
α + i

...
β =

...
r µeiθµ and complex

non-membership degree
...
ν =

...
ω − i

...
γ = j

...
r νeiθν of the

representation of CIFS-Q. The relation negation of CIFS-Q in
this paper (see Definition 9) cannot be completely analyzed
in Figs. 2 and 3 because this relation is considered for points
in 4D-space.

• Furthermore, Figure 3.18 in the paper of Atanassov in 2012
[45] is a geometrical representation of two conjugate points
a + ib and a − ib in triangle ABC on the complex plane,
where A = (0, 1) , B = (1, 0), and C = (0, −1). In
that figure, triangle ABO is the geometrical interpretation
of the intuitionistic fuzzy sets. Two elements x = (x1, x2)
and y = (y1, y2) of triangle ABO are said to be in rela-
tion intuitionistic fuzzy negation if x1 = y2 and x2 =

y1. Atanassov introduced the continuous bijective function
f (u, v) that transform the points of triangle ABC into tri-
angle ABO, where (u, v) are the coordinates of the complex
number u + iv and u ∈ [0, 1] , v ∈ [−1, 1]. The interesting
point is that for all the arbitrary complex conjugate numbers
a + ib and a − ib (here0 ≤ a, b, a + b ≤ 1), f (a, b) and
f (a, −b) are in the triangle ABO and share the intuitionistic
fuzzy negation. Hence, Atanassov showed an open prob-
lem about interpretations of intuitionistic fuzzy negations
through this analysis.

Note that
...
q = ([[

...
r µ, θµ]], [[

...
r ν, θν]]) ∈ Q ∗ if and only if...

r µ,
...
r ν ∈ [0, 1], θµ ∈

[
0, π

2

]
, θν ∈

[
−

π
2 , 0

]
, and

...
r µ(cos θµ + sin θµ),

...
r ν(cos θν − sin θν) ∈ [0, 1] , (40)

...
r µ cos θµ −

...
r ν sin θν,

...
r ν cos θν +

...
r µ sin θµ ∈ [0, 1] . (41)

Now, a formula of the argument and modulus functions of
CIFS-Q is introduced in the following example.

Example 3. Let the functions
...
r µ, θµ,

...
r ν, θν be defined as follows:

...
r µ (x) =

⎧⎪⎨⎪⎩
1 if x < a( b−x
b−a

)2
if a ≤ x ≤ b

0 if x > b

,

θµ (x) =

⎧⎪⎨⎪⎩
π
2 if x < a
π
2 . b−x

b−a if a ≤ x ≤ b
0 if x > b

,

...
r ν (x) =

⎧⎪⎨⎪⎩
0 if x < a( x−a
b−a

)2 if a ≤ x ≤ b
1 if x > b

,

θν (x) =

⎧⎪⎨⎪⎩
0 if x < a
π
2 . a−x

b−a if a ≤ x ≤ b
−

π
2 if x > b

,

Then the quaternion function
...
q = ([[

...
r µ, θµ]], [[

...
r ν, θν]]) ∈ Q ∗.

Proof. Clearly,
...
r µ,

...
r ν ∈ [0, 1] , θµ ∈

[
0, π

2

]
, θν ∈

[
−

π
2 , 0

]
.

We have to prove that the functions
...
r µ, θµ,

...
r ν, θν satisfy the

conditions (40) and (41). Indeed, these conditions are apparent
in the cases x < a and x > b. Now, let a ≤ x ≤ b, then

x = λa + (1 − λ) b, λ ∈ [0, 1] .

Hence,
...
r µ =

( b−x
b−a

)2
= λ2, θµ =

π
2 λ,

...
r ν = (1 − λ)2, and

−θν =
π
2 (1 − λ). We have

...
r µ cos θµ +

...
r µ sin θµ =

√
2λ2 cos

(π

2
λ −

π

4

)
.

Consider the function f (λ) = 1−
√
2λ2 cos

(
π
2 λ −

π
4

)
on [0, 1],

we gain

f ′ (λ) = 2
√
2λ cos

(π

2
λ −

π

4

) [π

4
λ tan

(π

2
λ −

π

4

)
− 1

]
.
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Since, λ ∈ [0, 1], we have cos
(

π
2 λ −

π
4

)
> 0, tan

(
π
2 λ −

π
4

)
∈

[−1, 1], and

π

4
λ tan

(π

2
λ −

π

4

)
− 1 ∈

[
−1,

π

4
− 1

]
, ∀λ ∈

[
1
2
, 1

]
,

π

4
λ tan

(π

2
λ −

π

4

)
− 1 < 0, ∀λ ∈

[
0,

1
2

]
.

Thus, f ′ (λ) ≤ 0, ∀λ ∈ [0, 1], hence f is a monotonically
decreasing function on [0, 1] and f (λ) ≥ f (1) = 0. Therefore,
0 ≤

...
r µ cos θµ +

...
r µ sin θµ ≤ 1.

Similarly, we obtain that
...
r ν cos θν −

...
r ν sin θν =

√
2 (1 − λ)2

cos
(

π
2 (1 − λ) −

π
4

)
≤ 1.

Now, since λ ∈ [0, 1] then λ2
≤ λ and (1 − λ)2 ≤ 1− λ. Thus,

0 ≤
...
r µ +

...
r ν ≤ 1, and

...
r µ cos θµ −

...
r ν sin θν ≤

...
r µ +

...
r ν ≤ 1.

Thus, we obtain that
...
q = ([[

...
r µ, θµ]], [[

...
r ν, θν]]) ∈ Q ∗. □

Now, based on the polar form of quaternion numbers, the
other order relation on Q ∗, denoted as ≤∗, is proposed as follows.

Definition 24. Let
...
q1 = ([[

...
r µ1, θµ1]], [[

...
r ν1, θν1]]),

...
q2 =

([[
...
r µ2, θµ2]], [[

...
r ν2, θν2]]) be two quaternion functions, and

...
q1,

...
q2

∈ Q ∗. The order relation ≤∗ on Q ∗ is defined by

...
q1 ≤∗

...
q2 ⇔

{
[[
...
r µ1, θµ1]] ≤∗ [[

...
r µ2, θµ2]]

[[
...
r ν1, θν1]] ≥∗ [[

...
r ν2, θν2]]

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣θµ1 > θµ2

θµ1 = θµ2 ≤
π
4 ,

...
r µ1 ≤

...
r µ2

θµ1 = θµ2 > π
4 ,

...
r µ1 ≥

...
r µ2⎡⎣θν1 > θν2

θν1 = θν2 ≥ −
π
4 ,

...
r ν1 ≤

...
r ν2

θν1 = θν2 < −
π
4 ,

...
r ν1 ≥

...
r ν2

, (42)

...
q1 =∗

...
q2 ⇔

{
[[
...
r µ1, θµ1]] =∗ [[

...
r µ2, θµ2]]

[[
...
r ν1, θν1]] =∗ [[

...
r ν2, θν2]]

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
θµ1 = θµ2 =

π
4

θµ1 = θµ2,
...
r µ1 =

...
r µ2[

θν1 = θν2 = −
π
4

θν1 = θν2,
...
r ν1 =

...
r ν2

. (43)

Note that 1Q ∗ = (1, 0, 0, 1) = ([[1, 0]], [[1, − π
2 ]]) and 0Q ∗ =

(0, 1, 1, 0) = ([[1, π
2 ]], [[1, 0]]) are still the units of Q ∗ within the

order ≤∗.

Remark 5. In Fig. 4, the red and blue arrows show the direction
of increase of the elements on the segments which belong to two
sides of the OM and ON .

Proposition 10. Let
...
q1,

...
q2 ∈ Q ∗ and

...
q1 ≤

...
q2, defined by (16),

then
...
q1 ≤∗

...
q2, defined by (42).

Proof. Let
...
q1,

...
q2 ∈ Q ∗ and

...
q1 ≤

...
q2, where

...
q1 =

...
α1 + i

...
β1 + j

...
ω1 + k

...
γ 1 = ([[

...
r µ1, θµ1]], [[

...
r ν1, θν1]]),

...
q2 =

...
α2 + i

...
β2 + j

...
ω2 + k

...
γ 2 = ([[

...
r µ2, θµ2]], [[

...
r ν2, θν2]]).

We obtain that
...
α1 ≤

...
α2,

...
β1 ≥

...
β2,

...
ω1 ≥

...
ω2, and

...
γ 1 ≤

...
γ 2. We

consider three cases as follows:
Case 1: 0 <

...
α1 ≤

...
α2. We have [[

...
r µ1, θµ1]] ≤∗ [[

...
r µ2, θµ2]].

Indeed,

θµ1 = arctan

...
β1...
α1

≥ θµ2 = arctan

...
β2...
α2

,

Fig. 4. The order relation ≤∗ on Q ∗ .

θµ1 = θµ2 ⇔
...
α1 =

...
α2,

...
β1 =

...
β2 ⇒

...
r µ1 =

...
r µ2.

Case 2: 0 =
...
α1 <

...
α2. We also have [[

...
r µ1, θµ1]] ≤∗

[[
...
r µ2, θµ2]]. Indeed,

• If
...
β1 > 0, then θµ1 =

π
2 > θµ2 = arctan

...
β 2...
α 2

.
• If

...
β1 = 0, then θµ1 = 0. Since

...
β1 ≥

...
β2, hence

...
β2 = 0,θµ1 =

θµ2 = 0 < π
4 , and

...
r µ1 <

...
r µ2.

Case 3: 0 =
...
α1 =

...
α2. We have

• If
...
β1 ≥

...
β2 > 0, then θµ1 = θµ2 =

π
2 > π

4 and
...
r µ1 ≥

...
r µ2.

• If
...
β1 =

...
β2 = 0, then θµ1 = θµ2 = 0 and

...
r µ1 =

...
r µ2 = 0.

• If
...
β1 >

...
β2 = 0, then θµ1 =

π
2 > θµ2 = 0.

Therefore, we always have [[
...
r µ1, θµ1]] ≤∗ [[

...
r µ2, θµ2]]. Similarly,

we obtain that

[[
...
r ν1, θν1]] ≥∗ [[

...
r ν2, θν2]].

Thus,
...
q1 ≤∗

...
q2 (see. (42)). □

Now, we introduce the new distance measure based on the
order relation ≤∗ on Q ∗.

Definition 25. Let
...
q1 = ([[

...
r µ1, θµ1]], [[

...
r ν1, θν1]]),

...
q2 =

([[
...
r µ2, θµ2]], [[

...
r ν2, θν2]]) be two quaternion functions, and

...
q1,

...
q2

∈ Q ∗. The θ-distance measure on Q ∗ is:

dθ (
...
q1,

...
q2) =

1
2
(d1θ (

...
µ1,

...
µ2) + d2θ (

...
ν1,

...
ν2)), (44)

where

d1θ (
...
µ1,

...
µ2)

=

⎧⎪⎨⎪⎩
1 − cos

(
1
2

⏐⏐θµ1 − θµ2
⏐⏐ +

π

4

)
if θµ1 ̸= θµ2⏐⏐...r µ1 −

...
r µ2

⏐⏐ (1 − cos
⏐⏐⏐θµ −

π

4

⏐⏐⏐) if θµ1 = θµ2 = θµ

, (45)
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d2θ (
...
ν1,

...
ν2)

=

⎧⎪⎨⎪⎩
1 − cos

(
1
2

|θν1 − θν2| +
π

4

)
if θν1 ̸= θν2

|
...
r ν1 −

...
r ν2|

(
1 − cos

⏐⏐⏐θν +
π

4

⏐⏐⏐) if θν1 = θν2 = θν

. (46)

Proposition 11. The θ-distance measure satisfies the following
properties. For all

...
q i(i=1,2,3) = ([[

...
r µi, θµi]], [[

...
r νi, θνi]]) ∈ Q ∗,

(1) dθ (
...
q1,

...
q2) ∈ [0, 1].

(2) dθ (
...
q1,

...
q2) = 0 ⇔

...
q1 =∗

...
q2, dθ (1Q ∗ , 0Q ∗ ) = 1.

(3) dθ (
...
q1,

...
q2) = dθ (

...
q2,

...
q1).

(4) max
(
dθ (

...
q1,

...
q2), dθ (

...
q2,

...
q3)

)
≤ dθ (

...
q1,

...
q3), if

...
q1 ≤∗

...
q2 ≤∗...

q3,

Proof.

(1) Evidently, d1θ (
...
µ1,

...
µ2), d2θ (

...
ν1,

...
ν2) ∈ [0, 1], hence dθ (

...
q1,...

q2) ∈ [0, 1].
(2) We have

d1θ (
...
µ1,

...
µ2) = d2θ (

...
ν1,

...
ν2) = 0 ⇔

⎧⎪⎪⎨⎪⎪⎩
[
θµ1 = θµ2 =

π
4

θµ1 = θµ2,
...
r µ1 =

...
r µ2[

θν1 = θν2 = −
π
4

θν1 = θν2,
...
r ν1 =

...
r ν2

⇔
...
q1 =∗

...
q2.

We also have

dθ (1Q ∗ , 0Q ∗ ) = dθ (([[1, 0]], [[1, −
π

2
]]), ([[1,

π

2
]], [[1, 0]]))

=
1
2
(d1θ ([[1, 0]], [[1,

π

2
]]) + d2θ ([[1, −

π

2
]], [[1, 0]]))

= 1 − cos(
1
2
.
π

2
+

π

4
) = 1.

(3) Evidently, dθ has commutative property.
(4) Let

...
q1 ≤∗

...
q2 ≤∗

...
q3, then θµ1 ≥ θµ2 ≥ θµ3 and θν1 ≥ θν2 ≥

θν3. Now, we prove that max
(
d1θ (

...
µ1,

...
µ2), d1θ (

...
µ2,

...
µ3)

)
≤

d1θ (
...
µ1,

...
µ3). Indeed, there are four cases as follows:

• Case 1: θµ1 > θµ2 > θµ3. We have θµ1 − θµ2 <

θµ1 − θµ3

⇒
π

4
<

1
2
(θµ1 − θµ2) +

π

4
<

1
2
(θµ1 − θµ3) +

π

4
≤

π

2

⇒ cos(
1
2
(θµ1 − θµ2) +

π

4
) > cos(

1
2
(θµ1 − θµ3) +

π

4
)

⇒ d1θ (
...
µ1,

...
µ2) = 1 − cos(

1
2
(θµ1 − θµ2) +

π

4
)

< d1θ (
...
µ1,

...
µ3) = 1 − cos(

1
2
(θµ1 − θµ3) +

π

4
).

Similarly, d1θ (
...
µ2,

...
µ3) < d1θ (

...
µ1,

...
µ3).

• Case 2: θµ1 > θµ2 = θµ3. We have θµ1 − θµ2 =

θµ1 − θµ3, hence

d1θ (
...
µ1,

...
µ2) = d1θ (

...
µ1,

...
µ3) = 1− cos(

1
2
(θµ1 − θµ3)+

π

4
),

and d1θ (
...
µ2,

...
µ3) =

⏐⏐...r µ2 −
...
r µ3

⏐⏐ (1 − cos
⏐⏐θµ3 −

π
4

⏐⏐) ≤

1 − cos
⏐⏐θµ3 −

π
4

⏐⏐. Since ⏐⏐θµ3 −
π
4

⏐⏐ ∈
[
0, π

4

]
, 1

2 (θµ1 −

θµ3) +
π
4 ∈

(
π
4 , π

2

]
, hence

cos
⏐⏐⏐θµ3 −

π

4

⏐⏐⏐ > cos(
1
2
(θµ1 − θµ3) +

π

4
)

⇒ d1θ (
...
µ2,

...
µ3) < d1θ (

...
µ1,

...
µ3).

• Case 3: θµ1 = θµ2 > θµ3. Similar to Case 2.

Table 1
m records of a dataset encoded in the Cartesian form of quaternion numbers.

S1 . . . Sl . . . Sn Class Y

p1 (
...
α11,

...
β11,

...
ω11,

...
γ 11) . . . . . . . . . (

...
α1n,

...
β1n,

...
ω1n,

...
γ 1n) y1

. . . . . . . . . . . . . . . . . . . . .
pm (

...
αm1,

...
βm1,

...
ωm1,

...
γm1) . . . . . . . . . (

...
αmn,

...
βmn,

...
ωmn,

...
γmn) ym

• Case 4: θµ1 = θµ2 = θµ3. Evidently, max
(
d1θ (

...
µ1,

...
µ2),

d1θ (
...
µ2,

...
µ3)

)
≤ d1θ (

...
µ1,

...
µ3).since[...

r µ1 ≤
...
r µ2 ≤

...
r µ3

...
r µ1 ≥

...
r µ2 ≥

...
r µ3

.

Similarly, we have max (d2θ (
...
ν1,

...
ν2), d2θ (

...
ν2,

...
ν3)) ≤

d2θ (
...
ν1,

...
ν3). □

6. Decision making model based on Quaternion Distance Mea-
sures

In this section, a new decision-making model using Quater-
nion Distance Measure, denoted by QDM, is shown. This model
has evolved from the model used in [7], where the fuzzification
functions and the H-max measure are replaced by the quater-
nionification functions and the quaternion distance measures,
respectively, which are studied in Section 5. The logic operations
proposed in Section 4 could be used to aggregate information
when there are many different information flows.

A new decision-making model in medical diagnosis problem
is illustrated by the diagram in Fig. 5. The QDM model contains
three main parts:

i. Encoding the attributes of patients by CIFS-Q
ii. Formulating and encoding the attributes of the disease by

CIFS-Q
iii. Calculating the relations between the patients and the dis-

ease based on the distance measure and suggesting likely
diagnoses

The QDM model is performed in two different forms: C-QDM
and P-QDM. They are described in detail as follows.

• C-QDM Method:

1. Quaternionification: Consider a medical dataset with m
records of m corresponding patients pi (i = 1, . . . , m) and
with n attributes of a disease D.
Table 1 shows m records of the dataset encoded in the
polar form of quaternion numbers. This step means deter-
mining and encoding relations between patients and at-
tributes via quaternion numbers. Here, we obtain the rela-
tions between patient pi and attributes Sl,(

...
αi1,

...
β i1,

...
ωi1,

...
γ i1).

To elaborate, on each attribute Sl(l = 1, . . . , n), all the
values of pil (attributes characteristic for the patients pi) are
quaternionized (i.e., encoded) in the Cartesian form by the
functions of real membership, imaginary membership, real
non-membership, and imaginary non-membership, respec-
tively, calculated as follows:

...
αl (x) =

⎧⎪⎨⎪⎩
0 if x < al
x−al
bl−al

if al ≤ x ≤ bl
1 if x > bl

, (47)

...
β l (x) =

⎧⎪⎨⎪⎩
1 if x < a′

l
b′
l−x

b′
l−a′

l
if a′

l ≤ x ≤ b′

l

0 if x > b′

l

, (48)
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Fig. 5. A diagram of the QDM model.

...
ωl (x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x < a′

l(
b′
l−x

b′
l−a′

l

)2
if a′

l ≤ x ≤ b′

l

0 if x > b′

l

, (49)

and

...
γ l (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < al(

x−al
bl−al

)2
if al ≤ x ≤ bl

1 if x > bl

, (50)

where al ≥ a′

l, bl ≥ b′

l . Here, the quaternionification
functions are built based on the traditional fuzzification
function, named L-function [46], and conditions (8)–(12) of
Definition 6. We obtain quaternions in the Cartesian form
of the values pil as,(...
αl(pil),

...
β l(pil),

...
ωl(pil),

...
γ l(pil)

)
=

(...
αil,

...
β il,

...
ωil,

...
γ il

)
. (51)

The final column of Table 1 presents the real values Y =

{yi}i=1,..., m, which are the diagnosis classification results of
patients.

2. Training Process : Assuming that the training dataset is a
set of t records (see Table 1), and the testing includes
(m − t) remaining records (by splitting the original dataset
by the 4-Fold cross-validation). Inspired by using the Pear-
son correlation coefficient function between Sl and Y (see
Table 1) to build a medical knowledge base in linguistic
approach by Phong et al. [47], here we obtain the attributes
characteristic for the disease D:(...
αld,

...
β ld,

...
ωld,

...
γ ld

)
, l = 1, . . . , n, (52)

where
...
αld =

|M[
...
αilY ] − M[

...
αil]M[Y ]|√

M[
...
α2
il] − M[

...
αil]

2
√
M[Y 2] − M[Y ]2

, (53)

...
β ld = min

⎧⎨⎩1 −
...
αld,

⏐⏐⏐M[
...
β ilY ] − M[

...
β il]E[Y ]

⏐⏐⏐√
M[

...
β

2
il] − M[

...
β il]

2
√
M[Y 2] − M[Y ]2

⎫⎬⎭ ,

(54)

...
ωld = min

⎧⎨⎩1 −
...
αld,

⏐⏐M[
...
ωilY ] − M[

...
ωil]M[Y ]

⏐⏐√
M[

...
ω

2
il] − M[

...
ωil]

2
√
M[Y 2] − M[Y ]2

⎫⎬⎭ ,

(55)

and

...
γ ld = min

⎧⎨⎩1 −
...
β ld, 1 −

...
ωld,

⏐⏐M[
...
γ ilY ] − M[

...
γ il]M[Y ]

⏐⏐√
M[

...
γ

2
il] − M[

...
γ il]

2
√
M[Y 2] − M[Y ]2

⎫⎬⎭ ,

(56)

where M
[
X = {xi}i=1,..., t

]
=

1
t

∑t
i=1 xi, i = 1, . . . , t .

3. Testing Process : The relation between patient pi (i =

(t + 1), . . . , m) and the disease D is calculated via the
measure in formula (35):

di = dE (pi,D)

=
1
4n

n∑
l=1

√
(
...
αil −

...
αld)2 + (

...
β il −

...
β ld)2 + (

...
ωil −

...
ωld)2 + (

...
γ il −

...
γ ld)2.

(57)

Hence, if the set of disease level labels is {1, 2}, then the
diagnostic of the patients is defined as follows:

yi =

{
1 if di ≥ e
2 if di < e , ∀i = (t + 1), . . . , m, (58)

where e ∈ [0, 1] is the optimal trained threshold from the
testing process for t records used for training process.
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Remark 6. In order to simplify the proposed algorithm, the sets
of parameters in the Quaternionification step are chosen by a
medical expert and the parameter e in (58) is optimized on [0, 1].
Specifically, the optimization problem here is stated as follows:
f (e) =

1
t

∑t
i=1

⏐⏐yi (e) − y∗

i

⏐⏐ → min, 0 ≤ e ≤ 1, where

yi (e) =

{
1 if di ≥ e
2 if di < e

and y∗

i ∈ {1; 2} is the observed diagnostic result from the
dataset. We consider a discrete objective function f (e) with e
being rounded to k decimals for a given fixed number k. Hence,
this problem takes into the form of a discrete optimization prob-
lem with e ∈

{
0, 1

10k
, 2

10k
, . . . , 10k−1

10k
, 1

}
. A brute-force approach

would evaluate the functions for each of the 10k values of e to
obtain the optimal solution.

Example 4. We consider four records referenced from the data
used in [7] (see Table 2).

In the column Class of Viral Fever of Table 2, Label 1 means
that the patient suffers from Viral Fever and Label 2 means that
the patient does not suffer from Viral Fever. The final row shows
the relations of the attributes and the Viral Fever disease.

The degree of the relation between each patient pi (i = 1,
. . . , 4) and the Viral Fever disease is calculated by the Euclidean
quaternion distance measure given by formula (57). Hence, we
have:

dE(p1,Viral fever)

=
1
20

(
√
0.27 +

√
0.5 +

√
0.07 +

√
0.17 +

√
0.06) = 0.107.

Similarly, we obtain dE(p2,Viral fever) = 0.159, dE(p3,
Viral fever) = 0.124, and dE(p4,Viral fever) = 0.088.

Here, the class of Viral Fever of the patients is defined as
follows:

yi =

{
1 if dE (pi,D) ≥ 0.1
2 if dE (pi,D) < 0.1 , ∀i = 1, . . . , 4.

Thus, we conclude: the patients p4 suffer from Viral Fever,
while the patients p1, p2, and p3 do not. This diagnostic deter-
mination is the same as the result of Class of Viral Fever in
Table 2.

• P-QDM Method

P-QDM is built by replacing the Cartesian representation and
the Euclidean quaternion distance measure of the method C-
QDM with the polar representation and the θ-distance measure.
Specifically, the replacement is as follows.

(1) In the step Quaternionification: Similar to the C-QDM, the
quaternionification functions in the polar form are also
based on the traditional fuzzification functions, such as the
triangular, trapezoidal, Gaussian functions, L-function, and
R-function [46]. Specifically, the relations between patient
pi and attributes Sl are represented in the polar form by the
modulus and argument functions:(

[[
...
r µil, θµil]], [[

...
r νil, θνil]]

)
=

(
[[
...
r µl(pil), θµl(pil)]], [[

...
r νl(pil), θνl(pil)]]

)
,

(59)

where

...
r µl (x) =

⎧⎪⎨⎪⎩
1 if x < al(

bl−x
bl−al

)2
if al ≤ x ≤ bl

0 if x > bl

, (60)

θµl (x) =

⎧⎨⎩
π
2 if x < al
π
2 .

bl−x
bl−al

if al ≤ x ≤ bl
0 if x > bl

, (61)

...
r νl (x) =

⎧⎪⎨⎪⎩
0 if x < al(

x−al
bl−al

)2
if al ≤ x ≤ bl

1 if x > bl

, (62)

and

θνl (x) =

⎧⎨⎩
0 if x < al
π
2 .

al−x
bl−al

if al ≤ x ≤ bl
−

π
2 if x > bl

, (63)

where i = 1, . . . , m; l = 1, . . . , n.
(2) In the step Training Process: By the correlation relationship

between Sl and Y (see Table 1), the attributes characteristic
for the disease D are represented by(
[[
...
r µld, θµld]], [[

...
r νld, θνld]]

)
, l = 1, . . . , n, (64)

where

θµld =

⏐⏐M[θµilY ] − M[θµil]M[Y ]
⏐⏐√

M[θ2
µil] − M[θµil]

2
√
M[Y 2] − M[Y ]2

, (65)

...
r µld = min

⎧⎨⎩ 1
√
2 cos( π

4 − θµld)
,

⏐⏐M[r̈µilY ] − M[r̈µil]M[Y ]
⏐⏐√

M[r̈2µil] − M[r̈µil]
2
√
M[Y 2] − M[Y ]2

⎫⎬⎭ ,

(66)

θνld =

⏐⏐⏐⏐⏐⏐ M[θνilY ] − M[θνil]M[Y ]√
M[θ2

νil] − M[θνil]
2
√
M[Y 2] − M[Y ]2

⏐⏐⏐⏐⏐⏐ , (67)

and

...
r νld = min

⎧⎨⎩1 −
...
r µld,

1
√
2 cos( π

4 + θνld)
,

|M[r̈νilY ] − M[r̈νil]M[Y ]|√
M[r̈2νil] − M[r̈νil]2

√
M[Y 2] − M[Y ]2

⎫⎬⎭,

(68)

where M
[
X = {xi}i=1,..., t

]
=

1
t

∑t
i=1 xi, i = 1, . . . , t .

(3) In the step Testing Process: we use the measure defined by
(44)–(46):

dθ (pi,D) =
1
2n

n∑
l=1

(
d1θ (

...
µil,

...
µld) + d2θ (

...
ν il,

...
ν ld)

)
, (69)

where

d1θ (
...
µil,

...
µld)

=

⎧⎪⎨⎪⎩
1 − cos

(
1
2

⏐⏐θµil − θµld
⏐⏐ +

π

4

)
if θµil ̸= θµld⏐⏐...r µil −

...
r µld

⏐⏐ (1 − cos
⏐⏐⏐θµ −

π

4

⏐⏐⏐) if θµil = θµld = θµ

,

(70)

d2θ (
...
ν il,

...
ν ld)

=

⎧⎪⎨⎪⎩
1 − cos

(
1
2

|θνil − θνld| +
π

4

)
if θνil ̸= θνld

|
...
r νil −

...
r νld|

(
1 − cos

⏐⏐⏐θν +
π

4

⏐⏐⏐) if θνil = θνld = θν

.

(71)



12 R.T. Ngan, L.H. Son, M. Ali et al. / Applied Soft Computing Journal 87 (2020) 105961

Table 2
Records on Viral Fever disease.
No. Temperature Headache Stomach

pain
Cough Chest pain Class of

Viral Fever

1 (0.8,0,0.1,0.6) (0.6,0,0.1,0.5) (0.2,0.7,0.8,0.1) (0.6,0,0.1,0.5) (0.1,0.7,0.6,0.1) 1
2 (0,0.7,0.8,0.1) (0.4,0.2,0.4,0.3) (0.6,0,0.1,0.5) (0.1,0.5,0.7,0.2) (0.1,0.7,0.8,0.2) 1
3 (0.8,0,0.1,0.6) (0.8,0,0.1,0.6) (0,0.4,0.6,0.2) (0.2,0.6,0.7,0.1) (0,0.4,0.5,0.1) 1
4 (0.6,0,0.1,0.5) (0.5,0.3,0.4,0.4) (0.3,0.5,0.4,0.1) (0.7,0.1,0.2,0.6) (0.3,0.5,0.4,0.1) 2

Viral fever (0.4,0.1,0,0.3) (0.3,0.4,0.5,0.2) (0.1,0.5,0.7,0.2) (0.4,0.3,0.3,0.5) (0.1,0.5,0.7,0.2)

Table 3
Description of the benchmark datasets.
Datasets Number

of classes
Number of
attributes

Number of
elements

ILPD 2 8 583
Diabetes 2 4 389
HSD 2 3 306
E. coli 2 5 336
BCWD 2 9 683

7. Experiments

7.1. Experimental environments

We compare the proposed methods (C-QDM, P-QDM) to the
methods of Wang & Xin [36] (WXM), Szmidt & Kacprzyk [35]
(SM1-1, SM1-2, SM1-3, SM1-4), Szmidt & Kacprzyk [23] (SM2),
Vlachos & Sergiadis [20] (VSM), Zhang & Jiang [37] (ZJM), Wei
et al. [38] & Hung [39] (WM), Maheshwari & Srivastava [41]
(SAM), Jujun et al. [40] (JM), and Ngan et al. [7] (H-max). The com-
parison is done using MATLAB (2015a) and the R programming
language. The algorithms contain three main parts:

i. Determining and encoding relations between patients and
symptoms.

ii. Formulating and encoding relations between symptoms
and diagnoses; thus constructing a medical knowledge
base.

iii. Determining the diagnoses based on calculating the dis-
tance between the above two relations.

The contributions of the proposed algorithms (C-QDM, P-
QDM) are as follows. They use the quaternionification process
instead of the fuzzification process. Thus, they add one more
dimension of fuzziness to complex intuitionistic fuzzy sets. C-
QDM and P-QDM use new distance measures, the Euclidean
quaternion distance measure and the θ-distance measure, which
replace the previous distance measures.

For the present comparative analysis, we have utilized five
benchmark datasets (see Table 3): Indian Liver Patient Dataset
(ILPD), Haberman’s Survival Dataset (HSD), E. coli Dataset (E. coli),
and Breast Cancer Wisconsin (Original) Dataset (BCWD) from
the University of California (UCI) Machine Learning Repository
(https://archive.ics.uci.edu/ml/index.php); the Diabetes dataset
from the Department of Biostatistics, at Vanderbilt University
(http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets). Note that
some of the distance measure based decision-making methods do
not work with some datasets. The reason is that distance measure
functions may be undetermined at some values of the datasets.

7.2. Experimental results

We obtain the experimental results of fourteen methods as
in Tables 4–5. Table 4 presents the average MAE values of C-
QDM and P-QDM against the related methods denoted by SM1,
SM2, WXM, VSM, ZJM, WM, JM, SAM, and H-max on the ILPD,

Table 4
Mean absolute error (MAE).

ILPD Diabetes HSD E. coli BCWD

SM1-1 0.3195 0.1581 0.2515 0.2303 0.2196
SM1-2 0.3158 0.1612 0.2513 0.2319 0.6494
SM1-3 0.3316 0.1593 0.263 0.2293 0.325
SM1-4 0.2918 0.1609 0.2532 0.2332 0.6497
SM2 0.2902 0.1597 0.2639 0.2317 0.5257
WXM 0.3227 0.1638 0.2513 0.2422 0.2957
VSM 0.2893 0.1634 0.2515 0.2301 0.6493
ZJM 0.3096 0.1579 0.2518 0.2327 0.1226
WM 0.2915 n.a. 0.2635 n.a. n.a.
JM 0.289 n.a. 0.26 n.a. n.a.
SAM 0.3031 n.a. 0.2822 n.a. n.a.
H-max 0.2848 0.1497 0.2476 0.2258 0.1398
C-QDM 0.2836 0.0763 0.2411 0.2162 0.0248
P-QDM 0.2831 0.1125 0.2421 0.2249 0.0316

Diabetes, HSD, E. coli, and BCWD datasets. It can be observed that
the MAE values of C-QDM and P-QDM are less (better) than those
of the other algorithms on the five considered datasets. On the
ILPD dataset, 0.2836 and 0.2831 are less than all values of 0.3195,
0.3158, 0.3316, 0.2918, 0.2902, 0.3227, 0.2893, 0.3096, 0.2915,
0.289, 0.3031, and 0.2848 respectively.

Table 5 presents the computational time in seconds (sec) of C-
QDM and P-QDM against the related algorithms on ILPD, Diabetes,
HSD, E. coli, and BCWD. For example in Table 5, the computational
times of the C-QDM algorithm is the best (smallest) value, which
is 0.155 s (sec), on the dataset of ILPD. In general, the computa-
tional time of the C-QDM and P-QDM are not much different from
those of the other methods. In some cases, the computation time
of the proposed methods is longer, but that is not a determining
factor in this type of problems. We note that the computation
time of our algorithms is very close to the computation time of
the other methods. However, the errors of the C-QDM and P-QDM
are significantly lower than those of the other algorithms on some
datasets and this is a determining factor that would justify the
minor additional computational time. For example, C-QDM runs
in 0.1724 s on the dataset of BCWD while the H-max and WXM
algorithms run in 0.157 and 0.1636 s, respectively. On the other
hand, the MAE value of C-QDM on the dataset of BCWD, which
is 0.0248, is significantly better than those of H-max and WXM,
which are 0.1398 and 0.2957, respectively.

In Tables 4 and 5, the methods WM, JM, and SAM are labeled as
‘‘n.a’’. on the Diabetes dataset. That is, they do not produce output
values due to the measures used in the algorithms WM, JM,
and SAM are not determined by values of the Diabetes dataset.
Therefore, comparing it with the proposed method and others,
WM, JM and SAM are deficient as they cannot work on such
datasets.

The obtained MAE values of all of the methods are depicted to
provide visualization of the above findings. Fig. 6 shows the val-
ues of MAE of the 14 methods on ILPD. In the figure, the heights
of the vertical bars show the MAE values of the corresponding
algorithms. The heights of the red and green bars are lower than
those of 12 remaining bars. Hence, the MAE values of C-QDM and
P-QDM are better than those of other methods on ILPD

https://archive.ics.uci.edu/ml/index.php
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
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Fig. 6. The MAE results on ILPD.

Fig. 7. The MAE results on Diabetes.

Fig. 8. The MAE results on HSD.

Fig. 9. The MAE results on E. coli.

Table 5
Total time (Sec.).

ILPD Diabetes HSD E. coli BCWD

SM1-1 0.6177 0.3237 0.027 0.13 0.122
SM1-2 0.4427 0.2737 0.036 0.14 0.162
SM1-3 0.4827 0.3062 0.077 0.14 0.177
SM1-4 0.4602 0.3012 0.087 0.145 0.197
SM2 0.6527 0.3087 0.092 0.17 0.1945
WXM 0.4427 0.3562 0.082 0.145 0.1636
VSM 0.5552 0.3637 0.147 0.24 0.412
ZJM 0.5602 0.3737 0.177 0.265 0.372
WM 0.8452 n.a. 0.202 n.a. n.a.
JM 1.2077 n.a. 0.217 n.a. n.a.
SAM 0.8102 n.a. 0.107 n.a. n.a.
H-max 0.51 0.3062 0.034 0.1 0.157
C-QDM 0.155 0.1114 0.0326 0.151 0.1724
P-QDM 0.469 0.2614 0.1505 0.1939 0.246

Fig. 10. The MAE results on BCWD.

The bars in Figs. 7–10 depict the average MAE values in sim-
ilarity to Fig. 6. It can be observed that the MAE of C-QDM
corresponding to the height of the red bar is the best on Di-
abetes, HSD, E. coli, and BCWD. The accuracy of C-QDM and
P-QDM on Diabetes are high, which are about 93% and 89% (see
Fig. 7). Specifically, C-QDM and P-QDM are effective on the BCWD
dataset, where they achieve over 95% accuracy (see Fig. 10), while
the H-max method proposed in 2018 achieves about 86%.

8. Conclusion

A new concept of IFSs based on quaternion numbers was
introduced in this paper. In this way, we maintain four degrees
of freedom, which are the degrees of real membership, imag-
inary membership, real non-membership, and imaginary non-
membership. Several operations have been defined and their
properties studied. Further, a new intuitionistic fuzzy order re-
lation and distance measures based on quaternion numbers were
proposed. These theoretical methods provide a generalized way
of analyzing vague information.

The applicability of the proposed approach is certified by
presenting a new Quaternion Distance Measure decision-making
model, referred to as QDM. It has been noted that fuzzification
in decision-making approach using IFSs is an important process.
In order to obtain better accuracy in decision-making, we have
proposed expanding the fuzzification process by quaternionifi-
cation. The QDM model was experimentally tested on medical
diagnosis benchmark data and compared with twelve related
methods. The results obtained in the tests are better than for the
above-listed methods. The computational time of the QDM is not
much different from the others.

Future research stemming from the present work can explore
other quaternionification functions and improve the parameters
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of quaternionification in decision making. Further, expanding the
uses of quaternion number representation to represent com-
plex intuitionistic fuzzy set theory and logic can be considered.
Another future research direction is further study of complex
intuitionistic fuzzy linguistic logic in modeling multiple criteria
decision making. Additionally, a combination of linear program-
ming methods and complex intuitionistic fuzzy linguistic sets
will be investigated. The foregoing representation of IFSs in fuzzy
neural networks will be further studied.
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