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Abstract: This study presents a comprehensive survey on mixed impulse and Gaussian denoising filters which are applied to
an image in order to gauge the effects of this type of noise combination and to then determine optimal ways that can overcome
such effects. The random noise model considered in this survey is the combined effect of impulse (salt and pepper) and
Gaussian noise. After describing the noise models, the denoising filters which are applied to the images are classified and
explained according to their design structure, the type of filters they use, the noise level they could overcome, and the limitations
they face. This survey covers all related denoising methods and provides an assessment of the strengths and practical
limitations of the different classes of denoising filters.

1 Introduction
Noise remains as a ubiquitous phenomenon that affects in different
ways digital images. Generally, noise reduces the quality of an
image, resulting in the loss of important details and degrading key
features and textures. It can originate from many sources including
image sensors, scanners, as well as other elements that relate image
acquisition. Other sources include communication and transmission
devices, atmospheric disturbances, relative motion, high resolution,
and other unpredictable factors. Impulse noise and Gaussian noise
are the two common types of image noise, which are considered in
this survey. Impulse noise, also known as salt and pepper noise,
appears as black pixels in white regions and white pixels in black
regions. They are caused by A/D converter, transmission errors,
memory location, and faulty pixels in camera sensors [1, 2]. The
noise model is assumed as [3–5]

I c =

cmin Probability Ps

cmax Probability Pp

cmin < c < cmax Probability 1 − Pp − Ps

(1)

In (1), cmin and cmax are the minimum and maximum values which
are 0 and 255 in the 8-bit resolution images [6].

Gaussian noise is another type of noise which is additive and
independent. It can be the product of sources such as amplifiers,
shot noise [6], film grain noise [2], among others. The noisy image
is as expressed in

In i, j = I i, j + n(i, j) (2)

where In is the noisy image, I is the original image and n defines
the additive noise. One of the main effect of Gaussian noise is the
blurring of image details, with a pronounced effect especially on
the edges. The noise assumes a Gaussian distribution [2, 7, 8]. A
comprehensive survey on impulse and Gaussian denoising filters is
provided in [λ]. In this initial phase of this survey, the focus is
placed more on their effect on the image when they happen in
isolation. However, as this survey intends to show, the challenge of
denoising an image becomes even more complicated when these
two sources of noise are mixed. Therefore, the denoising filters are

implemented based on the nature of the mixed noise which is a
combination of additive and non-additive noise. A block diagram
showing the different classes of denoising filters is as shown in
Fig. 1. 

2 Denoising filters
2.1 Spatial filters

Spatial filters, as their name indicates, are defined in the spatial
domain in which the intensity of each pixel is changed based on the
intensities of its neighbourhood pixels.

2.1.1 Non-linear filters: A non-linear filter is a type of filter in
which its output is a non-linear function of its input.

Non-local mean (NLM)-based filtersμ The NLM filters are
based on the weighted mean value of all pixels in the image as well
as how similar they are to the pixel being processed. A
combination of NLM filter [10, 11] and trilateral filter [12], which
is an extension of bilateral filter [13], is used in a patch-based
weighted mean filter (PWMF) [14] and mixed noise filter (MNF)
[15].

The PWMF method is based on the convergence theorem in the
distribution for NLM [16] in order to show the rate of convergence
of the NLM filter in the presence of Gaussian noise. Convergence
distribution has two definitions; similarity and dependency. In its
similarity definition, the patches v Ni  and v N j  in the D × D

predefined window Ni D  are similar when they have the same
probability distribution. In l-dependent definition, if the distance of
random variables which correspond to the patches centred at (i) is
greater than an integer l ≥ 0, then the random variables are
independent. The trilateral filter [12], first detects the impulse noise
based on the statistic rank of ordered absolute differences
(ROADs), which is computed using the smallest Euclidean
distance within the predefined window Ni D  with centre i and
size D × D, and if it is large, the pixel being processed is
considered impulse noise. Afterwards, it uses ROAD statistic to
define the final weight.

Both PWMF and MNF methods are defined as in (3); this is the
same definition used for NLM and trilateral filters.
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v^i =
∑ j ∈ Ni D w i, j vj

∑ j ∈ Ni D w i, j
(3)

where v^i is the denoised pixel, vj is the grey value in a window
Ni D , and w i, j  is the final weight. The final weight is different
in PWMF and MNF methods. In PWMF, the final weight is a
multiplication of three exponential weights obtained from the
combination of NLM, consisting of two weights based on
Euclidean distance and l-norm, and one weight based on ROAD
statistics. In MNF, the final weight is a multiplication of two
exponential weights obtained from the combination of NLM which
contains a weight based on Euclidean distance and l-norm, and
another weight based on ROAD statistics. The PWMF method is
known to produce better results than the method in [17], ROLD-
EPR [18] which is a variant of ROAD statistics, and trilateral filter
[12]. MNF method on the other hand produces better results than
the trilateral filter [12].

The optimal weight mixed filter in [1λ] is based on the optimal
weights of NLM filter [20] and the filter in [21] with an
improvement ROAD statistic [12]. The proposed ROAD with a
mixture of Gaussian and impulse noises (ROADGI) as given in (4)
is shown to be more stable

ROADGI x0 =
1
k

∑
i = 1

k

ri x0 − σ (4)

where ri x0  is the ith smallest term in distance between data
patches, k is between 2 and the cardinality of set Ωx0, d

0 , Ωx0, d
0  is

defined as {x:0 < N∥ x − x0 ∥∞ ≤ d}, d is a positive integer, x

represents the pixels in the image and σ is the Gaussian noise level.
This could work in combination with weights optimisation and
joint impulsivity [12, 15]. Finally, the denoising filter can be
obtained based on modifications of the trilateral filter [12]. This
process is shown to lead to better performance than the trilateral
filter [12], the PARIGI method [22] and the filter with patch-based
weighted means [23].

Bilateral based filters: The robust local similarity filter in [24]
is based on the weighted averaging filter (i.e. bilateral filter) with a
new similarity measure among blocks. It uses the sum of distances
between a given pixel and the most similar pixels in the selected
window, which means similarity between a pixel under process and
its neighbouring pixels is measured instead of performing a
comparison of pixels directly. The proposed filter is defined in (5)

y =
∑ j = 1

N
wjxj

∑J = 1
N

wj

, wj = k
1
α

∑
k = 1

α

d j k (5)

where y is the output, N is the number of pixels in the image, wj is
weight, d j k  is the smallest Euclidean distance between xj and the
pixels in the selected window, k is the kernel function (e.g.
Gaussian). The results obtained in [24] show a better performance
than the fuzzy vector median filter and the fuzzy vector directional
filter in [25], the fuzzy ordered vector median filter and the fuzzy
ordered vector directional filter in [26], the adaptive nearest-
neighbour filter in [27], the adaptive nearest-neighbour
multichannel filter in [28], the directional distance filter in [2λ], the
alpha-trimmed vector median filter in [30], the hybrid directional
filter (HDF), the entropy vector median filter and the adaptive HDF
described in [31].

Fig. 1  Block diagram of the different classes of denoising filters
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In the proposed work median-based filters of the following
types are studiedμ

Non-adaptive median-based filters: The proposed filter in [32]
is a non-linear filter, and its implementation consists of the
following stepsμ (i) segment the image into different regions, (ii)
determine the Gaussian distribution, (iii) calculate the median
value of the pixels, (iv) remove the corrupted pixels, (v)
reconstruct the denoised image sections, and (vi) obtain the final
denoised image. This proposed filter was successfully applied to
computed tomography scans with low image quality.

Adaptive median-based filters: Adaptive median filters (AMFs)
in general yield good performance in eliminating impulse noise
[33, 34], and averaging filters yield good performance in
eliminating Gaussian noise instead. Their combination can thus be
very effective in eliminating these noises when mixed. An adaptive
weighted mask [35] is used to remove mixed noises based on the
median filter. The median filter which is good for salt and pepper
noise replaces the minimum or maximum values of the predefined
window. The size of the mask is defined according to some number
of minimum and maximum values. The weighted averaging is
defined for each pixel as (6) considering an N × N image f x, y

g i, j = ∑w f x, y × f x, y (6)

where w f x, y  is the similarity-based weight as
w f x, y = similarity f x, y /∑similarity f x, y ,
similarity f x, y = e 1/ f x, y − μ /σ i, j , and where μ is the mean and σ

is the standard deviation of the predefined window. According to
[18], the adaptive weighted mask produced better results than the
median and average filters.

Total variation filters: Total variation method assumes that the
total variation and consequently the integral of the gradient of the
signal are high. Therefore, by decreasing the total variation, a
denoised image with high similarity is obtained. The method
proposed in [36] is based on the total variation [37] which has two
stepsμ noise detection and total variation minimisation [38]. First,
AMF [3λ] and adaptive centre-weighted median filters (ACWMFs)
[40–42] are used. Afterwards, the deblurring is applied to the
image in the noise-free pixel locations by minimising the objective
function and also, solving a linear equation. Then, total variation
regularisation is applied to the image in order to smooth the noise
and remove the noisy pixels.

Another total variation-based method [43] detects the corrupted
impulse noise with AMF [3λ] (salt and pepper) or with the centre-
weighted median filter [44] (a random value impulse noise). Then,
a cost function which is a combination of total variation
regularisation [45] and l1 and l2 norms are applied to the image in
order to remove Gaussian and impulse noises, respectively. Finally,
the denoised image is obtained by using the iteratively reweighted
norm algorithm [46, 47] and by replacing the l1 norm by a weighted
l2 norm.

The filter described in [48] is a combination of L1
L

2 data fidelity
and total variation regularisation [4λ]. This minimisation is based
on the locally varying regularisation. Consequently, a spatially
local parameter is automatically selected based on locally adapted
algorithms [50] and primal-dual algorithm for locally adaptive total
variation [51]. The minimisation problem is as defined below

min
u ∈ BV Ω

α1∥ T1u − g1 ∥L
1 Ω + α2∥ T2u − g2 ∥L

2 Ω
2

+ ∫
Ω

λ x Du

(7)

where u is the image, Ω is an open bounded domain (Lipschitz
boundary), TiμLi Ω  is a bounded linear operator, gi is a datum,
αi ≥ 0 and α1 is large in the presence of dominant impulse noise
and α2 is large in the presence of Gaussian noise, λ is a function
and is selected automatically in this particular study, and ∫

Ω
Du

defines the total variation.

2.1.2 Combined linear and non-linear filters: The non-linear
median filter has good performance in removing impulse noise. If
the median filter is combined with a linear filter, the combination is
seen to be effective in removing the mixed impulse and Gaussian
noise. The filter in [52], uses a combination of median filter [53,
54], Wiener filter [53, 54], and bilateral filter [13] in order to
remove mixed noises. The authors of [52] claimed that wavelet
techniques produce blur image, therefore, this combination
(median filter, Wiener filter, and bilateral filter) produces a good
quality image with more details.

2.2 Fuzzy filters

2.2.1 Weighted averaging filters: The weighted averaging filters
are based on weights, where the centre value is often given more
weight. They apply weights to the pixels being processed by using
a sort of averaging in which the summation of them is used as the
denominator. The weights can be obtained in different ways one of
them is based on fuzzy logic. There are some methods which are
based on fuzzy weights [55, 56]. They use fuzzy peer group of the
central pixel in the selected window [57] in a two-steps approachμ
(i) impulse detection (ii) Gaussian smoothing. The first step
involves checking the certainty of the two fuzzy rulesμ (i) best
number of members determination m  for peer groups [58]
associated with the central pixel xm  and (ii) accumulated
similarity which is a summation of values of membership function
ρ  for all neighbouring pixels around the central pixel. If the

accumulated similarity is large and if the mth member is similar to
the central pixel in the selected window, then the certainty of the
second rule is computed. This certainty is equal to a multiplication
of these two values by using a t-norm product and is compared to a
predefined threshold ∈ 0, 1 . If it is equal or greater than the
threshold, the pixel being processed is assumed noise free,
otherwise, it is an impulse noise and the vector median filter
(VMF) method [5λ] is applied in order to remove it. The second
step involves, the fuzzy averaging among a fuzzy peer group of the
pixel being processed and is applied as below

Fout =
∑i = 0

m̂
ρ x i x i

∑i = 0
m̂

ρ x i
(8)

Another fuzzy weight-based filter [60] defines three fuzzy sets
(small, medium, and large) containing triangular membership
functions. Small weights are assumed for noisy pixels and larger
weights are considered for noise-free pixels. Finally, the centre of
gravity (COG) defuzzification [61, 62] is used in order to obtain
the weights. The denoised image is obtained based on a weighted
averaging filter as

x^i = ∑
i = 0

m2

wixi/ ∑
i = 0

m2

wi (λ)

where x^i is the estimated denoised pixel, wi is the associated fuzzy
weight, and xi (i = 1, 2, …, m2) are the pixels in the m × m selected
window.

2.2.2 Entropy-based filters: The concept of entropy refers to a
statistical measure of randomness that is helpful in analysing the
texture of the image. Some filters use this concept in order to
perform image restoration. The method proposed in [63] is based
on the fuzzy entropy concept. It consists of three phasesμ (i)
definition of the information sources based on region fuzzy entropy
as well as directional structure features, (ii) triangle module fusion
operator implementation, and (iii) application of a hybrid filter. It
compares the triangle module operator [64] as defined in (10) with
a predefined threshold. If it is less than the threshold, the hybrid
filtering method – AMAWM [65] is applied for denoising,
otherwise, the pixel is left unchanged

Fi, j R, D =
RD

1 − R − D + 2RD
(10)
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where R and D are the region's fuzzy entropy with 3 × 3 window
and direction gradient in the different directions. Fuzzy entropy is
based on the concept of entropy in which its variable is defined as a
membership function [66] [67]. Direction gradient is equal to a
maximum of the fuzzy entropy in different directions and assumes
the pixel being processed with the large gradient as an edge point.

2.2.3 Switching-based filters: Some filters in the noise detection
phase are based on the switching process in order to select the
optimal output. The method in [68] uses both fuzzy switching filter
and the bilateral filter to remove the impulse and Gaussian noise,
respectively. It generates four input images (by rotating at
multiples of λ0°) and then applies fuzzy sigma VMF (SVMF) [6λ]
in order to restore them. SVMF consists of two stepsμ (i) noise
detection and (ii) SVMF. In the noise detection step, the aim is to
determine the membership function degree of each pixel.
Therefore, in the first rule, the mean difference of neighbourhood
around the central pixel (xi) in the selected window is computed; if
it is large, the pixel being processed is assumed noisy. In the
second and third rules, the basic gradient of each eight neighbours
for each pixel is computed. In the second rule, if the basic gradient
is not large and the two related gradients (gradients in the same
direction) are large or vice versa, then pixel being processed in that
direction is assumed as part of the impulse noise. In the third rule,
if the basic gradient is large and the two related gradients are large
or vice versa, then the pixel in that direction is not part of the
impulse noise and should be kept as is. In the fourth rule, the
membership degree of each pixel in the fuzzy noise-free set is
checked, and if each colour pixel component is not noisy, then the
colour pixel being processed is assumed to be part of the impulse
noise. In the SVMF step, if the aggregated distance (L) is greater
than the threshold (T), the output of SVMF is replaced by the
vector median (x(1)), otherwise, it is left unchanged. L and T are
defined as

L = ∑
i = 1

N

∥ x(1) − xi ∥ and T = L +
λ × L

N − 1 (11)

where λ is a constant to be selected within a specified range and N
is the window size. Then, the four SVMF outputs are restored and
the output image is obtained by the median vector of these four
restored SVMF (median of colour samples from the same spatial
position in the restored images). Finally, a bilateral filter [13] is
applied in order to remove Gaussian noise. The results [68] show a
better performance than VMF [5λ] and bilateral filter [13].

2.2.4 Cardinality-based filters: Cardinality is defined as number
of elements in a set. The method in [70] which is an improvement
on simple fuzzy rule (SFR) [71] and VMF method [5λ] uses the
Cardinality concept. First, it detects the impulse noise by detecting
the 0's and 255's pixels in the scanning window. In order to
calculate similarity variable, three fuzzy rules which are based on a
membership function with high, medium and low sets are defined,
then the COG defuzzification [61, 62] is used in order to get
weights (wk). The weights are improved in such a way in which if
the pixel is impulse noise, then, the final weights are computed,
otherwise, they are left unchanged. Then, by setting a threshold
(0.8 proposed in [70]), a set of final weights which are greater than
predefined threshold is selected (G). Therefore, in order to
eliminate denoised pixel, the cardinality (C) of G is used. If C is
>1, the alpha trimmed mean technique is applied to the noisy pixel
as shown in (12), otherwise, the convex hull technique is applied
[72] to the noisy pixel instead.

Alpha trimmed =
1

C − y
∑

r = y + 1

C − k

G, and y = C ×
0.35

2 (12)

with k being the number of weights used. Results given in [70]
show that alpha trimmed mean technique produced better
performance than VMF [5λ] and SFR [71].

2.3 Statistical filters

These types of filters are based on key statistical parameters. This
survey divides them into the following categoriesμ (i) norm-based
filters, (ii) Non-local similarity-based filters, and (iii) maximum
likelihood estimation (MLE)-based filters. Details on these
categories are described in the following sections.

2.3.1 Norm-based filters: Norm is a statistical average and can be
defined as a function in which the size or length of each vector (in
a vector space) is set to be positive.

Sparsity-based filters: Sparse approximation can be defined as a
sparse vector in which a system of equations is solved. By adding
some information while preventing overfitting, sparse
regularisation is obtained. Both sparsity and sparse regularisation
select the best input variables (reduced input variables) in order to
learn about the output variables. A sparsity-based algorithm in [73]
proposed a l1 − l0 minimisation in which l0 is used for impulse
detection and l1 is used for sparse representations over an unknown
dictionary. Based on the approach considered in [74], the method
presented in [73] has three phasesμ (i) impulse detection based on
AMF [3λ] and ACWMF [40–42] methods, (ii) restoration of the
image from an unknown dictionary by using proposed modified K-
SVD (MK-SVD) [73, 75] with image reconstruction by averaging
the patches and noisy image, and (iii) implementation of an
additional l1 norm in order to carry out a false detection and
alternating l1 − l0 minimisation. The K-SVD is a dictionary learning
algorithm via a singular value detection and it is a generalisation
form of the k-means clustering algorithm. MK-SVD does not have
a good performance in the presence of high impulse noise,
therefore, step three is applied in order to improve the denoising
results. From the results obtained, this three-step method
outperformed AMF [3λ], ACWMF [40–42], MK-SVD, the two-
phase deblurring/denoising (TPD), and other methods introduced
by Cai et al. [74, [76], Wang and Wu [77], and Nikolova [78].

The method in [7λ] is based on an approach which uses the
sparse representation of patches in a dictionary. Also, l0-quasi and l1

are responsible for sparse representation and sparsity of residual,
respectively. The method has also three stepsμ (i) dictionary
learning, (ii) impulse detection, and (iii) iterative minimisation
algorithm. In the first step, the offline dictionary is learned by
independent component analysis, claiming better results than 1-
based dictionary learning [80]. In the second step, the ROAD [12]
algorithm is used for impulse detection. In the third step and for
every patch, a non-convex minimisation problem as (13) is solved
iteratively by a combination of soft [81] and hard thresholding
[82].

min
x, f

1
2

∥ Ω ⊗ (y − xΦ − f ) ∥2
2 + λ1∥ x ∥1 subject to ∥ x ∥1

≤ λ2

(13)

where y is the noisy image, Ω is the location of pixels which are
not affected by impulse noise, Φ is the learned dictionary, x is the
vector of coefficients, ⊗ is the component-wise multiplication, f  is
the sparse vector of pixels which are affected by impulse noise, λ2

and λ2 are regularisation parameters. It claims to have better results
than the method in [73] and the method in [17].

The weighted encoding with sparse non-local regularisation
(WESNR) is proposed in [83]. It does not have the impulse noise
detection step because of generating artifacts in high noise levels.
The image can be defined as

x = αΦ (14)

where x is the original image, Φ is the dictionary and α is a coding
vector. In order to denoise the image, optimal estimation of α

should be calculated by encoding the noisy image (y) over the
dictionary. Owing to the two different noise categories, the weight
(close to 1 for pixels corrupted by Gaussian noise and smaller
weights (w) for pixels corrupted by impulse noise) is assigned to
residuals (y − αΦ), therefore, an optimal estimation for α is
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defined in the presence of mixed noise as (15) which is based on
sparse regularisation

a^ = arg min
α

∥ W
1/2(y − αΦ) ∥2

2
+ λR(α) (15)

where λ is the regularisation parameter, R(α) is the regularisation
term given as λ∥ α − μ ∥1  and μ is the non-local coding vector.
The regularisation term is obtained by integrating sparsing and
non-local self-similarity (NLSM) together. This integration can
improve WESNR. In order to learn a set of PCA dictionaries of
natural images, the paper [83] used the proposed algorithm in [84].
It claims that has better result than ROR-NLM [85], Cai et al. [74],
l1 − l0 [73], TF [12] and M + BM3D [86].

In-painting-based filters: Image in-painting occurs when there
are damaged image pixels and missing image pixels. The image is
reconstructed from background information. The proposed method
in [87] is based on two algorithmsμ (i) in-painting using l0

minimisation (ii) inpainting adaptive outlier pursuit (AOP). Also,
in order to detect the impulse noise, it [87] uses AMF [3λ] and
ACWMF [40–42]. The difference between two algorithms is
related to l0 term, which in first algorithm is put in objective
function and in the second algorithm l0 is constraint. Also, the AOP
can find the sign flips (outliers) and reconstruct the data by using
the other correct measurements. The performances of both methods
are similar. Finally restored image is obtained by iteratively solving
the minimisation problem for both algorithms.

Low-rank approximation-based filters: Low-rank
approximation is a minimisation problem and it is based on
Frobenius norm in which the cost function calculates the fit
between a given data and an approximating optimisation variable,
subject to a constraint that the approximating the optimisation
variable has reduced rank. The method in [88] is based on low-rank
approximation and uses the weighted low-rank model as weighted
low-rank approximation (WLRA) [8λ, λ0] or representation
(WLRR) [λ1, λ2]. The proposed WLRA and WLRR which are
based on LRA [λ0] and LRR models are shown in (16) and (17),
respectively.

min
XD

λ

2
∥ W ⊙ (Y − X) ∥F

2 +
β

2
∥ X − D) ∥F

2 + ∥ D ∥∗ (16)

min
XZ

λ

2
∥ W ⊙ (Y − X) ∥F

2 +
β

2
∥ X − XZ) ∥F

2 + ∥ Z ∥∗ (17)

where X is a low-rank matrix and noiseless counterpart of Y, also,
Y is a matrix which its columns are a sort of vectorised patches, D
and Z are low-rank matrices, ∥ D ∥∗ is nuclear of D, ∥ Z ∥∗ is
nuclear of Z, ⊙ is the element-wise product and β, λ > 0 are
constants, W is exponential assigned weight to residual
approximation (Y − X) and ∥ . ∥F is the Frobenius norm.

WLRA and WLRR show a good performance in removing the
impulse noise by choosing appropriate weights. For corrupted
pixels, the weights are small, but, for uncorrupted pixels, the
weights are close to 1. Then, the aforementioned equations are
solved by alternatively solving for X, W and D(or Z). Finally, the
noisy image is reconstructed by putting non-local similar patches to
a matrix as well as finding WLRA or WLRR. It claims that has
better performance than AMF [3λ], median and AMF coupled with
spatially adaptive iterative singular- thresholding algorithm [λ3],
median filter coupled with median coupled with BM3D (M/AMF-
BM3D) [λ4], AMF coupled with BM3D (AMF-BM3D) [λ5],
ROR-NLM [85], median and AMF coupled with LRR/LRA (M/
AMF-LRA/LRR).

Another low-rank approximation-based algorithm is defined in
[λ6]. It is based on Laplacian scale mixture (LSM) modelling and

non-local low-rank regularisation. Impulse noise is modelled with
LSM distribution and after noise estimation, a non-local low-rank
approximation is used for denoising process. Non-local low-rank is
based on NLSM and low-rank approximation of the image. In
order to model the impulse noise with LSM, the maximum a
posteriori (MAP) estimator is defined in (18) to estimate the x, s,
and, σ values.

x, s, θ, σw = arg min
1

2σw
2 ∥ y − x − s ∥2

2

+ 2∑
i

si

θi
+ 2∑

i

log θi + ηJ x + Nlog σw

(18)

where θ is the standard deviation, Λ is diag (αi), y is the observed
noisy image, x is the original image, αi is the random variable,
which has a Laplacian distribution, σw is the variance of AWGN, η

is the free parameter, N is the number of pixels, ε is the small
constant, wi is the AWGN at position i, si = yi − x − wi is the outlier
component caused by impulse noise and J(x) is the energy of the
configuration of x. For non-local rank regularisation, a combination
of LSM model in (17) and low-rank regularisation model in [λ7] is
used with the assumption that each similar patch is dependent.
Then, the proposed objective function will be as expressed as (see
(1λ)) . Also, In order to use a smooth surrogate of rank (.),
η∑rank (R

~
jx) is replaced by η∑ j L(R

~
jx, ε). Where R

~
jx is a matrix

formed by the set of similar patches, L x, ε = ∑r = 1
r0 log(σ x + ε),

x is a matrix with size (n × m), σr(x) is the rth singular value of x,
r0 is min (n, m).

Finally, the denoising is improved by exploiting group sparsity
of similar patches. Finally, (17) is solved by using the optimisation
algorithm for θ, α, x, and σw. Empirical results show that the LSM
method outperformed the TPD method or Cai et al. [76], the sparse
and low-rank regularisation (SLR) denoising method [λ8], the
WESNR method [83], the well-known BM3D [λ5], non-locally
centralised sparse representation method [λλ] and lp-norm (instead
of LSM) with NLR (l0/l1-NLR).

2.3.2 Non-local similarity-based filters: In non-local similarity-
based filters, several similar patches are used to reconstruct the
under-processed patch. A non-local similarity filter is introduced in
[100] which has several steps. First, it proposes the use of a
statistical adaptive curvelet thresholding criterion in order to
characterise the disruptions that appeared during the denoising
process. Second, it uses a new statistical technique (De-JASP)
based on joint adaptive statistical prior (JASP), which is a
combination of local smoothness and geometry regularity of an
image. This combination is obtained by using the discrete curvelet
transform [101] and NLSM prior in the three-dimensional (3D)
transform domain [102] with a regularisation parameter (it is
multiplied to NLSM term) in order to control for the tradeoff
between the two-terms. Then, a regularisation-based framework is
considered by putting the proposed variational JASP (De-JASP) as
ƴ(x) to the minimisation process defined in

min
u

1
2

∥ φ ◯ (y − x) ∥l2

2 + λY(x) (20)

where y is the noisy image, x is the clean image, λ is the
regularisation term, ◯ is an element-wise multiplication, φ is a
degradation matrix. Finally, the alternating minimisation problem
in (17) is solved by using the split Bregman iterative algorithm
[103]. This method has yielded better results than the iterative
framelet-based approximation/sparsity deblurring algorithm

x, α, θ, σw = arg min
1

2σw
2 ∥ y − x − Λθ ∥2

2

+ 2∑
i

ai + 2∑
i

log(θi + ε) + η∑
j

rank(R
~

jx) + Nlog σw

(1λ)
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IFASDA [104], and image denoising via joint statistical modelling
[103].

2.3.3 MLE-based filters: MLE is based on a statistical model and
it is a special case of MAP estimation. In order to perform
parameter estimation, MLE finds the values that maximise the
likelihood of them. The PARIGI method in [22] is based on a
patch-based approach and has two stepsμ in the first step, impulse
noise is estimated by using ROADs [12] in which summation of
four smallest distances are calculated from the pixel being
processed in the selected window. Then, the summation is
compared with a threshold (70 is proposed in [22]), if it is greater
than the threshold, the under-processed pixel is noisy. In the second
step, the estimator at each point is computed, therefore, a
corresponding subset (ρ) of the n-nearest neighbours of square
image patch defined in the patch domain for distance (Dw) is
calculated. Dw is based on the binomial distribution probability as
defined below

Dw P, Q = ∑
k = 1

(2N + 1)2

wk P − Q (k)
2 (21)

wk = B 2N + 1 2, k, (1 − p)2 (22)

where wk are weights, P − Q  is the distance between two patches,
p is the impulse noise, 2N + 1 2 is the patch size, k is the
parameter of the binomial distribution (0 ≤ k ≤ n) and n is the
number of weights. Maximum likelihood estimator MLE
u^ x , σ^ x  is computed at each point based on values in the

corresponding subset (ρ) centred at x. Finally, in order to remove
the remaining impulse noise, another estimated image u2 x  is
obtained using (23) and (24) and the denoising process is repeated
for u2 x  to obtain the denoised image u^2 x . This process may be
repeated as needed.

u2 x = u^ x .1x ∈ M + u x . (1 − 1x ∈ M) (23)

M = x ∈ Ω; u^ x − u x > σ^ x (24)

where Ω is the image domain, u^ x  is the denoised image, u x  is
the clean image, and σ^ x  is the estimated variance.

2.4 Supervised learning algorithm-based filters

Supervised learning is a machine learning task in which the output
is known for the network on the basis of a labelled training set
[105]. It iteratively makes predictions on the training data. The
method in [106] is based on a switching scheme with two noise
detectors and two estimators for noise removal. Most of the noise
is captured with the first detector and the remaining noise hidden in
the image details or close to the edges is detected by a second
detector. Each detector has its own estimator based on median and
median absolute deviation (MAD). Also, in order to build
detectors, genetic programming (GP) is used [107, 108]. It requires
some steps including representation, initialisation, selection,
terminal set, function set, and training set to build the detectors. In
training sets, the first detector is trained on a data set with a similar
distribution of a typical noisy image. Although most of the noise is
identified by the first detector, to identify the remaining noise, the
data goes through a second detector. In the second detector, the
data from the first detector are filtered and only the noise-free
samples are selected in the trained detector and checked whether
they are out of GP classification or not. If the pixel is out of GP
classification, it is noisy, otherwise, it is noise-free. Finally, the first
estimator defines the noisy pixel as

φ
1

xi j =
1

K
2 − 2[αK

2]
∑

j = αK
2 + 1

K
2 − [αK

2]

x( j) (25)

where x is the input image, x( j) is the jth order of elements of
filtering window (WK(i, j)), α is the trimmed mean, and K is the
window size. The second estimator is as shown in (26). It is based
on centre-weighted median (CWM) [44] and is appropriate for
leaving the filtered pixel unchanged in the case of false detection

φ
2

xi j = CWMw xi j = med Wk(i, j)♢w (26)

where ♢ is w repetitions of the central pixel from the window
(WK(i, j)).

2.5 Numerical method-based filters

Finite element method (FEM) is a numerical approach used to
solve the problem in which a vibrational formulation, post-
processing and one or more solution algorithms are used. The
method in [10λ] is based on FEM [110–112] and consists of three
stepsμ (i) decomposition of the domain (Ω) into triangles or
quadrilaterals, (ii) defining local basis functions in each triangle or
quadrilaterals, and (iii) combine the local basis functions in order
to form a set of global basis functions which span the finite
element space. In the presence of only impulse noise, the scattered
data interpolation (finite element interpolation [110, 112, 113])
based on Delaunay triangulation [114] (decomposition into
triangles) or Voronoi cell (decomposition into polygons) [115, 116]
can detect and remove noisy pixels. Interpolation phase finds the
image function over piecewise polynomial interpolant. In the case
of mixed impulse and Gaussian noise, it is necessary to smoothen
the image. Therefore, the finite element smoothing is applied by
minimising the functional equation involving the gradient of a
finite element function as shown in (27). This is equivalent to the
abstract vibrational problem over the finite element space function
(V).

min
u ∈ v

∑
i = 1

N

u xi, yj − zi
2 + λ∫ ∥ ∇u ∥2dxdy (27)

where u is the piecewise polynomial space which is finite element
space, zi is the function given on a set of scattered points
({(xi, yi)}i = 0

N ),  is the positive constant and
V = u ∈ C

0 Ω uT ∈ p T , T ∈ T , Ω is the convex hull of the
set of scattered points, T is the structured decomposition of the
rectangular domain Ω into rectangles or triangles, p T  is the linear
or bilinear polynomial space on T (triangle or rectangular), C0 Ω  is
the space of a continuous function on Ω.

2.6 Morphological operation-based filters

These are non-linear operations based on the morphology of
features in an image not necessarily related to numerical values.
Dilation and erosion are two such morphological operators.
Dilation adds pixels to the boundaries in the image and erosion
removes the pixels on the boundaries. The method in [117] is based
on the morphological operation. It proposes several toggle
mappings with different criteria which are applied in order to detect
the noise. The criteria for noise detection is contrast probability at
the pixel under consideration. Contrast probability is defined as
local contrast (absolute value of the difference between eight
neighbouring pixels and mean value of these neighbouring pixels)
over a summation of eight neighbouring pixels in the 3 × 3 selected
window (or μ = 1 size). In the selected window, if contrast
probability at the pixel point is greater than critical probability
which is defined according to window size (or different  size) as
( 1/ 2μ + 1 2μ + 1 − 1) [118], then, the pixel being processed is
considered noise. In order to eliminate the noise, toggle mappings
are defined. They select the central pixel in which the noisy central
pixel is replaced with morphological erosion and corrosion based
on the image contrast.

The first proposed toggle mapping is based on the opening and
closing operations. It can improve the contrast without any extra
contours, but, it has a disadvantage in that it eliminates
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unconnected narrow regions in which the structuring element does
not fit. The noise criterion is contrast probability checking at the
pixel point, if it is less than the critical probability, the pixel is left
unchanged, otherwise, it is replaced with a multiplication of
opening and closing operation.

The second proposed toggle mapping is based on white top-hat
[118] (the difference between the original and the morphological
opening image) and allows detection of noise only in white
components and does not use a contrast measure nor a probability
criterion. The noise criterion is top-hat checking at the pixel point;
if it is equal or less than mean white top-hat, it is left unchanged,
otherwise, it replaces with a multiplication of opening and closing
operation. Then, the inverted image is cleaned in order to remove
the noise.

The third toggle mapping is based on white top-hat. The noise
criterion is top-hat checking at pixel point; if it is equal or less than
mean white top-hat, it is noise, otherwise, it is replaced with a rank
filter [11λ]. A rank filter ((ρμ, k), μ = 1, 1 ≤ k ≤ 9, k is the number
of applied filter) is obtained when the pixel in the structuring
element is sorted in an ascending way. Then, the inverted image is
cleaned to remove the noise in the image.

The fourth toggle mapping is based on the mean filter
approximation. The noise criterion is top-hat checking at pixel
point. If it is equal or less than a morphological transformation
(opening and closing of white top-hat), it is left unchanged,
otherwise, it is replaced with the multiplication of the mean value
of opening and closing. Then, in order to filter noise in dark
components, the inverted image is cleaned to remove the noise.

The fifth toggle mapping is based on gradient transformation.
The noise criterion is an internal gradient which is the probability
of the difference between the original image and dilation/erosion at
the under-processed point. If it is equal or less than critical
probability, it is left unchanged, otherwise, it is replaced with a
multiplication of the mean value of opening/closing and closing/
opening over 2 (α) [120]. In the case of white and dark component
filtering, the noise criterion is changed in such a way that if the
probability of the difference between the original image and
dilation/erosion at pixel point is equal or less than a morphological
transformation (opening and closing of the internal gradient), it is
left unchanged, otherwise, it is replaced with α.

2.7 Transform domain-based filters

2.7.1 Framelet-based filters: These filters are processed in the
domain which is not their original domain. There are some
transformation domains such as frequency, wavelet [121–123],
curvelet, and Framelet. The method in [124] proposed a frame-
based [125] iterative algorithm for denoising. The methods such as
AMF [3λ], ROAD [12], ACWMF [126] and MAD [127] are used
as an initial step to detect/estimate the impulse noise. Then, a
minimisation scheme is solved in order to remove the mixture of
impulse and Gaussian noise as

min F c, Ω =
1
2

∥ XΩ ◯ (Dc − y) ∥ 2
2 + ∥ Λ ◯ c ∥1

+
1
2

∥ (I − D
T
D)c ∥ 2

2 + lL Ω
(28)

where L = 1 − p d , lL Ω = 0 if ∥ XΩ ∥ ≤ L otherwise
lL Ω = ∞, Ω is the unknown observable region, X is the
continuous function, y is the observed noisy image, Λ is the non-
negative threshold value, d is the total number of pixels in the
image, D is the tight frame, D

T is the transpose of D, p is the
probability of impulse noise in the region Ωc by Bernoulli trial and
c is the frame coefficients of the image under a tight frame D.

The frame-based iterative algorithm consists of two sub-
problems which are solved iteratively and alternatively. In the first
sub-problem, a frame-based convex minimisation with sparse and
redundant directional representation is solved by using a balanced
approach [128–130]. It is based on directional tensor product
complex tight framelets [125, 131] which generates tight frames
[128, 130]. It then restores the image in the transform domain by

using these tight frames. In the second subproblem, the location of
the impulse noise is estimated through l0 minimisation. The results
of this frame-based approach outperform those obtained with the
method in [17], k-alternating least squares [132] and AOP [68].

2.7.2 Wavelet-based filters: The filter in [133] is based on a
data-driven tight frame [134] which is a discrete compact wavelet
frame. The tight frame uses the structural characteristics of the
input image in order to perform image restoration. In the first step,
a data-driven tight frame is used for a differential variation model
as

min
u

λ1∥ u − b ∥1 +
λ2

2
∥ u − b ∥2

2 + ρ∥ Wu ∥1 (2λ)

where λ1, λ2, and ρ are positive smoothing parameters, u is the
original image, b is the noisy image, ∥ . ∥ is the fitting term and
Wu is a tight wavelet frame in which ∥ Wu ∥1 is smoothing term.
Here, the sparsity is used as a priori hypothesis of solutions. In the
second step, the equation given earlier in (27) is solved using the
augmented Lagrangian multiplier (ALM) method and the sub-
problem is solved by the accelerated proximal gradient method
[135]. The filter in [133] is shown to yield better performance than
those filters in [135, 136].

2.7.3 DCT-based filters: The filter described in [137] is used for
hyperspectral images. It assumes that each column of the image
can be sparsely presented in the wavelet or DCT transform
domains. This filter utilises the spatio-spectral correlation by
expressing the image (X) as a sparse Z = D1XD2 in which D1 is
used for the spatial dimension (2D transform) and D2 is used for a
spectral dimension (1D transform). The image can be defined as
D1

T
ZD2

T because of the orthogonality of the DCT transform.
Finally, the denoising problem can be expressed as a minimisation
process as

min
Z, N2

∥ Z ∥1 + ∥ N2 ∥1 + λ∥ Y − D1
T
ZD2

T − N2 ∥F

2

(30)

where λ is the regularisation parameter which is assumed to be 0.5,
N2 is the impulse noise, N1 is the Gaussian noise defined as
Y − X − N2, , with Y defining the noisy image. The expression
∥ Y − D1

T
ZD2

T − N2 ∥F

2
 is minimised in order to reduce the effect of

Gaussian noise. Then, the Split–Bregman method [138] is used for
solving the equation defined earlier in (27). The filter in [137] is
shown to have a better performance than the low-rank matrix
recovery LRMR used in [13λ].

3 Comparison of methods
Table 1 provides the key points and limitations one ought to
consider in the implementation of the numerous filters reviewed in
this article. These limitations are based on empirical evaluations as
reported in the literature and as implemented in this study.

For a comparative assessment, the most popular and prevalent
methods are considered, and their performances are evaluated
based on their implementation and the results they yield. Tables 2
and 3 compare the averaged peak signal to noise ratio (PSNR) and
averaged image perceptual quality index [feature similarity index
(FSIM)] [140] of some of the discussed mixed impulse and
Gaussian denoising filters on 12 images commonly used in the
literature on this particular research problem. The images of Lena,
F16, Leaves, Boat, Couple, Fingerprint, Hill, Man, Peppers,
Painting and Average are used for comparative purposes. Most of
the methods listed in Tables 2 and 3 are based on statistical
algorithms and their structural metrics are calculated on the
average of the 12 testing images similar to those used in [83]. The
comparison is done in the presence of impulse noise with 30%,
40%, and 50% noise intensity levels and Gaussian noise with the
standard deviations of 0.1, 0.2, and 0.25. From the results provided
in Tables 2 and 3, WESNR [83] shows in general a better
performance among all other statistical algorithms studied.
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Most of the methods in Tables 4 and 5 are based on the
statistical methods (norm-based filters) and the PSNR and FSIM
are calculated on the basis of 12 testing image (Lena, FG, Boat,
Hill, Peppers, Man, Couple, AP, Cloth, Vase, Bush, and Flower) as

in [λ6]. The comparison is done in presence of impulse noise with
10%–50% noise intensity levels and Gaussian noise with the
standard deviations of 0.1–0.5. As tables show, low-rank

Table 1 Type of filters and current limitations
Type of filter Limitations
spatial filters averaging caused to blur the edges and consequently image
total variation filters inappropriate estimation of the number of iteration caused to loss the details and over-smoothing
NLMs filters complexity of weighting cause to computational burden
fuzzy-based filters in the case of good mathematical descriptions and solutions, time and memory are two limitations for

complete mathematical implementation
non-local similarity-based filters detection of the best patches

complexity cause to computational burden
difficulty obeying quality constraints

maximum likelihood-based filters difficulty obeying quality constraints
sensitive to choose initial values

it needs large samples to get optimal result
the numerical estimation is non-trivial

the mathematic is often non-trivial, particularly confidence intervals for the parameters is needed
sparsity-based filters principled way to choose a solution for problem cause to computational burden and time consumption

solving a noise-aware variant cause to sparse approximation and representation problem
inpainting-based filters reproduction of large texture regions

unable to recover partially degraded image
low rank approximation-based filters complexity and high dimension of the matrix in order to solve the problem cause to computational burden.

It could be a serious practical problem in the image
GP-based filters very remarkable computing resources required
finite element-based filters there is no general close-form solution (it can change in various parameters)

the solutions are based on an approximation
it has inherent errors which can cause to corrupt the image

morphological-based filters it uses small images as structuring elements and acts as a moving probe that sample each pixel of image.
It moves a fixed direction across the image, therefore, an artifact appears in the shape of structuring

element
Framelet-based filters their orientation selectivity is limited to only two directions

complexity cause to computational burden
wavelet-based filters scale and threshold selection are major problems, and avoiding blurring causes information loss
 

Table 2 PSNR comparison
Type of denoising filter

Gaussian noise (standard deviation) Impulse noise (level), % ROR-NLM [85] Cai et al. [74] l1 − l0 [73] WESNR [83]
0.1 30 27.6027 29.8790 31.8109 31.3600

40 26.5590 28.9290 30.6754 30.6309
50 21.2990 27.8354 29.4290 29.6663

0.2 30 25.1118 27.6600 28.9027 31.4636
40 24.1227 27.0627 28.1281 28.2509
50 21.4790 25.4827 27.1900 27.4809

0.25 30 24.1327 26.7172 27.8636 27.9100
40 23.0354 26.2172 27.1436 27.3154
50 20.4409 25.4827 26.3172 26.5718

 

Table 3 FSIM comparison
Type of denoising filter

Gaussian noise (standard deviation) Impulse noise (level), % ROR-NLM [85] Cai et al. [74] l1 − l0 [73] WESNR [83]
0.1 30 94.5000 95.6909 97.0154 96.7063
— 40 93.1700 94.5800 96.1927 96.1700
— 50 88.8263 89.5381 95.0400 95.3563
0.2 30 88.2336 92.3518 93.7163 93.6018
— 40 86.0090 91.2409 92.7163 92.8263
— 50 80.9609 89.5381 91.5227 91.7854
0.25 30 85.1118 90.5818 91.9881 92.2709
— 40 82.5336 89.5054 91.0718 91.2309
— 50 77.2509 87.8072 89.8200 90.1327
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approximation-based algorithm [λ6] has a better performance
among other norm-based filters.

Fig. 2 shows a visual quality comparison of some state-of-the-
art methods on the basis of one testing image, the Vase image as in
[λ6], which is deemed sufficient for this type of comparison. As the
results clearly indicate, LSM-NLR [λ6] has a better performance
among all other denoising filters.

As reflected in the aforementioned Tables and Figures,
statistical norm-based filters have yielded better performance
among the filters that were implemented. In many algorithms, the
characterisation of the complex distribution of mixed noise remains
a major challenge. Some of them use conventional l-norms which
don't perform well in the presence of mixed noise. WESNR [83]
exploits the weighted encoding and sparse non-local regularisation

to address such a challenge. Low-rank approximation-based filters
have better performance than sparsity-based filters such as
WESNR [83] and BM3D [λ5]. There is a problem in low-rank
approximation-based filters in which they require a threshold
selection in order to detect the Impulse noise. LSM-NLR filter [λ6]
solved this problem by adaptively learning to define a threshold
from the predicted noisy image and then use a non-local low-rank
regularise (NLR) in order to complete the denoising process.

The PSNR measure is defined asμ

PSNR = 10log
( max (I))2

MSE
(31)

Table 4 PSNR comparison
Type of denoising filter

Gaussian noise
(standard deviation)

Impulse noise (level),
%

TPD [76] BM3D [95] WESNR [83] SLR [98] L1-NLR [96] L0-NLR [96] LSM-NLR [96]

0.1 10 28.78 30.57 30.24 30.50 31.25 31.36 32.30
20 27.97 29.46 29.36 29.18 29.46 29.86 30.82
30 27.15 28.30 28.40 27.82 27.74 28.55 29.37
40 26.02 26.67 27.02 2620 26.74 26.92 27.24
50 24.92 24.54 25.30 24.18 24.72 25.18 25.36

0.2 10 27.96 27.96 27.69 27.62 28.62 28.90 29.22
20 25.84 27.21 27.09 26.79 27.50 27.78 28.27
30 25.29 26.36 26.42 25.86 26.21 26.74 27.28
40 24.37 24.97 25.24 24.54 24.83 25.37 26.08
50 23.42 23.22 23.86 22.88 23.19 24.00 24.62

0.3 10 24.58 26.08 26.11 25.60 26.56 26.95 26.98
20 24.21 25.39 25.55 24.85 25.49 25.92 26.20
30 23.76 24.65 24.92 24.03 24.30 25.00 25.39
40 22.95 23.35 23.74 22.83 23.11 23.74 24.33
50 21.99 21.77 22.30 21.35 21.62 22.52 23.18

0.5 10 22.19 23.66 23.16 22.83 23.83 24.14 24.27
20 21.94 22.99 22.59 22.18 22.73 23.20 23.61
30 21.59 22.29 21.84 21.44 21.59 22.31 22.85
40 20.87 21.05 20.78 20.35 20.73 21.14 21.95
50 19.83 19.62 19.35 19.08 19.34 20.08 20.73

 

Table 5 PSNR comparison
Type of denoising filter

Gaussian noise
(standard deviation)

Impulse noise (level),
%

TPD [76] BM3D [95] WESNR [83] SLR [98] L1-NLR [96] L0-NLR [96] LSM-NLR [96]

0.1 10 95.59 97.11 96.65 97.11 97.48 97.57 97.63
20 94.77 96.43 96.06 96.29 96.63 96.78 96.99
30 93.78 95.43 95.25 95.15 95.32 95.78 96.17
40 91.89 93.38 93.69 93.16 93.25 93.93 93.88
50 89.60 89.58 90.99 89.63 90.23 90.96 91.00

0.2 10 93.76 93.76 92.82 93.66 94.29 94.77 94.78
20 90.49 92.82 92.12 92.58 93.31 93.56 93.80
30 89.43 91.52 91.27 91.18 91.91 92.15 92.67
40 87.13 88.96 89.44 91.18 89.05 89.78 90.83
50 84.70 85.19 87.07 88.73 85.86 86.70 87.92

0.3 10 86.98 90.11 90.19 85.14 91.06 91.67 91.68
20 85.12 88.81 89.32 90.15 89.66 89.86 90.42
30 84.92 87.33 88.30 88.73 87.91 87.96 89.17
40 82.45 84.48 85.95 87.06 84.47 85.06 86.59
50 79.89 80.73 82.93 84.32 81.13 81.93 83.78

0.5 10 79.84 84.04 82.71 80.72 85.19 85.54 86.31
20 78.55 82.21 80.92 83.93 83.09 82.66 84.60
30 77.31 80.51 78.94 82.02 80.82 79.86 82.72
40 74.88 77.52 76.17 77.06 76.79 76.39 79.66
50 72.37 74.04 72.51 73.71 73.53 73.74 76.80
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where MSE is the mean square error as in (32) with max (x)
defining the maximum pixel intensity of image I

MSE =
∑i = 0

M − 1 ∑ j = 0
N − 1 (I i, j − D(i, j))2

M × N
(32)

Here I is the original image, D is the denoised image, M and N
define the image's height and width. This measure is used to
estimate the level of noise remaining in the denoised image. The
FSIM [31] measures the degree of similarity and quality between
the noisy original image and the denoised image. Equation (33)
provides the formulation used for FSIM

FSIM =
∑i∫ Ω SL i . PCm(i)

∑i∫ Ω PCm(i) (33)

where Ω is the whole image partial domain,
PCm i = max PC1 i , PC2 i , PC maps extract from the noisy
image and denoised image, SL i  is the similarity at the location i.
Note that in Tables 2–5, higher numbers are associated with better
results.

4 Conclusion
Through this literature survey, we have presented the different
classes of mixed impulse and Gaussian denoising filters and
addressed the challenges involved in overcoming the combined
effect of these two types of noise applied simultaneously on
images. For comparative purposes, a randomly mixed noise model
comprised of impulse (salt and pepper) and Gaussian noise is
considered. An in-depth analysis of the noise models and denoising
filters is presented. With this analysis, these noise models and
denoising filters are classified according to their design types and
domains of application. A comparative assessment is also provided
in terms of their performance and the limitations they still
experience. The broader implications of this research are outlined
with two perspectives in mindμ (i) discuss the design merits and
application domains of these filters to help engineers and
researchers solve related research problems in imaging, and be able
to contend with the pervasive presence of noise, especially as it
relates to the mixed effect of Gaussian and impulse noise and (ii)
provide context on these denoising filters in terms of strengths and
limitations of the type of filters considered in order to explore new
avenues of research that could improve the performance of these
filters. For these reasons, development of denoising algorithms

must (i) reduce the blurring effects of smoothing, (ii) provide ideal
selection of hyperparameters, (iii) perform accurate noise
detection, (iv) optimise the denoising process, and (v) lessen the
computational burden in the implementation process. Addressing
these issues improves the prospects for a more realistic denoising
process and makes such methods amenable to other domains of
application.
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