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Abstract
In the dynamic field of urban planning and the context of un-
precedented natural events, such as hurricanes, the fast gen-
eration of accurate maps from satellite imagery is paramount.
While several studies have utilized Generative Adversarial
Networks (GANs) for map generation from satellite images,
the present work introduces a new approach by integrating
contrastive learning into the GAN framework for enhanced
map synthesis. Our methodology distinctively employs posi-
tive sampling by aligning similar features (e.g., roads) in both
satellite images and their corresponding map outputs, and
contrasts this with negative samples for disparate elements.
This approach effectively replaces the conventional cyclic
process in GANs with a more streamlined, unidirectional
procedure, leading to improvements in both the quality of
the synthesized maps and computational efficiency. We show
the effectiveness of our proposed model, offering an advance-
ment in map generation for remote sensing applications.

CCS Concepts: • Image Processing; • Synthesis and Vi-
sualization; • Computational Imaging; • Deep Learning
for Images;

Keywords: Anchor, Contrastive Learning, Generative Ad-
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1 Introduction
The emergence of satellite technology has revolutionized the
way we capture and utilize images of Earth’s surface. Access
to these images, whether in real-time or offline, has become
important in various applications. Among these, the gen-
eration of readable maps from satellite imagery stands out
as one of the major applications, especially for navigation
and geographic information systems. This need has moti-
vated researchers to develop computational models capable
of transforming satellite images into maps that are more
intuitive for human interpretation.

Initially, the focus was on paired image translation meth-
ods, where models were trained on datasets consisting of
corresponding pairs of satellite images and maps. Innovative
works like that of Isola et al. [19] demonstrated the feasibil-
ity of using Generative Adversarial Networks (GANs) for
map generation tasks with remarkable success. However, a
significant limitation of these approaches is their reliance
on paired datasets, which are time-consuming and costly to
compile. This challenge led to the emergence of unsuper-
vised methods, such as CycleGAN [32], which can learn to
translate between domains from unpaired datasets. Despite
not being specifically designed for map generation, Cycle-
GAN and other models integrating and adapting a cyclic
procedure in synthesis have shown promising results in this
domain, as evidenced by the works of Ganguli et al. [11],
Song et al. [27], and Chen et al. [7]. The work of Seo et al.
[26] demonstrates the adaptability of GANs to a wide range
of image generation tasks, adapting the DCGAN architec-
ture for the unique challenges of colorizing grayscale images
using a one-to-one training approach.

Map synthesis holds enormous potential, particularly for
emergency response during natural disasters, such as earth-
quakes, wildfires, and floods, and for urban planning [28].
In these scenarios, the ability to synthesize up-to-date maps
from satellite images at a fast pace is invaluable. However,
the cyclic nature of models like CycleGAN introduces signifi-
cant computational overhead, making them less practical for
time-sensitive applications [18]. Responsive to this challenge,
the integration of the emergent unsupervised learning par-
adigm of contrastive learning within the GAN framework
shows promise for map synthesis. The utilization of con-
trastive learning techniques is particularly appealing given
their demonstrated success in the remote sensing domain, as
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shown in studies by Bai et al. [4] and Abbasnejad et al. [1],
along with their broader impact evidenced by revolutionary
methods such as SimCLR [6] and MoCo [16] across various
fields.
Gutmann and Hyvärinen’s work is foundational in con-

trastive learning, focusing on distinguishing actual data from
noise, laying the groundwork for advanced machine learning
applications [14]. Although primarily focused on statistical
models rather than direct applications in GANs for image
translation, the principles in their paper highlight key aspects
of contrastive learning. Subsequently, Oord et al. introduce a
method for learning high-dimensional data representations
by capturing shared information across different parts of a
signal, enhancing data synthesis quality [24]. Building on
the insights from the work of Oord et al. [24], Park et al.
demonstrate a practical application of contrastive learning
concepts in a GAN framework [25], particularly through
representation learning at the patch level of images. The
work of Park et al. suggests the potential for applying these
advanced contrastive learning techniques to map synthesis
from satellite imagery.

2 Related Works
In the current literature, map synthesis is primarily con-
ducted using conditional GANs, which can be broadly cate-
gorized into two approaches: paired and unpaired translation.
In the paired translation context, the utilization of the Pix2Pix
model by Isola et al. has shown promising results in map
synthesis [19]. However, the real-world scarcity of paired
satellite and map images necessitated exploration into GANs
capable of practical map synthesis with unpaired datasets.
Zhu et al.’s work stands out as a foundational contribution
in this domain [32].
Following the core idea of CycleGAN [32], several litera-

ture studies explored the generation of maps from satel-
lite images. Expanding on CycleGAN’s concept, the Ge-
oGAN model proposed by Ganguli, Garzon, and Glaser sig-
nificantly advances map generation from satellite images
[11]. It uniquely combines reconstruction and style trans-
fer losses with a conditional GAN to enhance the quality
of map synthesis. This innovative approach, particularly
its third model architecture, yields more accurate map fea-
tures, showcasing the evolving techniques in map synthesis
from satellite imagery. Following the development of Ge-
oGAN, the researchers introduce the Semantic-regulated
Geographic GAN (SG-GAN), which integrates crowdsourced
vehicle GPS coordinates into the map synthesis process [31].
This model adopts the Pix2Pix framework as its backbone,
enhancing it with additional layers of GPS data and semantic
estimations to reduce noise and improve accuracy in areas
with sparse geographic information. The SG-GAN [31] ap-
proach not only enriches the map generation process with
external geographic data but also maintains the standard

adversarial training, demonstrating an advanced application
of GANs in satellite-to-map image conversion. In the sub-
sequent year, Song et al. introduced MapGen-GAN [28], an
enhancement of the CycleGAN approach in map generation.
This model incorporates circularity and geometrical consis-
tency constraints to refine the translation of remote-sensing
images into maps. These innovations enable MapGen-GAN
to achieve more accurate and reliable map generation, par-
ticularly in emergency response scenarios.
Consequently, it is important to note that the above gen-

erative models focus on either the pix2pix model (paired
mechanism) or the cyclic approach (unpaired translation).
These approaches are often not realistically applicable due
to the lack of paired data or the computational overhead
associated with the cyclic process, as suggested in the work
by Kazemi et al. [20]. Not specifically designed and tested
on map synthesis, contrastive learning in GAN proposed
by Park et al. [25] successfully replaced the cyclic approach
and yielded good results on image quality and complexity
in image-to-image translation. Extending upon the work of
Park et al., Han et al. [15] presents a novel method for un-
supervised image-to-image translation that utilizes a dual
learning setting with two encoders. This approach smartly
integrates contrastive learning within a cyclic procedure,
enabling the model to learn mappings between two unpaired
domains effectively. The given work achieved better per-
formance in image-to-image translation tasks compared to
previous cyclic and contrastive models, as evidenced by the
Fréchet Inception Distance (FID) score [17], a metric used
to measure the similarity between distributions of real im-
ages and generated images, reflecting improvements in both
variety and quality. Similarly, SCONE-GAN, as presented
by Abbasnejad et al. [1], advances image translation by in-
corporating contrastive learning with graph convolutional
networks to generate more realistic and diverse scenery im-
ages. This approach effectively maintains image structure,
maximizes mutual information between style and output,
and demonstrates enhanced performance on four datasets. It
is worth mentioning that contrastive learning with mutual
information maximization at the patch level has not yet been
explored dominantly on map synthesis given satellite images.
The present work revisits the contrastive learning approach
proposed by Park et al. [25] in map synthesis to achieve
better results based on visualization and time complexity.

3 The Proposed Approach
This section presents a detailed procedure on how Con-
trastive Learning was utilized by selecting positive and nega-
tive samples on patch level adapting for our specific domain
in the present work for Map Synthesis. The architecture
of our model is depicted in Figure 1, which illustrates the
integration of patch-based contrastive learning within the
generative adversarial framework.
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Figure 1. Overview of the Proposed Model’s Architecture. The model processes an input satellite image using a generator
implemented with patch-based contrastive learning. The PatchNCEA loss function is utilized, which maximizes the mutual
information between corresponding objects within the red highlighted areas, while minimizing the same against negative
samples depicted by the yellow rectangles. To prevent unintended translations during synthesis, the model incorporates
PatchNCEB loss together with adversarial loss, ensuring the generation of realistic-looking map images.

3.1 Overall Architecture
3.1.1 Goal. The goal of this work is to generate maps in
domain 𝐵 from the input satellite images from domain 𝐴,
by learning the reasonable mapping between two images, 𝑎
and 𝑏, given unpaired instances 𝐴 = {𝑎 ∈ 𝐴}, 𝐵 = {𝑏 ∈ 𝐵}.
The problem can also be understood as translating images
from domain 𝐴 ⊂ R𝐻×𝑊 ×𝐶 , to target domain 𝐵 ⊂ R𝐻×𝑊 ×𝐶 ,
where H is height, W is width, and C is the number of chan-
nels of given satellite images respectively. In our translation
challenge, the focus is on rendering roads inmap images with
distinct coloration, differentiating them from other features,
such as greenery subjects (vegetation), which is represented
in green and can be seen in Figure 1. We aim to simplify com-
plex urban areas present in satellite images, retaining only
essential details to aid navigation. This selective detailing en-
sures that important navigational elements are emphasized,
while extraneous information is minimized, resulting in a
clear and user-friendly map output. CycleGANs implement
a cyclic approach to achieve the final goal by first translating
𝑎 ∈ 𝐴 to 𝑏 ∈ 𝐵 and then back to 𝑎 and vice versa by using

two different generators and two corresponding discrimi-
nators to discriminate map images generated by the given
generators. This methodology and its variations have been
explored and demonstrated in the works of Hsieh et al. [18],
Ganguli et al. [11], and Song et al. [28]. This cyclic procedure
of generating images, in general, is very time consuming
and restrictive because the process considers the relation
between the input domain and the target domain is a bijec-
tion [13]. To address this, we adopt an alternative method,
i.e., Contrastive Learning in conditional GAN, as presented
by Park et al. [25], by learning translation in one direction
using only one generator and one discriminator.

3.1.2 Generator Architecture in present work. The
present work employs a ResNet-based generator, proven suc-
cessful in generative models [8], integral for synthesizing
map images from satellite images. This generator is an es-
sential component of our Generative Adversarial Network
(GAN) framework, designed to capture and translate the
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complex spatial and textural information present in satellite
images into the corresponding map representations.

ResNet-based Generator. Motivated by the work of Zhu
et al. [32], the present work’s generator features a series
of 9 residual blocks, which form the backbone of both the
encoding and decoding processes. These blocks enable the
model to handle deep feature extraction efficiently, preserv-
ing crucial details and structures essential for accurate map
generation.

Encoder-Decoder Structure. Structured into an encoder
and a decoder, the generator first encodes the satellite image
into a latent space, extracting key features and patterns. The
decoder then reconstructs these features into a map image,
ensuring that the generated map retains fidelity to the input
satellite image while introducing the stylistic elements of
map visuals.

Support for Contrastive Learning. The architecture of
the generator is specifically designed to support the con-
trastive learning approach and the PatchNCE loss, as pre-
sented in the study by Park et al. [25], which are detailed in
the following subsections. The effectiveness of these meth-
ods in our model support the robust feature extraction and
synthesis capabilities of the generator.

3.1.3 Discriminator Architecture. Following the archi-
tecture of the ResNet-based generator adapted in the present
work, our model adapts a discriminator essential for the ad-
versarial training process in our GAN framework. In the
adversarial training setup, the discriminator’s task is to accu-
rately classify real and synthesized map images, providing a
learning signal to the generator to improve the quality of its
output. This process forms a crucial part of the GAN frame-
work, enabling the generation of high-fidelity map images
from satellite data. For the discriminator architecture, we
select PatchGANwith a 70x70 patch size due to its successful
application in generative models as noted by Alqahtani et
al. [2] to determine if the given image is synthesized or real.
This particular discriminator, instead of directly determin-
ing if the entire image is real or fake, first divides the given
generated map image or ground truth map image into 70x70
patches. Then, it evaluates and scores each patch individually
on its authenticity. The final decision about the image being
real or generated is based on the average of these scores. This
design choice helps the generator generate realistic-looking
map images by focusing detail at the patch level [9]. The
discriminator uses LeakyReLU [22] for non-linearity and has
been initialized with an emphasis on stability in the train-
ing process. Also, we stick to instance normalization rather
than batch normalization to have high-quality map images
since instance normalization was successful in generating
image-to-image translation on similar but different domains
[32].

Having established the foundation of our model’s gen-
erator and discriminator architecture, we now delve into
the specifics of our contrastive learning approach and the
effective use of the PatchNCE loss function in map synthesis,
adapted from CUT model as detailed by Park et al. [25].

3.1.4 Contrastive Learning Approach. In this work, the
essence of our contrastive learning approach lies in trans-
forming satellite imagery into simplified map representa-
tions, as illustrated in Figure 2. Starting with a satellite image
𝑎 from domain 𝐴 and a corresponding map image 𝑏 from do-
main 𝐵, we define an anchor feature 𝑓 ∈ R𝐾 extracted from
𝑏, and a corresponding positive feature 𝑝 ∈ R𝐾 extracted
from 𝑎, where 𝐾 represents the feature space dimensionality.
Additionally, we sample a set of negative features {𝑛𝑖 }𝑁𝑖=1,
with each 𝑛𝑖 ∈ R𝐾 , from domain 𝐴. These negative features
are sourced either from different locations within the same
image or from different images, as depicted in Figure 2, and
distinctly highlighted with yellow colored squares.

The contrastive loss function in this work aims to decrease
the embedding space between 𝑓 and 𝑝 , without collapsing
them into a single point. Simultaneously, it tends to widen
the separation in the feature space between f and the set
of negative features {𝑛𝑖 }. These actions allow inherent vari-
ability and help to avoid overly restrictive mappings [3]. For
example, we do not want to make vegetation and forest (two
different components) strictly as negative or positive, and we
do not want the distance sampled to be zero. So, considering
this, our loss is defined as:

𝐿(𝑓 , 𝑝, {𝑛𝑖 }) =

− log
exp(sim(𝑓 , 𝑝)/𝜏)

exp(sim(𝑓 , 𝑝)/𝜏) +∑𝑁
𝑖=1 exp(sim(𝑓 , 𝑛𝑖 )/𝜏)

(1)

Here, the similarity measure sim(𝑓 , 𝑝) is defined as the
dot product between ℓ2 normalized vectors 𝑓 and 𝑝 , which is
essentially the cosine similarity (i.e., sim(𝑓 , 𝑝) = 𝑓 ·𝑝

∥ 𝑓 ∥ ∥𝑝 ∥ ), as
mentioned by Chen et al. [6]. 𝜏 is a temperature parameter
that scales the similarity scores. By minimizing this loss, our
framework facilitates a feature space where positive pairs are
closer compared to anchor-negative pairs, yet not identical,
mirroring the complex relationship between satellite imagery
and map representations.

3.2 Formulation
3.2.1 ModifiedPatchNCELoss for SuitableContrastive
Learning in Map Synthesis. In our refined approach to
the PatchNCE loss for translating satellite images to map
images, we enhance the negative sampling strategy. This
strategy involves selecting negative samples from various
locations within the same image, as well as from entirely
different satellite images.
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Figure 2. Contrastive Learning and Feature Selection at the Patch Level. Our model samples an anchor patch from
the output 𝑏 (1_Map) and compares it with the corresponding input patch at the same location in 𝑎 (1_sat), both highlighted
with red colored squares. ’n’ negative patches are drawn from the same input image (1_Sat) and from a randomly selected
different image within domain𝐴 (2_Sat), these are highlighted with yellow colored squares. This contrastive learning approach
is designed to efficiently leverage both input and output patches within a shared embedding space, aiming to enhance the
precision of our map synthesis.

Multilayer, Patchwise Contrastive Learning. Building
upon the methodology outlined by Park et al. [25], our ap-
proach integrates a two-layer Multilayer Perceptron (MLP)
network represented as 𝐻𝑥 , within specific encoder layers.
This MLP network is used to transform the feature maps
from each layer into an enhanced feature stack. In this archi-
tecture, each layer, along with its respective spatial location
in the encoder’s feature hierarchy, corresponds to a distinct
patch of the initial image. As we delve into deeper layers,
these patches increase in size. We focus on 𝑋 key layers and
pass the feature maps through the MLP network, producing
a set of enhanced features 𝑧𝑥𝑋 = 𝐻𝑥 (𝐺𝑒𝑛𝑐𝑥 (𝑎))𝑋 , where𝐺𝑒𝑛𝑐𝑥

denotes the output of the 𝑥-th selected layer of the encoder.

PatchNCE Loss with Enhanced Features. The adapted
PatchNCE loss, termed PatchNCE-SAT, involves a generator
𝐺 , a set of layers 𝐻 within the network, and an input data
distribution 𝐴 is formulated as:

𝐿PatchNCE-SAT (𝐺,𝐻,𝐴) = E𝑎∼𝐴

[
𝑋∑︁
𝑥=1

𝑆𝑥∑︁
𝑠=1

𝑋

(
𝑧𝑠𝑥 , 𝑧

𝑠
𝑥 ,

{𝑧𝑆\𝑠𝑥 }, {𝑧diff,diffloc
𝑥 }

)] (2)

In equation (2), 𝑧𝑠𝑥 represents the feature representation
from the generated image at layer 𝑥 , and patch 𝑠 . 𝑧𝑠𝑥 is the
corresponding feature from the real image. {𝑧𝑆\𝑠𝑥 } are fea-
tures from other patches within the same image at the same
layer. {𝑧diff,diffloc

𝑥 } are the negative samples drawn from dif-
ferent locations in other satellite images at the same layer.
𝑋 denotes the number of layers, and 𝑆𝑥 is the number of
sampled patches at layer 𝑥 .

This PatchNCE-SAT loss, by utilizing the refined features
from the MLP network 𝐻𝑥 , ensures a robust and nuanced
contrastive learning mechanism, vital for the generation of
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accurate and contextually coherentmap images from satellite
data.

3.2.2 GAN Loss for Generation of Realistic-Looking
Maps. To ensure the generation of realistic-looking maps
from satellite images, the present work utilizes an adversar-
ial loss function, also known as GAN loss, initially proposed
by Goodfellow et al. [12]. The GAN loss comprises two main
components: the loss for the generator and the loss for the
discriminator. The objective is to train the generator to pro-
duce map images that are indistinguishable from real map
images while the discriminator learns to differentiate be-
tween the real and generated maps. The GAN loss can be
formulated as:

𝐿GAN =E𝑏∼𝐵 [log𝐷 (𝑏)]+
E𝑎∼𝐴 [log(1 − 𝐷 (𝐺 (𝑎)))] (3)

In equation (3), 𝐷 (𝑏) represents the discriminator’s deci-
sion for a ground truth map image 𝑏. 𝐺 (𝑎) is the generated
map image from the input satellite image 𝑎 that should hy-
pothetically correspond to b. 𝐴 is the distribution formed
by real satellite images, and 𝐵 is the distribution formed by
real map images. The generator𝐺 aims to minimize this loss,
while the discriminator 𝐷 aims to maximize it, leading to a
minimax game between the two [12].

3.2.3 Final Loss Functions. The objective of our model is
twofold: first, to generate realistic-looking map images from
satellite images (domain 𝐴), and second, to ensure that the
corresponding patches between the input satellite images
and the output map images are closely aligned. Simultane-
ously, our model aims to differentiate between the anchor
patch and other non-corresponding patches within the same
satellite image and across different satellite images, employ-
ing these as negatives in the contrastive learning process. To
accomplish these goals, we integrate multiple loss functions.
This includes the GAN loss for realism, the PatchNCE-SAT
loss for ensuring patch-level correspondence in domain 𝐴,
and a similar PatchNCE loss for domain 𝐵 to prevent inap-
propriate translation by the generator, similar to the identity
loss presented by Zhu et al. [32]. Our work’s combined final
loss function is formulated as follows:

𝐿final =𝜆GAN𝐿GAN (𝐺, 𝐷,𝐴, 𝐵)+
𝜆PatchNCE-A𝐿PatchNCE-SAT (𝐺,𝐻,𝐴)+
𝜆PatchNCE-B𝐿PatchNCE-SAT (𝐺,𝐻, 𝐵)

(4)

4 Experiments
For the experiments and comparison, we used a public Google
map dataset collected by Zhu et al. [32]. We selected 1096
images for training and 500 for testing our model and com-
pared it to state-of-the-art methods. All the images have
dimensions of 256x256. For comparison, we utilized different
evaluation metrics, as presented below.

4.1 Evaluation Metrics
In this study, we utilize a set of evaluation metrics to assess
the performance of our model, focusing on the accuracy
and quality of the image generation results. These metrics
include the Root Mean Square Error (RMSE), Peak Signal-
to-Noise Ratio (PSNR), and the Structural Similarity Index
Measure (SSIM).

4.1.1 Root Mean Square Error (RMSE). The RMSE is
a widely used measure of the differences between values
predicted by a model and the values observed [5]. For an
original image 𝑂 and its estimated counterpart 𝐸, each of
size𝑚 × 𝑛, the RMSE is defined as:

RMSE =

√√√
1
𝑚𝑛

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑂𝑖 𝑗 − 𝐸𝑖 𝑗 )2 (5)

In the context of GANs for image generation, a lower RMSE
value typically indicates better quality of the generated im-
ages, as it signifies a smaller average difference between the
generated and the original images [21].

4.1.2 Peak Signal-to-Noise Ratio (PSNR). PSNR is a
popular metric for measuring the quality of reconstruction
of lossy compression codecs [30]. Essentially, it measures
the ratio of the maximum potential power of a signal to
the power of the noise that distorts its representation. As a
function of RMSE, the PSNR is computed as follows:

PSNR = 20 · log10
(
MAX𝑂
RMSE

)
(6)

whereMAX𝑂 represents themaximumpossible pixel value
of the image.

4.1.3 Structural Similarity Index (SSIM). The SSIM in-
dex is a metric used to assess the perceived quality of digital
images and videos. By analyzing different segments of an
image, SSIM evaluates the visual impact caused by variations
in luminance, contrast, and structure. This comparison is
done between a predicted image and the original one [29].
The SSIM index is represented by the following formula:

𝑆𝑆𝐼𝑀 (𝑥,𝑦) = 2𝑥𝑦 +𝐶
𝑥2 + 𝑦2 +𝐶 . (13)

In this equation, 𝑥 and 𝑦 have similarity values within the
range of [0,1]. The term 𝐶 is a constant, introduced to avoid
division by zero, which prevents the output of an undeter-
mined value. The SSIM value lies between 0 and 1, where a
value of 1 signifies ideal identical images.

4.2 Experimental Environment and Baselines
Experiment Setting. We conducted our experiments in

a Python 3.10.12 environment, utilizing the PyTorch frame-
work for all deep learning tasks. The computational work-
load was handled by an NVIDIA V100 GPU, which comes
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with 15GB of GPU RAM, ideal for handling demanding im-
age generation tasks. Our experimental procedure spanned
40 epochs. During the first half of these epochs, we main-
tained a steady learning rate, whereas, in the latter half, we
allowed the learning rate to decrease linearly. This approach
facilitated more precise adjustments as the model neared
its convergence point. We set the temperature parameter
𝜏 = 0.07. Along with this, we set the loss functions’ param-
eters: 𝜆GAN = 1, 𝜆PatchNCE-A = 1, and 𝜆PatchNCE-B = 2. We
didn’t just focus on standard performance metrics; we also
paid close attention to the model’s time complexity. This
involved careful monitoring and recording of the time taken
for each epoch to complete, from which we calculated an av-
erage epoch duration. These observations helped us estimate
the training time required for the model, adding a valuable
perspective for comparing models based on time efficiency.

Baselines. For our comparative analysis, we selected three
well-established generative adversarial network models as
our baselines, DCLGAN [15], CycleGAN [32], and GcGAN
[10]. These models were chosen due to their relevance and
proven effectiveness in image generation and translation
tasks, which aligns with the objectives of our study. Our pro-
posed method was evaluated against these models using the
chosen dataset and the specified evaluation metrics (RMSE,
PSNR, and SSIM), providing a comprehensive view of its
effectiveness in generating map images.

4.3 Comparison and Results
The comparative performance of our model against other
GANs, as mentioned above, is presented in Table 1, comple-
mented by visualizations in Figure 3. These results demon-
strate the better performance of our model. The detailed
performances of the proposed model and the comparative
models are summarized as follows:

• Our Model: Achieved an RMSE value of 43.8872, at-
tained a PSNR value of 28.2572, and reached an SSIM
value of 0.6255. Our model was trained in approxi-
mately 1.76 hours, equivalent to about 1 hour and 45
minutes.

• CycleGAN: Recorded an RMSE of 48.1944 and a PSNR
of 27.7143, both slightly lower in performance than our
model. The SSIM was 0.5915, indicating less structural
similarity to the target images compared to our model.
The training duration for CycleGAN was marginally
longer at approximately 1.97 hours, close to 2 hours.

• DCLGAN: Showed an RMSE of 47.4574 and a PSNR of
28.2961, slightly better than CycleGAN and our model.
It achieved a better SSIM value of 0.6336 compared
to our model, yet the training time was the longest
at approximately 2.67 hours, or about 2 hours and 40
minutes.

• GcGAN: Recorded the highest RMSE of 58.1702 and
the lowest PSNR of 26.3392, indicating lower perfor-
mance in map synthesis. It achieved an SSIM value of
0.4680, the lowest among the models. Although it was
the fastest to train, taking only about 0.89 hours, or
approximately 53 minutes, it failed to generate visually
appealing results.

The quantitative results in Table 1 and the qualitative
results, as visualized in Figure 3, collectively highlight the
better image quality and training efficiency of our model
in comparison to existing methods. While DCLGAN [15]
demonstrates slightly better performance metrics, it does
so at the cost of longer training times. In scenarios where a
balance between computational efficiency and accuracy is
important, our model emerges as a preferable choice. More-
over, despite GcGAN’s [10] faster training capability, it falls
short in producing visually appealing results, emphasizing
the trade-offs inherent in model selection.

5 Conclusion and Future Work
In this study, we have demonstrated the practical application
of contrastive learning within a GAN framework for map
synthesis from satellite imagery. Our generative approach
involves drawing an anchor from the output map image,
aligning it with the corresponding positive sample from the
input image, and contrasting it with negative samples from
different locations within the same and different satellite
images. These selections are made at the patch level of the
images, employing PatchNCE-SAT, as detailed in the pre-
vious sections, to maximize mutual information between
two corresponding elements while minimizing information
between unrelated elements. This method has successfully
enabled the GAN model to establish a more accurate map-
ping between input and output, thus enhancing the quality
of the generated map images. The experimental results, as-
sessed using RMSE, PSNR, and SSIM metrics, have shown
that incorporating contrastive learning into GANs yields
better outcomes in map synthesis compared to existing GAN
models. Notably, while DCLGAN demonstrates slightly bet-
ter performance in some aspects, it requires longer training
times, making our model a more efficient choice in terms
of computational resources and time. Similarly, despite its
faster training, GcGAN does not match the visual quality
achieved by our model. These comparisons emphasize our
model’s balance of efficiency and quality, making it a strong
candidate for practical applications like emergency rescue
operations. This study not only highlights the effectiveness
of our approach in map synthesis but also lays possibili-
ties for future advancements in image processing in remote
sensing with generative models.
This study primarily focused on image data for map syn-

thesis without incorporating additional parameters. Moving
forward, we aim to integrate geographical features, such
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Table 1. Performance Comparison: Our Model vs. Other GANs

Models RMSE PSNR SSIM Time for Training (in Hr)

Our Model 43.8872 28.2572 0.6255 1.76
CycleGAN 48.1944 27.7143 0.5915 1.97
DCLGAN 47.4574 28.2961 0.6336 2.67
GcGAN 58.1702 26.3392 0.4680 0.89

Input GcGAN CycleGAN DCLGAN Our Model GroundTruth

Figure 3. Comparative Results of Map Synthesis. The figure presents a side-by-side comparison of map images generated
by various models, including Our Model, against the Ground Truth, underscoring the effectiveness of each approach in
synthesizing accurate map details.

as latitude and longitude, to the potential enhancement of
the map generation process. Additionally, we plan to collect
and utilize our dataset, to be downloaded using the TerraFly
Mapping System developed and managed by the High Per-
formance Database Research Center at Florida International
University, as previously detailed by Mahara and Rishe [23].
This approach is predicted to provide us with satellite im-
ages with additional parameters, varying resolutions, and
imagery from different seasons. These variations may po-
tentially contribute to broadening the generalizability of our
model in generating maps from satellite imagery. Given the
significant role of data augmentation in contrastive learning,
we plan to explore and design new augmentation techniques
specifically designed for our domain.
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