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ABSTRACT 
 
Content caching is vital for enhancing web server efficiency and reducing network congestion, 

particularly in platforms predicting user actions. Despite many studies conducted toimprove 

cache replacement strategies, there remains space for improvement. This paper introduces 

STRCacheML, a Machine Learning (ML) assisted Content Caching Policy. STRCacheML 

leverages available attributes within a platform to make intelligent cache replacement decisions 

offline. We have tested various Machine Learning and Deep Learning algorithms to adapt the 

one with the highest accuracy; we have integrated that algorithm into our cache replacement 

policy. This selected ML algorithm was employed to estimate the likelihood of cache objects 
being requested again, an essential factor in cache eviction scenarios. The IMDb dataset, 

constituting numerous videos with corresponding attributes, was utilized to conduct our 

experiment. The experimental section highlights our model’s efficacy, presenting comparative 

results compared to the established approaches based on raw cache hits and cache hit rates. 
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1. INTRODUCTION 
 

The rapidly evolving computing landscape has led to a significant efficiency mismatch between 

processors and input/output (I/O) peripherals like hard drives, printers, and keyboards. This gap 
has induced demand for advanced I/O architectures and efficient storage solutions to enhance 

communication between CPUs and storage devices. This demand is high for a wide range of 

applications, including real-time applications, gaming, high-performance computing, web 

services, and, notably, streaming services. These services require a highly efficient cache 
management mechanism to prevent performance bottlenecks due to frequent read-and-write calls, 

an operational characteristic that is quite prevalent in streaming services. 

 
Video streaming services operate in a realm where many users frequently and concurrently access 

vast amounts of data. In such platforms, content caching serves as temporary data storage and has 

become integral. This strategy involves holding copies of content near where it is frequently 
requested, increasing data retrieval performance by reducing data access latency. Fast and 

proficient storage mechanisms, such as Random Access Memory (RAM) and cache memory, are 

essential to counteract the complexities brought about by these stringent prerequisites. RAM acts 

as a transient principal memory during software execution, but the data it holds gets lost once the 
device is powered off. On the other hand, cache memory, being a small and high-speed memory 

segment, stores data that is accessed often, reducing the frequent need to access the hard disk. 

https://airccse.org/csit/V14N04.html
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Efficient cache memory management is paramount due to cache memory’s limited size and the 
performance penalty associated with cache misses. A cache hit is when the requested data is 

available in the cache memory, assisting fast data retrieval. In contrast, a cache miss arises when 

the system needs to identify and reallocate data by replacing existing stored information, a 

comparatively slower process. Various cache replacement strategies strive to uphold a high cache 
hit ratio, aiming to diminish the frequency of data replacements to the lowest possible extent. 

Therefore, thorough planning and design are necessary to ensure high-efficiency performance in 

devices equipped with cache memories. 
 

Though efficient, established cache replacement policies, such as Most-Recently-Used (MRU), 

LRU, and LFU, are not universally suitable due to their workload dependency and rigid design 
[9]. Machine Learning (ML) and Deep Learning have proven to be versatile algorithms yielding 

promising results in various domains, from in-depth biomedical data analysis [4] to financial 

forecasting [5] and even complex tasks such as satellite image classification [19]. Given their 

wide range of successful applications, ML and Deep Learning have also been employed in the 
cache replacement domain to design proficient and effective policies. By leveraging prior data, 

they can discover patterns hidden in workloads, leading to improved decision-making and 

potentially a higher cache hit ratio. The rise of powerful computing devices, such as GPUs [22] 
and Tensor Processor Units (TPUs) [11], has enabled better training and execution rates for ML 

algorithms. 

 
In this study, we present STRCacheML, an innovative, ML-driven cache replacement policy 

designed specifically to increase the performance of content caching. STRCacheML harnesses the 

power of Machine Learning to learn dynamicallyfrom access patterns,improving upon established 

replacement policies. Our approach aims to enhance the performance of content caching, 
specifically in the context of streaming services, underlining how a well-calibrated application of 

Machine Learning can optimize and transform cache management efficiency. Our contributions 

presented here are: 
• We have developed a method for feature construction that takes full advantage of the 

available parameters on the platform to construct feature vectors for Machine Learning 

models. 

• We have evaluated a variety of Machine Learning and deep learning methodologies on 
initially constructed features and have selected the most effective model for our application. 

• We propose and demonstrate STRCacheML, a new cache replacement policy. By integrating 

the selected Machine Learning model, STRCacheML makes intelligent cache eviction 
decisions, enhancing the overall performance of content caching in streaming services. 

 

While ML-based policies promise improved performance, they also introduce new concerns, 
including the computational complexity associated with the runtime of ML algorithms, the need 

for training data, and, sometimes, the lack of interpretability of their decisions. Addressing these 

challenges requires a balanced approach that optimizes cache management efficiency and 

computational costs. To this end, our work focuses on the application of computationally less 
expensive ML models such as Random Forest (RF), Decision Tree, K-Nearest Neighbors (KNN), 

Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). While advanced deep 

learning models can offer powerful predictive capabilities, they also typically require more 
computational resources and larger datasets for effective training [14], which may not be feasible 

or necessary in all application scenarios. 

 

2. RELATED WORK 
 
The evolution of cache replacement policies has spanned from standard methods like LRU, LFU, 

MRU, etc., to advanced methodologies incorporating Machine Learning, Deep Learning, and 
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Reinforcement Learning (RL) models. Our work, STRCacheML, builds upon these developments 
to introduce an ML-guided content caching policy. 

 

Established cache management strategies like LRU, MRU, and LFU form the foundation of cache 

management methodologies, primarily based on recency and frequency of data requests. There 
has been substantial exploration of these methods in literature. Simultaneously, attempts to apply 

Machine Learning techniques to augment these strategies have gained momentum. For instance, 

[3] enhanced the LRU policy using supervised ML Algorithms like SVM, naive Bayes Classifier, 
and decision tree. Their work involved training ML models to predict data reusability, effectively 

boosting the LRU policy’s performance. Popularity distribution has been a significant factor in 

cache management. Empirical-theoretical findings in web caching have shaped the understanding 
of content distribution based on popularity, essentially, the likelihood of being requested in cache 

memory [8]. This research highlights the empirical data related to the distribution probabilities of 

popularity events or demands, which are critical to effectively managing web caches. One such 

practical law, Zipf’s, initially proposed for word frequency distribution in a language, states that 
the n-th most popular item arises with a probability proportional to 1/nα, where α >1 [34]. In our 

work, STRCacheML, we leverage these empirical laws, specifically Zipf’s law, and synthesize 

datasets for training and testing our model. 
 

Deep learning techniques have been increasingly applied in cache management domains. For 

example, Zhong et al. proposed an LSTM-based model designed to predict the properties of 
objects to be stored in cache memory, which led to enhanced cache performance [33]. Following 

a similar path, [25] also proposed an LSTM model named Glider to minimize the cache miss rate. 

 

Moving beyond just predictive models, some researchers have combined various cache 
replacement policies using ML techniques. One such example is [29], which utilized ML to 

design a hybrid cache replacement method, effectively merging the advantages of both LFU and 

LRU methodologies. Furthermore, RL algorithms for cache replacement have been explored in 
recent literature. These techniques operate on the principle that an agent executes various actions 

within a particular environment to refine its behavior for a specific task. [33] employed deep RL 

to improve cache performance for web pages, creating a popularity-agnostic model that does not 

require any information about popularity distribution. Despite these advancements, limitations 
exist, including high training and execution costs, and the need for more consideration of 

temporal aspects has been identified [15]. 

 
A significant concern is that these advanced approaches are designed for general-purpose caching 

rather than specifically for content caching. They require substantial computation and need to 

guarantee effective handling of user preference or performance in content caching platforms. One 
advanced approach, Raven targets both in-memory and content caching [12]. It employs a 

Mixture Density Network to learn the patterns of objects’ next-request arrival times and uses a 

Gated-Recurrent Neural Network (GRU) to understand temporal dependencies in the data [12]. 

However, applying GRUs in the content caching platform can increase computational costs due to 
their complexity and potential for gradient bursting during loss calculations [21]. 

 

In 2021, a content caching method was proposed for video streaming in a cloud-edge cooperative 
platform [17]. This paper’s strategy includes two main steps: clustering edge servers using the k-

means algorithm and analyzing latency and caching costs to determine optimal content caching 

policies. Though innovative, this strategy is edge-cloud-oriented and may not effectively handle 
user preferences in streaming platforms like Netflix, Prime Videos, and so on, due to itsdesign 

[17].Hence, to address the concerns mentioned above, we propose STRCacheML, a smart content 

caching strategy suitable for streaming platforms that can handle users’ preferences with the help 

of a ML model(for a high-level overview of the workflow, refer to Figure 1). 
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Figure 1. Workflow Diagram of the STRCacheML Process.  

 

3. PROPOSED APPROACH 
 

We propose “STRCacheML”, an innovative content caching replacement policy guided by a 

Machine Learning (ML) algorithm. Our primary objective is to enhance content caching in 
streaming services by capitalizing on available attributes to construct feature vectors. The 

constructed feature vectors guide our ML model during the training and testing phases to make 

intelligent cache replacement decisions. 
 

While STRCacheML is designed to operate in a broad range of environments, it is worth noting 

that specific adaptations may be necessary to suit different datasets or settings. For instance, 

during our experiment with the IMDb dataset, we encountered a lack of real inquiry data. To 
overcome this, we introduced a simulation using a probability distribution to mimic a real-world 

environment. A detailed explanation of this adaptation and our experimental setup will be 

provided in a subsequent section. 
 

Our study examined a range of accessible and computationally efficient Machine Learning 

algorithms, including the Multilayer Perceptron (MLP) from the deep learning domain. This 
approach was motivated by our aim to explore and exploit the computational and performance 

characteristics of these models, which are both accessible and less computationally intensive, 

within a content caching platform. 

The components of our approach are listed in the following subsections: 
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3.1. Feature Vector Construction 
 

We consider 𝑂 = {𝑜1, 𝑜2, 𝑜3, . . . , 𝑜𝑛}, the set of all objects available on the platform. We represent 

all the objects, 𝑜 ∈  𝑂, by a feature vector, 𝐹(𝑜), including attributes such as one-hot encoding of 
genres, the object’s popularity over a specific period, historical inquiry data, object’s size, etc. We 

represent each object by a feature vector, 𝐹(𝑜), which can be mathematically illustrated as 

follows: 

For every object 𝑜in the set of all objects 𝑂, let 𝐴 = {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑚}be the set of all possible 
attributes. The features vector is built as, 

 𝐹(𝑜) = 𝑎1 ⊕ 𝑎2 ⊕ ⋯ ⊕ 𝑎𝑚 (1) 

where each ai represents an attribute of o written as a vector and ⊕corresponds to vector 

concatenation. 
 

3.2. Cache Memory and Inquiry Simulation 
 

Let 𝐶represent our cache with a limited size m, where each content, 𝑐 ∈ 𝐶, is an object o from our 

set 𝑂. We simulate object requests using a probability distribution, 𝑃(𝑜), defined on the set𝑂 

where the probability of being requested is proportional to the popularity of the given object o 

(See Figure 2). The simulation is modeled as follows: For all contents, 𝑐 ∈ 𝐶, where 𝐶 ⊆ 𝑂, draw 

samples 𝑜 to be processed on the cache 𝐶 by “STRCacheML”.  

Moreover, the cache has its probability distribution defined for the objects 𝑐 ∈ 𝐶, which is kept 

tracked during the execution let 𝑟𝑐  denote the number of inquiries made to object 𝑐  until the 

current date. The total number of inquiries for all objects is represented as ∑ 𝑟𝑜𝑜∈𝐶  and the 

probability distribution of requests is given by 

 𝑃𝐶(𝑐) =
𝑟𝑐

∑ 𝑟𝑜𝑜∈𝐶
 

(2) 
 

 

3.3. Training and Selection of ML Algorithm 
 

A series of ML models, {M1,M2,...,Mk}, (where k denotes the total number of ML algorithms 

selected) are trained on these feature vectors, F(o), obtained from each o ∈O. After training, we 
evaluate the models’ performance using both the training and testing datasets, focusing on the 

accuracy metric. With this assessment, we identify the model that provides the highest accuracy, 

which will be selected as our preferred ML model, M⋆. This procedure can be illustrated as 

follows: 

A set of ML models, {𝑀1, 𝑀2, . . . , 𝑀𝑘}are trained using the feature vector𝐹(𝑜), as constructed in 

equation (1). Among all trained models, we identify the optimal ML model as 𝑀⋆for our cache 

replacement policy. The selection criterion is given by the model’s accuracy, as formalized in the 

following equation: 

 𝑀⋆ = argmax𝑀𝑖∈{𝑀1,…,𝑀𝑘}  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑀𝑖) (3) 

 

3.4. Cache Eviction 
 

When cache C reaches its capacity (i.e., |𝐶|  =  𝑚) and a cache miss occurs, the ML model, 𝑀⋆, 

is employed to determine the likelihood, 𝐿(𝑜), of each object o in cache C being requested again. 

The object with the least likelihood, 𝐿(𝑜), as computed by 𝑀⋆(𝐹(𝑜)), is selected for eviction to 

make space for new content in the cache. 

Given a cache miss M and the cache memory is full, i.e., |𝐶|  =  𝑚, the likelihood of each object 

being requested again is computed as𝐿(𝑜) =  𝑀⋆(𝐹(𝑜))for each 𝑜 ∈ 𝐶. Finally, the object 𝑜to be 

evicted is expressed as: 

  𝑜 = argmin𝑜∈𝐶 𝐿(𝑜) (4) 
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3.5. STRCacheML 
 
By integrating equations (1), (2), (3), and (4), we formulate STRCacheML, our proposed cache 

replacement policy. This policy can be outlined as follows: 

Given an object inquiry (request) for any 𝑜 ∈ 𝑂: 

1) If 𝑜 ∈ 𝐶(i.e., a cache hit), the inquired object is acquired from the cache without initiating 
the cache replacement procedure. 

2) If 𝑜 ∉ 𝐶(i.e., a cache miss) and |𝐶|  <  𝑚, the object is first fetched from the backend (main 

memory in the platform) and added to the cache. 

3) If 𝑜 ∉ 𝐶(i.e., a cache miss) and |𝐶|  =  𝑚(i.e., the cache is full), we calculate the likelihood 

𝐿(𝑜′)of each object 𝑜′ ∈ 𝐶in the cache being requested again, as defined in equation (4) 

above. The object 𝑜 = argmin𝑜′∈𝐶 𝐿(𝑜′)is evicted from the cache, and the requested object 

o is accessed from the main memory and added to the cache. 
Through these steps, we introduce STRCacheML, an ML-based cache replacement policy that 

leverages rich feature vectors and predictive modeling to make intelligent content caching 

decisions, potentially enhancing the cache replacement performance in streaming services. 
 

 
 

Figure 2. Video popularity distribution for the 500 most popular videos in IMDb. It is interesting how video 

distribution follows Zipf’s law if they are sorted by some popularity attribute. 

 

4. DATA PREPROCESSING, SIMULATION AND DATASET PREPARATION 
 

Data preprocessing, a critical aspect of the Knowledge Discovery from Data (KDD) process, 

involves a set of techniques employed before applying data mining methods. This technique 
handles inconsistencies, redundancies, and other data imperfections, making the data suitable for 

the chosen Machine Learning algorithm. 

 
In our study, we used a dataset sourced from IMDb [13] for experimental purposes, potentially 

showcasing the efficiency of our policy in a video streaming platform. Since the data obtained 

from IMDb were raw and unprocessed, preprocessing steps were required to prepare the dataset 
for Machine Learning applications. First, we utilized Python libraries such as pandas and NumPy 

to handle null values, mostly deleting the data entries from the dataset. To remove discrepancies 

in the dataset, we used the Scikit-learn library, specifically its preprocessing module, to maximize 
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the normalization of the data as needed. Lastly, we decided to disregard specific attributes that 
were deemed unsuitable for training our ML models, focusing on five attributes:“Primary 

Title”,“Start Year”,“Run Time”,“Genres”,“Average Rating,” and “Number of Votes”. In the 

absence of direct information on video sizes within our dataset, we adapted the “Run Time” 

attribute availableto act as a proxy. To the best of our knowledge, we believe this adaptation 
presents a practical approximation for cache replacement policies often influenced by video 

sizes.Therefore, even within the simplification and simulation, our model maintains a level of 

accuracy to a certain valuable extent in representing the characteristics influential to real-world 
caching scenarios. 

 

We created a virtual cache with predetermined memory limits to simulate a realistic environment 
for our cache replacement policy, STRCacheML.In the absence of real-world inquiry data, we 

generated a series of 10000 cache inquiries based on a probability distribution derived from the 

“Number of Votes” each video received on IMDb. These votes were taken as a proxy for the 

videos' popularity, whichsuggested their likelihood of being requested (refer to Figure 2, which 
illustrates the probability distribution across the videos). The outcome of each simulated inquiry 

was determined by whether the requested video was present in our cache, resulting in either a 

cache hit or miss. 
 

From the initial simulation of inquiries using the IMDb dataset, we constructed a comprehensive 

dataset comprising 19992 samples. Each sample was associated with a feature vector, denoted as 

𝐹(𝑜), representing the attributes of the requested video,including genre, run time, and calculated 
popularity. These feature vectors were then labeled with binary values, assigning “1” for a cache 

hit and “0” for a cache miss. This labeling process was important for training the Machine 

Learning models, enabling them to understand the feature vectors that contribute to cache hits or 
misses. Such understanding is contributory in producing likelihood estimations that inform cache 

eviction decisions in subsequent phases.Thus, our dataset comprised these feature vectors 𝑋 =
 [𝑥1, 𝑥2, . . . , 𝑥𝑛]along with their corresponding binary labels, forming the foundation for training 

our Machine Learning models to learn from historical cache performance under conventional 
policies and make predictive decisions for future cache management. 

 

By integrating both staticattributes of videos and dynamic user interaction data in a simulated 
environment, our dataset provides Machine Learning models with a comprehensive 

understanding of video demand over time. By incorporating historical usage data along with 

evolving trends in video popularity within a simulated environment, our methodology ensures 
that STRCacheML adapts to changing user behaviors,enhancing the predictive accuracy and 

practical applicability of our cache replacement policy. 

 

4.1. Selection of ML Algorithms and Hyperparameter Tuning 
 

Building upon the earlier discussion, feature selection and hyperparameter tuning play an 

instrumental role in achieving accurate models [26]. The training parameters, model architecture, 
and features can significantly determine model performance. During the selection of ML 

algorithms, observing each algorithm’s performance on both the test and training sets is crucial to 

recognize if the model is overfitting, which memorizes training features rather than learning the 
underlying patterns. Overfitting can lead to increased computational complexity, reduced 

accuracy, and false confidence in the model’s predictions [32]. 

 
In our study, we conducted experiments divided into two phases. First, we trained different 

machine learning models as described in building a query dataset based on the probability of 

being requested 𝑃(𝑜) where the object to be queried next is predicted. For each model,80% of the 

dataset was used as a training set, whereas the remaining 20% was used to test the model’s 
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capabilities.It is worth mentioning that this dataset setupprovides a platform for training and 
evaluating supervised ML algorithms.Second, we choose the best ML usingequation (3) tobuild 

the cache replacement policy.We initially selected the Random Forest (RF) algorithm to 

understand its potential usability in our mechanism. Random Forest, developed by Leo Breiman 

and Adele Cutler, is a widely adopted ML algorithm. It traverses multiple decision trees, each 
contributing to sub-decisions and aggregating their outcomes to make a final decision [35]. Due 

to its effectiveness in classification and regression problems, we successfully tested RF within our 

dataset's classification setup. Initially, we set the maximum number of features equal to the 
number of extracted features, and the maximum depth was set to 70. This setting means that the 

same number of features will be selected in each split, and the tree in the model will have, at 

most, 70 levels of nodes. However, after initial training and testing, the maximum number of 
features was adjusted to the square root of the extracted features, with the tree depth remaining 

the same, to fine-tune the process and prevent overfitting.  

 

Similarly, we adapted the Gradient Boosting Machine (GBM), a widely recognized ML algorithm 
proficient inclassification and regression tasks. GBM operates by iteratively refining decisions 

through ensemble models, typically decision trees, and focuses on correcting the errors of 

previous iterations [36]. Given its successful application in areas such as web search engines, we 
decided to implement the GBM model available in the sklearn library. In our experimentation 

with various parameter settings, we observed minimal variations in accuracy for our binary 

classification dataset. Consequently, we configured GBM with 100 estimators, a learning rate 
of0.1, anda maximum depth of 2, and we recorded both training and testing accuracies to 

compare with other models. Next, the SVM algorithm was trained on the model, setting the 

regularization parameter “C” to 100 and the gamma parameter for the Radial-Basis-Function 

(RBF) kernel to “auto”, which means that it is computed from the data. Parameter “C” maintains 
a trade-off between maximizing the decision boundary and minimizing the classification error, 

while the gamma parameter helps to measure the similarity between two data points [7]. 

Likewise, the K-Nearest Neighbors (KNN) algorithm was trained on the dataset, initially 
considering three nearest neighbors while predicting new values. For fine-tuning, the model was 

adjusted to consider the five nearest neighbors contributing to the prediction with the inverse of 

their respective distances from the query point. 

 

 
 

Figure 3. Comparison of Training and Testing Accuracies Across All Evaluated Machine Learning Models 
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Ultimately, we selected the Multi-Layer Perceptron (MLP) as our final ML model for 
experimentalpurposes, assessing itspotential for integration into our cache management policy. 

Initially, the MLP model was designed with two hidden layers comprising 128 and 64 nodes, 

respectively. To enhance the model’s performance, we adopted an iterative approach using Scikit-

Learn’s GridSearchCV for automated hyperparameter tuning following the idea mentioned in [2]. 
The architecture of the hidden layers was systematically varied across multiple training iterations, 

altering the number of layers and nodes within each layer.However, during this process, we 

discovered a critical insight. Augmenting the number of layers did not necessarily enhance the 
accuracy of our model. Instead, it only increased the time complexity of the model while the 

accuracy plateaued. GridSearchCV allowed us to navigate through multiple combinations of 

parameters and revealed that a model with two hidden layers of 256 and 128 nodes, respectively, 
provided an optimal balance between accuracy and computational efficiency for our dataset. 

Consequently, we decided to adhere to this model structure. Upon comparison of accuracy and 

time complexities among above mentioned ML models, the MLP model concluded as the most 

efficient with an impressive testing accuracy of 0.97 on the dataset, surpassing the accuracy 
levels of SVM, GBM (around 0.60), and RF (around 0.84) and KNN (around 0.84)as shown in 

Figure 3. Hence, MLP was chosen as the final ML model for our cache replacement policy. 

 

5. SIMULATIONS, COMPARISONS, AND EVALUATION 
 

We conducted our experiments ina Python 3.10.12 environment, utilizing the TensorFlow 

frameworkfor machine learning computations. The computational workloadwas managed by an 

NVIDIA T4 GPU with15GB of GPU RAM. Throughout our study, we conduct experiments using 
a fundamental cache structure, divided into individual slots capable of storing one video each. 

Our reference for cache capacity is its cache size, the number of slots. We evaluate the 

performance of our proposed model, STRCacheML, by comparing it with established caching 
policies like LRU, LFU, and Least Recently Frequently Used (LRFU). We utilize raw cache hit 

and cache hit rate as our key computational and comparison metrics. The raw cache hit measures 

the instances where the requested object is available in the cache. On the other hand, the cache hit 
rate provides a more insightful metric, indicating the proportion of total requests resulting in a 

cache hit. It is derived from the formula: 

  Cache Hit Rate =
Cache Hits

Cache Hits +  Cache Misses
 (5) 

 

For STRCacheML, we implement a predictive and adaptive approach assisted by a trained MLP 

model, which sequentially updates based on inquiries and cache hits during the simulations. The 
MLP model, trained on historical video access data, predicts the popularity trend of videos, aiding 

dynamic cache management. When a video request occurs and the video is absent in the cache, 

STRCacheML utilizes its core predictive principle and assigns each video in the cache a score 
corresponding to its predicted future popularity. During the eviction procedure, the video least 

likely to be requested again is removed from the cache to accommodate new content. This 

approach inherently considers user preferences, as it is driven by user behavior and inquiry 

patterns. Therefore, it allows STRCacheML to adapt to changing user preferences, an important 
aspect in content caching. 

 

We carefully applied STRCacheMLalong with the established cache policies to the final phase of 
simulated cache inquires and virtual cache memory to accurately measure the cache hits and 

cache hit rates. For established caching policies like LRU, LFU, and LRFU, we thoroughly 

simulated their principle on the dataset. For LRU, we keep track of the timestamp for each video, 

reflecting the time an inquiry was made for the given video. Also, for LFU, we applied its 
principles by computing a frequency count for each video in the cache, recording the total 

number of requests made, and evicting the video based on frequency. For LRFU, we designed a 
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function to dynamically update each video’s Combined Recency and Frequency (CRF) value 
upon each inquiry. Eviction from the cache was based on the CRF values calculated for each 

video. 

 

We conducted experiments on two different simulations, Simulation1 and Simulation2, designed 
to represent different usage scenarios. In Simulation1, we constructed a scheme that involved 

10000 video queries and a cache size of 25 slots. This scenario was chosen to simulate a lower to 

moderate level of user demand, where the cache size and number of queries were small compared 
to Simulation2. The selected cache replacement policies, including LRU, LFU, LRFU, and 

STRCacheML, were sequentially implemented and the count of cache hits along with the cache 

hit rates were recorded 
 

For the second simulation, Simulation2, we escalated the volume of video queries and cache size 

to 20000 queries and 50 slots, respectively. This simulation was designed to represent a situation 

of high demand, with significantly more queries and a larger cache size than the first simulation. 
Just as in Simulation1, the same cache replacement strategies were utilized, the record of cache 

hits was noted, and the cache hit rate was consequently computed. 

 
By observing and comparing the results of both simulations, we gained valuable insights into the 

performance of different cache replacement policies under two different conditions. Table I 

illustrates how our proposed STRCacheML model performed well over other strategies in both 
simulations when assessed based on raw cache hits and cache hit rates. The table delivers a 

comparison among the cache replacement policies, presenting the number of cache hits and the 

corresponding cache hit rates accomplished in both simulations. In addition, the cache hit rates of 

each model were visualized in Figures 4 and 5, which provide a more detailed comparison of 
each model's performance. These results highlight the better performance of our proposed 

STRCacheML model in different scenarios. 

 
TABLE I. CACHE HITS AND HIT RATES FOR DIFFERENT MODELS IN SIMULATION1 AND 

SIMULATION2 

 

Model Simulation1 Simulation2 

Raw Cache Hits Hit Rate (%) Raw Cache Hits Hit Rate (%) 

    

LRU 644 6.44 2484 12.42 

LFU 675 6.75 2865 14.33 

LRFU 758 7.58 3422 17.11 

STRCacheML 1078 10.78 3770 18.85 
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Figure4.Comparison of Cache Hit Rates Over 10,000 Simulated Inquiries 

 

 
 

Figure5.Comparison of Cache Hit Rates Over 20,000 Simulated Inquiries 

 

 

6. CONCLUSIONS AND FUTURE WORK 
 

In this study, we presented STRCacheML, an innovative ML-guided cache replacement policy to 
enhance content caching in streaming services. Through experiments and simulations of real-

world scenarios, STRCacheML demonstrated better performance over established caching 

policies such as LRU, LFU, and LRFU. A significant factor contributing to this enhanced 
performance is STRCacheML’s ability to consider user preferences and adapt to evolving 

popularity trends, a critical aspect in efficient content caching. By dynamically predicting and 

managing the popularity trend of videos, STRCacheML improves cache hit rates. Specifically, 
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STRCacheML achieved an increase of approximately 5%, 4%, and 3% in cache hit rate over 
LRU, LFU, and LRFU, respectively, in Simulation1, as shown in Figure4. In Simulation2, 

STRCacheML also exhibited a consistent enhancement in cache hit rates in comparison to other 

models, as shown in Figure5. An interesting observation was that each model demonstrated a 

sequential improvement in cache hits, validating their respective principles within a content 
caching platform.However, integrating assisted cache policies introduces additional 

computational overhead compared to their classical counterparts, which require minimal 

information and straightforward implementation. The extent of this added overhead is contingent 
on the size of the ML model, determined by the feature vector size and hyperparameters. With 

fixed hyperparameters, strategic feature engineering or a projection algorithm mitigates high 

computation overhead, maintaining a "positive" trade-off where the gain in cache hit ratio 
outweighs the produced overhead. We don't address overhead during the training process, as this 

computationally intensive phase can be conducted offline without impacting the user's 

experience. 

 
Streaming platforms handle large datasets. To design ML-assisted scalable cache policies, 

integrating feature engineering techniques, as demonstrated in this work, is essential for 

lightweight ML algorithms suitable for online execution. Successful implementation demands 
properly integrating information obtained from clients engaging with diverse streaming services. 

If integrated effectively, STRCacheMLcan decrease traffic congestion, as the requested data 

could be efficiently fetched from cache memory. This approach could reduce energy consumption 
and prevent overloading through improved data handling.Expanding beyond streaming, this 

approach proves beneficial in various domains such as e-commerce, content delivery networks 

(CDNs), and social media platforms. Thisis because our approach’s scalability relies on available 

object parameters, a common aspect across different content delivery systems. In these contexts, a 
cohesive interplay between user-generated data and the design, training, and development of ML 

cache policies becomes helpful for improving content delivery and user experience. Another 

notable concern ariseswith user data privacy. It is important to note that approaches relying on 
training from user data involve learning patterns from potentially sensitive information. Various 

established techniques, including anonymization and more robust cryptographic methods, such as 

differential privacy or direct data encoding, can be utilized to address this issue. In the latter case, 

methods like Multi-Party Computation can be integrated to enable computation on encrypted 
data, ensuring that the data remains private. These alternatives present diverse options for 

tackling the challenge of preserving privacy in our methodology, STRCacheML,whileextracting 

learnablepatternsfrom user data.  
 

In conclusion, STRCacheML, by integrating Machine Learning techniques with content caching, 

demonstrates an advancement in the domain of Machine Learning Applications, particularly in 
information retrieval and intelligent cache management systems, leading to improved efficiency 

and adaptability in streaming services. With its potential to extend benefits to CDN platforms 

beyond content caching in streaming services, STRCacheMLmay encounter some limitations 

within specific scopes. These limitations can be addressed through broader experimentation and 
dataset expansion, areas we identify as opportunities for future research. 

Future work will explore more advanced ML and Deep Learning techniques, such as Recurrent 

Neural Networks and Transformers, to be integrated into STRCacheML, also maintaining 
computational efficiency and user privacy. There could be a potential benefit of incorporating a 

hybrid method into the cache replacement policy. Additionally, investigating other possible 

attributes and sophisticated feature engineering strategies by generalizing the applicability could 
enhance model performance while maintaining computational efficiency.  
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