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ABSTRACT OF THE DISSERTATION 

 GEOSPATIAL DATA INDEXING ANALYSIS AND VISUALIZATION VIA WEB 

SERVICES WITH AUTONOMIC RESOURCE MANAGEMENT 

by 

Yun Lu 

Florida International University, 2013 

Miami, Florida 

Professor Naphtali Rishe, Major Professor 

With the exponential growth of the usage of web-based map services, the web GIS 

application has become more and more popular. Spatial data index, search, analysis, 

visualization and the resource management of such services are becoming increasingly 

important to deliver user-desired Quality of Service.  

First, spatial indexing is typically time-consuming and is not available to end-users. 

To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and 

Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial 

database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k 

Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on 

interactive maps to facilitate the user’s data analysis. 

Second, due to the highly complex and dynamic nature of GIS systems, it is quite 

challenging for the end users to quickly understand and analyze the spatial data, and to 

efficiently share their own data and analysis results with others. Built on the TerraFly Geo 

spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and 

can efficiently support many different visualization functions and spatial data analysis 
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models. Furthermore, users can create unique URLs to visualize and share the analysis 

results. TerraFly GeoCloud also enables the MapQL technology to customize map 

visualization using SQL-like statements [10].   

Third, map systems often serve dynamic web workloads and involve multiple CPU 

and I/O intensive tiers, which make it challenging to meet the response time targets of map 

requests while using the resources efficiently. Virtualization facilitates the deployment of 

web map services and improves their resource utilization through encapsulation and 

consolidation. Autonomic resource management allows resources to be automatically 

provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to 

predict the demand of map workloads online and optimize resource allocations, 

considering both response time and data freshness as the QoS target. The proposed v-

TerraFly system is prototyped on TerraFly, a production web map service, and evaluated 

using real TerraFly workloads. The results show that v-TerraFly can accurately predict the 

workload demands: 18.91% more accurate; and efficiently allocate resources to meet the 

QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared 

to traditional peak load-based resource allocation.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Motivation 

With the exponential growth of the World Wide Web, there are many domains, 

such as water management, crime mapping, disease analysis, and real estate, open to 

Geographic Information System (GIS) applications. The Web can provide a giant amount 

of information to a multitude of users, making GIS available to a wider range of public 

users than ever before. Web-based map services are the most important application of 

modern GIS systems. For example, Google Maps currently has more than 350 million users. 

There are also a rapidly growing number of geo-enabled applications which utilize web 

map services on traditional computing platforms as well as the emerging mobile devices.  

More people employ Web applications to update their geographical information via 

the process known as Geotagging. Geotagging can help users find a wide variety of 

location-specific information. For example, one can find images taken near a given location 

by entering latitude and longitude coordinates into a suitable image search engine [11]. 

Geotagging-enabled information services can also potentially be used to find location-

based news, websites, and other resources. Geotagging can tell users the location of the 

content of a given picture or other media, and conversely on some media platforms, show 

media relevant to a given location [12]. 

However, it is quite challenging for users to manipulate spatial data. On one hand, 

typical geographic visualization tools do not offer spatial data index functions or 

application programming interfaces (API) to the public. On the other hand, even if users 
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have access to spatial data index services, it is very difficult to get the visualization of query 

results of their own spatial data. 

At the same time, it is also challenging for the end users to quickly understand and 

analyze the spatial data, and to efficiently share their own data and analysis results with 

others. First, typical geographic visualization tools are complicated and fussy with a lot of 

low-level details, thus they are difficult to use for spatial data analysis.  Second, the analysis 

of large amount spatial data is very resource-consuming. Third, current spatial data 

visualization tools are not well integrated for map developers, and it is difficult for end 

users to create the map applications on their own spatial datasets [10].  

At last, virtual machines (VM) are powerful platforms for hosting web map service 

systems. But due to the highly complex and dynamic nature of web map service systems, 

it is challenging to efficiently host them using virtualized resources. First, typical web map 

services have to serve dynamically changing workloads, which makes it difficult to host 

map services on shared resources without compromising performance or wasting resources. 

Second, a web map service often consists of several tiers which have different intensive 

resource needs and result in dynamic internal resource contention. Third, for a typical web 

map service, both response time for requests and the freshness of the returned data are 

critical factors of the Quality of Service (QoS) required by users. 

To address the above challenges, we need a search engine which opens to public 

and provide easy and clear visualization; and we need a spatial analysis platform to provide 

user with in needed analysis tools and data; and at last, we need powerful background 

support with virtualized hosted system which can automatically optimize the QoS while 

minimizing the resource cost [13][14]. 



 

3 

 

1.2 My work 

Motivated by the above challenges, my work concentrate in three directions: 

sksOpen, GeoCloud and v-TerraFly. Putting them together, we have a better solution of 

web based GIS system. 

1.2.1 sksOpen 

TerraFly sksOpen is an efficient online indexing, querying, and visualization 

system for Big Geospatial Data, which allows users to easily create indices of spatial 

objects and to query and visualize the results and share them via unique URLs. The 

TerraFly sksOpen Online Spatial Object Index and Visualization System is built using 

TerraFly Maps API, and JavaScript TerraFly API add-ons in a high performance cloud 

environment. 

sksOpen, with MapReduce, improved a distributed disk-resident hybrid index for 

efficiently answering k-NN queries with Boolean constraints on textual content. With this 

algorithm, sksOpen have implemented efficient online indexing, querying, and 

visualization system for Big Geospatial data, to allow online users to index their own 

spatial data, and offer query visualization. Our experimental study showed an improved 

performance and scalability on large spatial datasets over alternate methods, and a better 

interactive user interface. 

1.2.2 GeoCloud 

TerraFly GeoCloud is an online spatial data analysis and visualization system, 

which allows end users to easily visualize and share various types of spatial data. First, 

TerraFly GeoCloud can accurately visualize and manipulate point and polygon spatial data 
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with just a few clicks. Second, TerraFly GeoCloud employs an analysis engine to support 

the online analysis of spatial data, and the visualization of the analysis results. Many 

different spatial analysis functionalities are provided by the analysis engine. Third, based 

on the TerraFly map API, TerraFly GeoCloud offers a MapQL language with SQL-like 

statements to execute spatial queries, and render maps to visualize the customized query 

results.  

TerraFly GeoCloud online spatial data analysis and visualization system is built 

upon the TerraFly system using TerraFly Maps API and JavaScript TerraFly API add-ons 

in a high performance cloud Environment. The function modules in the analysis engine are 

implemented using C and R language and python scripts. Comparing with current GIS 

applications, our system is more user-friendly and offers better usability in the analysis and 

visualization of spatial data. The system is available at http://terrafly.fiu.edu/GeoCloud/. 

1.2.3 v-TerraFly 

Firstly, v-TerraFly can accurately predict the workload demands of a web map 

service online based on a novel two-way forecasting algorithm that considers both 

historical hourly patterns and daily patterns. Secondly, based on the predicted workload, 

v-TerraFly can automatically estimate the resource demands of its various tiers based on 

performance profiles created using machine learning techniques. Thirdly, v-TerraFly 

employs a new QoS model that captures the balance between response time and data 

freshness and uses this model to automatically optimize the resource allocation of a web 

map service system. 
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VMs support flexible resource allocation to both meet web map services system 

demands and share resources with other applications. Virtualization is also enabling 

technology for the emerging cloud computing paradigm, which further allows highly 

scalable and cost-effective web map services hosting, leveraging its elastic resource 

availability and pay-as-you-go economic model. 

This proposed v-TerraFly system is realized on Hyper-V virtual machine 

environments and evaluated by experiments using real workloads collected from the 

production version of TerraFly system. The results show that the proposed two-level 

workload prediction method outperforms traditional exponential smoothing prediction by 

18.91%, and the system improves the QoS by 26.19% compared to traditional statically 

node allocation. In the meantime, it saves resource usages by 20.83% compared to 

traditional peak-load-based resource allocation. 

1.3 Dissertation Outline 

The remainder of the dissertation is organized as follows. Chapter 2 discusses 

research problem and related works. Chapter 3 describes the sksOpen system which is an 

efficient Indexing, Querying and Visualization of Geo-spatial Data tool. Chapter 4 

discusses TerraFly GeoCloud online spatial analysis and visualization system. Chapter 5 

describes the v-TerraFly system, autonomic Resource Management for Virtualized Web 

Map. Chapter 6 summarizes the conclusions and provides recommendations for future 

research.   
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CHAPTER 2 

2 LITERATURE REVIEW 

In this thesis, we study and propose solution to three related research problems in 

geospatial databases: 

1. Parallel construction of R-tree and inverted file index on large spatial databases, 

and provide efficient online querying, and visualization. 

2. Efficient online spatial data analysis, visualization and sharing. 

3. Accurately predict the workload demands of a web map service and 

automatically optimize the resource allocation of a web map service system 

In this chapter we describe the most relevant literature. We first show existing 

approaches on K-NN search and visualization, and then we describe current and related 

problems on online spatial data analysis. Finally, we survey existing work in workload 

prediction and autonomic computing on web map service. 

2.1 Geographic information retrieval systems 

The R-tree traversal method in our work is inspired in Hjaltason and Samet’s [16] 

incremental top-k nearest neighbor algorithm using R-trees [17]. Performance 

improvements on the original R-tree work have been proposed, e.g. R*-tree [18], R+-tree 

[19], and Hilbert R-tree [20]. Any of these variants can replace the Rtree index used in the 

proposed hybrid spatial keyword index without modifying our search algorithms. In 

information retrieval, inverted files are arguably the most efficient index structure for free-

text search [21][22]. 

There has been lot of interest in building geographic information retrieval systems. 

The first work of this kind started in the context of digital library (DL) projects such as 
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GIPSY at UC Berkeley and Alexandria Digital Library Project at UC Santa Barbara [23]. 

In these projects, the main objective is to address the extraction of geographic references 

found in the text by using ontologies, gazetteers, thesaurus, etc., and convert them to 

coordinates for retrieving DL contents using geography. 

In the context of geographic search engines, there are numerous academic projects. 

Most of them can be broadly classified under 1) work that focused on extraction of 

geographic references from documents and/or 2) efficient query processing. We will 

briefly describe a few of these. In GeoSearch System [24], the geographic scope ofWeb 

pages are extracted by analyzing the geographic references in text as well as the geographic 

location where the Web sites are registered. In [25], the focus is on improving the extraction 

techniques. In particular, after the relevant geographic references are extracted, ambiguities 

such as multiple place name references and alternate place names are resolved using 

techniques such as geo-matching and geo-propagation. Other relevant studies that 

addressed geographic search on the Web is [24]. 

In the context of query processing for GIR, indexing techniques for processing text 

and geographic data are the main focus. In [24], a simple inverted index structure for text 

and grid file for geographic data are used. They propose a hybrid index structure in which 

each keyword is combined with different partitions of space. In effect what they are 

proposing is similar to [26]. The other technique proposed in their work concatenates 

keyword with region identifier. For example, keyword earthquake is combined with spatial 

region “R1” and represented as spatial-textual key “earthquakeR1”. All the documents that 

are in “R1” and contains the text earthquake are attached as list to the key “earthquakeR1”. 

There are drawbacks of this approach. First, for large set of objects, this approach will 
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generate a large number of false positives. For query containing multiple keywords and 

spatial region, a number of such keys have to be looked up and filtered. 

In a recent work, the authors propose to maintain individual indices for spatial and 

textual data. They propose various approaches to retrieve data from each index before the 

final merging of results. The spatial objects indexed in their applications are complex 

footprints that are extended regions in space. They approximate them by using MBRs and 

use memory-resident spatial index. Their approach does not scale well with increasing size 

of the dataset. To alleviate the problem, they propose to compress the MBRs, but the 

attempt generates large candidate set that needs to be fetched from the disk, with a high 

rate of false positives. This will become a major performance bottleneck for large scale 

GIR applications. In our work, we use disk-resident spatial index for GIR applications. Our 

data structure performs significantly better than their approach with respect to two aspects: 

1) first it reduces the number of disk accesses in identifying the candidate objects and as a 

consequence 2) it reduces the overhead in merging the candidate objects [27]. 

In another much related work [26], the authors proposed a hybrid index by 

combining the spatial and inverted list structures. Their approaches either use multiple R*-

trees to answer queries or generates more candidates for further filtering [27].  

The problem of retrieving spatial objects satisfying non-spatial constraints has been 

studied in the recent past. Park and Kim [28] proposed RS-trees, a combination of R-trees 

and signature trees for attributes with controlled cardinality; signature chopping is 

suggested to mitigate combinatorial errors [29] (database overrepresentation) of 

superimposed signatures. Harinharan et al. [27] proposed to include a list of terms in every 

node of an R-tree. De Felipe et al. [30] augmented signature files in R-tree nodes with 



 

9 

 

similar constraints as [28]. Recently, Cong et al. [31] augmented an inverted file in every 

node of an R-tree, and used a ranking function that combines spatial proximity and text 

relevancy. Our work differs in that we assume distance as ranking score, and we focus on 

efficiently processing Boolean constraints on textual data. Further, none of the previous 

works offer efficient processing of the complement logical operator, which limits their 

applicability to the k-SB queries we considered in this work. Likewise, modern Web search 

engines, like Google and Yahoo!, offer Local Search services. Advanced querying options 

are provided to include and exclude certain terms from the search result. These are similar 

to the k-SB queries we consider. However, specific search algorithms are kept confidential 

by their owning companies [32]. Our approach combines modified versions of R-trees and 

inverted files to achieve effective pruning of the search space [32], with an extra quad-tree 

index to implement MapReduce. 

2.2 Spatial data analysis and visualization 

In the geospatial discipline, web-based GIS services can significantly reduce the 

data volume and required computing resources at the end-user side [33][34]. To the best of 

our knowledge, TerraFly GeoCloud is one of the first systems to study the integration of 

online visualization of spatial data, data analysis modules and visualization customization 

language. 

The principles behind interactive spatial data analysis can be traced back to the 

work on dynamic graphics for data analysis in general, originated by the statistician John 

Tukey and a number of research groups at AT&T Bell Laboratories. An excellent review 

of the origins of these ideas is given in the collection of papers edited by Cleveland and 
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McGill (1988), and early discussions of specific methods are contained in the papers by, 

among others, Becker et al (1987), Becker and Cleveland (1987), and Stuetzle (1987). 

More recent reviews of methods for the dynamic analysis of high-dimensional multivariate 

data and other aspects of interactive statistical graphics can be found in papers by, among 

others, Becker et al (1996), Buja et al (1991, 1996), Cleveland (1993), and Cook et al (1995) 

[35]. 

Dynamic graphical methods started as enhancements to the familiar static displays 

of data, by allowing direct manipulation by the user that results in ‘immediate’ change in 

a graph. This had become possible by the availability of workstations with sufficient 

computational power to generate the statistical graphs without delays and to allow 

interaction with the data by means of an input device (light pen or mouse). The overall 

motivation was to involve the human factor more directly in the exploration of data (i.e. 

exploiting the inherent capabilities of the brain to detect patterns and structure), and thereby 

gain richer insights than possible with the traditional rigid and static display. This was 

achieved by allowing the user to delete data points, highlight (brush) subsections of the 

data, establish links between the same data points in different graphs, and rotate, cut 

through, and project higher-dimensional data. Furthermore, the user and not a preset 

statistical procedure determined which actions to perform. Interactive statistical procedures 

become particularly effective when datasets are large (many observations) and high-

dimensional (many variables), situations where characterization of the data by a few 

numbers becomes increasingly unrealistic (for an early assessment see, for example, 

Andrews et al 1988: 75). While dynamic graphics for statistics were originally mostly 
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experimental and confined to research environments, they have quickly become pervasive 

features of the EDA capability in modern commercial statistical software packages [35]. 

Various GIS analysis tools are developed and visualization customization 

languages have been studied in the literature. ArcGIS is a complete, cloud-based, 

collaborative content management system for working with geographic information. But 

systems like ArcGIS and Geoda focus on the content management and share, not online 

analysis [36][37]. Azavea has many functions such as optimal Location find, Crime 

analysis, data aggregation and visualization. It is good at visualization, but has very limited 

analysis functions [38]. 

Various types of solutions have been studied in the literature to address the problem 

of visualization of spatial analysis [37].  However, on one hand, good analysis visualization 

tools like Geoda and ArcGIS do not have online functions. To use them, users have to 

download and install the software tools, and download the datasets. On the other hand, 

good online GIS systems like Azavea, SKE, and GISCloud have limited analysis functions. 

Furthermore, none of above products provides a simple and convenient way like MapQL 

to let user create their own map visualization [39][40]. Our work is complementary to the 

existing works and our system also integrates the data mining and visualization.    

2.3 Workload prediction and resource management 

In the geospatial discipline, web-based map services can significantly reduce the 

data volume and required computing resources at the end-user side [45]. To the best of our 

knowledge, v-TerraFly is the first to study the virtualization of typical web map services 
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and propose QoS-driven resource management for a virtualized web map service through 

workload forecasting and dynamic resource allocation [46]. 

Similarly to the birth of the Internet, one of the notable early self-managing projects 

was initiated by DARPA for a military application in 1997. The project was called the 

Situational Awareness System1 (SAS), which was part of the broader Small Units 

Operations (SUO) program. Its aim was to create personal communication and location 

devices for soldiers on the battlefield. Soldiers could enter status reports, for example, 

discovery of enemy tanks, on their personal device, and this information would 

autonomously spread to all other soldiers, which could then call up the latest status report 

when entering an enemy area. Collected and transmitted data includes voice messages and 

data from unattended ground sensors and unmanned aerial vehicles. These personal devices 

have to be able to communicate with each other in difficult environmental conditions, 

possibly with enemy jamming equipment in operation, and must at the same time minimize 

enemy interception to this end [47]. The latter point is addressed by using multihop ad-hoc 

routing; that is, a device sends its data only to the nearest neighbors, which then forward 

the data to their own neighbors until finally all devices receive the data. This is a form of 

decentralized peer-to-peer mobile adaptive routing, which has proven to be a challenging 

self-management problem, especially because in this project the goal is keep latency below 

200 milliseconds from the time a soldier begins speaking to the time the message is 

received. The former point is addressed by enabling the devices to transmit in a wide band 

of possible frequencies, 20–2,500 MHz, with bandwidths ranging from 10 bps to 4 Mbps. 

For instance, when distance to next soldier is many miles, communication is possible only 

at low frequencies, which results in low bandwidth, which may still be enough to provide 
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a brief but possibly crucial status report. Furthermore, there may be up to 10,000 soldiers 

on the battlefield, each with their own personal devices connected to the network [47].  

In 2001, IBM suggested the concept of autonomic computing. In their manifesto 

[48], complex computing systems are compared to the human body, which is a complex 

system, but has an autonomic nervous system that takes care of most bodily functions, thus 

removing from our consciousness the task of coordinating all our bodily functions. IBM 

suggested that complex computing systems should also have autonomic properties, that is, 

should be able to independently take care of the regular maintenance and optimization tasks, 

thus reducing the workload on the system administrators. IBM also distilled the four 

properties of a self-managing (i.e., autonomic) system: self-configuration, self-

optimization, self-healing, and self-protecting. 

Finally, we would like to mention an interesting project that started at NASA in 

2005, the Autonomous Nanotechnology Swarm (ANTS). As an exemplary mission, they 

plan to launch into an asteroid belt a swarm of 1000 small spacecraft (so-called pico-class 

spacecraft) from a stationary factory ship in order to explore the asteroid belt in detail. 

Because as much as 60–70% of the swarm is expected to be lost as they enter the asteroid 

belt, the surviving craft must work together. This is done by forming small groups of 

worker craft with a coordinating ruler, which uses data gathered from workers to determine 

which asteroids are of interest and to issue instructions. Furthermore, messenger craft will 

coordinate communications between members of the swarm and with ground control. In 

fact, NASA has already previously used autonomic behavior in its DS1 (Deep Space 1) 

mission and the Mars Pathfinder [49]. Indeed, NASA has a strong interest in autonomic 

computing, in particular in making its deep-space probes more autonomous. This is mainly 
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because there is a long round-trip delay between a probe in deep space and mission control 

on Earth. So, as mission control cannot rapidly send new commands to a probe—which 

may need to quickly adapt to extraordinary situations—it is extremely critical to the success 

of an expensive space exploration mission that the probes be able to make certain critical 

decisions on their own.  

Various automatic forecasting algorithms have been studied in the related work 

[50], including different kinds of exponential smoothing. The work of Brown (1959) and 

Gardner (1985) led to the use of exponential smoothing in automatic forecasting (e.g., 

Stellwagen &Goodrich, 1999) [42][43][44]. Hyndman (2002) developed a more general 

class of methods with a uniform approach to calculate the prediction interval [41][42]. The 

workload prediction algorithm proposed in this paper is based on exponential smoothing, 

but it is novel in the use of two levels of double exponential smoothing to capture both 

hourly pattern and daily pattern in the workload, which achieves much higher accuracy 

than traditional exponential smoothing methods. 

In particular, Dinda et al. studied prediction-based best-effort real-time service to 

support distributed, interactive applications in shared computing environments. Two of the 

examples are an earthquake visualization tool and a GIS map display tool, which were 

shown to benefit from the service [51]. However, the workload prediction is based on linear 

prediction which is often not sufficient for real-world dynamic workloads. In this paper, 

we proposed a two-level exponential smoothing algorithm which shows good prediction 

accuracy for real TerraFly workloads. 

Various types of solutions have been studied in the literature to address the problem 

of autonomic VM resource management. Different machine learning algorithms have been 
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considered to model VM resource usages [52][53][54][55]. Feedback control theory has 

also been used to adjust VM resource allocations, which are often based on models trained 

to identify the system and build the controller [56][57][58][59]. These various solutions 

are complementary to this paper’s work which focuses on the management of virtualized 

web map services. Meanwhile, this paper proposes a unique QoS model to capture multiple 

important objectives and a new method to optimize resource allocation across multiple 

competing tiers, which has not been studied in the related work and can be applied to 

manage other multi-tier applications with similar characteristics. 
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CHAPTER 3 

3 sksOpen: Efficient Indexing, Querying and Visualization of Geo-spatial Data 

With the fast growing use of web-based map services, the performance of indexing 

and querying of location-based data is becoming a critical quality of service aspect. Spatial 

indexing is typically time-consuming and is not available to end-users. To address this 

challenge, we have developed and open-sourced an Online Indexing and Querying System 

for Big Geospatial Data, sksOpen. Integrated with the TerraFly Geospatial database [1], 

TerraFly sksOpen is an efficient indexing and query engine for processing Top-k Spatial 

Boolean Queries. Further, we provide ergonomic visualization of query results on 

interactive maps to facilitate the user’s data analysis. 

3.1 Introduction 

With the exponential growth of Internet applications, there are many domains open 

to Geographic Information System (GIS) applications. Massive amounts of spatial 

information become available to a wide range of public uses [10]. More and more people 

employ Web applications to update their geographical information via the process known 

as Geotagging. For example, Google Maps currently has more than 350 million users. 

There are also a rapidly growing number of geo-enabled applications, which utilize web 

map services on traditional computing platforms as well as on emerging mobile devices. 

Geotagging can help users find a wide variety of location-specific information. For 

example, one can find images taken near a given location by entering latitude and longitude 

coordinates into a suitable image search engine [11]. Geotagging-enabled information 

services can also potentially be used to find location-based news, websites, and other 
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resources. Geotagging can tell users the location of the content of a given picture or other 

media, and conversely on some media platforms, show media relevant to a given location 

[12]. 

However, due to the highly complex and dynamic nature of GIS systems, it is quite 

challenging for users to manipulate spatial data. On one hand, typical geographic 

visualization tools do not offer spatial data index functions or application programming 

interfaces (API) to the public. On the other hand, even if users have access to spatial data 

index services, it is very difficult to get the visualization of query results of their own spatial 

data.  

To address the above challenges, we have developed TerraFly sksOpen, an efficient 

online indexing, querying, and visualization system for Big Geospatial Data, which allows 

users to easily create indices of spatial objects and to query and visualize the results and 

share them via unique URLs. 

The TerraFly sksOpen Online Spatial Object Index and Visualization System is 

built using TerraFly Maps API, and JavaScript TerraFly API add-ons in a high performance 

cloud environment.  

3.2 Background 

3.2.1 TerraFly 

TerraFly is a system for querying and visualizing geospatial data developed by the 

High Performance Database Research Center (HPDRC) lab at Florida International 

University (FIU) [1-9]. The TerraFly system serves worldwide web map requests to over 

125 countries and regions, providing users with customized aerial photography, satellite 
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imagery, and various overlays, such as street names, roads, restaurants, services and 

demographic data [60][61]. 

The TerraFly API allows rapid deployment of interactive web applications, and has 

been used to produce systems for disaster mitigation, ecology, real estate, tourism, and 

municipalities. TerraFly's web-based client interface is accessible from anywhere, via any 

standard web browser, with no client software to install [62][63]. 

TerraFly allows users to virtually ‘fly’ over enormous geographic information 

simply via a web browser with several advanced functionalities and features, such as user-

friendly geospatial querying interfaces, map display with user-specific granularity, real-

time data suppliers, demographic analysis, annotation, route dissemination via autopilots, 

API for web sites, etc [64][65]. 

TerraFly's server farm ingests geo-locates, cleanses, mosaics, and cross-references 

40TB of base map data and user-specific data streams. The 40TB TerraFly data collection 

includes, among others, 1-meter aerial photography of almost the entire United States, and 

3-inch to 1-foot full-color recent imagery of major urban areas. TerraFly’s vector collection 

includes 400 million geo-located objects, 50 billion data fields, 40 million polylines, 120 

million polygons, including: all US and Canada roads, US Census demographic and 

socioeconomic datasets, 110 million parcels with property lines and ownership data, 15 

million records of businesses with company stats and management roles and contacts, 2 

million physicians with expertise detail, various public place databases (including the 

USGS GNIS and NGA GNS), Wikipedia, extensive global environmental data (including 

daily feeds from NASA and NOAA satellites and the USGS water gauges), and hundreds 

of other datasets [66][67]. 
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3.2.2 Spatial data visualization 

Information visualization (or data visualization) techniques are able to present the 

data and patterns in a visual form that is intuitive and easily comprehensible, allowing users 

to derive insights from the data, and support user interactions. 

Visualizing the objects in geo-spatial data is as important as the data itself. The 

visualization task becomes more challenging as both the data dimensionality and richness 

in the object representation increases. In TerraFly data querying we have addressed the 

visualization challenge, including the interactive map visualization spatial data and 

interactive list visualization [68]. 

3.2.3 MapReduce 

MapReduce is a programming model and an associated implementation for 

processing and generating large data sets. Users specify a map function that processes a 

key/value pair to generate a set of intermediate key/value pairs, and a reduce function that 

merges all intermediate values associated with the same intermediate key.  

Programs written in this functional style are automatically parallelized and 

executed on a large cluster of commodity machines. The run-time system takes care of the 

details of partitioning the input data, scheduling the program's execution across a set of 

machines, handling machine failures, and managing the required inter-machine 

communication. This allows programmers without much experience with parallel and 

distributed systems to easily utilize the resources of a large distributed system. 

Hadoop, a version of MapReduce, is an open-source software framework that 

supports data-intensive distributed applications [69]. It is this programming paradigm that 
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allows for massive scalability across hundreds or thousands of servers in a Hadoop cluster. 

The MapReduce concept is fairly simple to understand for those who are familiar with 

clustered scale-out data processing solutions [70]. 

The term MapReduce denotes the two main tasks that Hadoop programs perform. 

The first task, Map, takes a set of data and converts it into another set of data, where 

individual elements are broken down into tuples (key/value pairs). The Reduce task takes 

the output from a Map as input and combines those data tuples into a smaller set of tuples 

[71]. 

3.2.4 K-NN 

In pattern recognition, the k-nearest neighbor algorithm (k-NN) is a non-parametric 

method for classifying objects based on closest training examples in the feature space. K-

NN is a type of instance-based learning, or lazy learning, where the function is only 

approximated locally and all computation is deferred until classification [72]. The k-nearest 

neighbor algorithm is amongst the simplest of all machine learning algorithms: an object 

is classified by a majority vote of its neighbors, with the object being assigned to the class 

most common amongst its k nearest neighbors (k is a positive integer, typically small). If 

k = 1, then the object is simply assigned to the class of that single nearest neighbor [72]. 

Nearest neighbor rules in effect implicitly compute the decision boundary. It is also 

possible to compute the decision boundary explicitly, and to do so efficiently, so that the 

computational complexity is a function of the boundary complexity [73]. 
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3.3 Architecture of sksOpen 

TerraFly sksOpen is implemented in Java, and is a web service easily accessible 

from anywhere. In this section, we will introduce the algorithm and software structure of 

sksOpen. 

3.3.1 The index algorithm of sksOpen 

We improved the spatial object index algorithm developed by Cary, Rishe et al in 

2010 [32]. The algorithm creates spatial object indices as a hybrid index; it includes both 

an R-Tree spatial index and an inverted text file index. We have added a new “map” 

algorithm to split the data set in order to speed up the index to fit large-scale spatial data 

index [74]. 

By employing this hybrid index, we attained fast retrieval, even when matching 

objects were located far away from one another, efficiently filtering-out of objects not 

satisfying the query Boolean constraints on keywords, and maintained low storage 

requirements while keeping high query performance. 

The challenge is reducing the computations to eliminate as many non-candidate 

objects as possible. In particular, NOT-semantics constraints may substantially shrink the 

output size and lead to unnecessary scans.  

The indexing approach leverages the strengths of R-trees in spatial search, and 

modifies an inverted file for efficient processing of Boolean constraints. The combination 

of indexing techniques yields the hybrid data structure: Spatial-Keyword Index (SKI) [32]. 
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Next, we define the principal terminology in SKI [32], which invented by Cary, A., 

Wolfson, O., & Rishe, N. (2010, January). Efficient and scalable method for processing 

top-k spatial boolean queries: 

 
Figure 3.1 An super-node and leaf nodes [32] 

R-tree Index (R): A modified R-tree built with spatial attributes. Entries in R’s inner 

nodes are augmented with index ranges [a, b], where Sa and Sb are the left-most and right-

most, respectively, super nodes contained in the sub tree rooted at node entry. Ranges in 

leaf-node entries contain a single value, the index of the super node containing the leaf 

node. 

Spatial Inverted File (SIF): A modified inverted file constructed on a vocabulary V. 

The Lexicon contains terms in V and their document frequencies (df). Posting lists are 

modified to include spatial information from R. Specifically, the posting list of a term t 

contains all its term bitmaps sorted by the  super node index as follows: 

Posting(t) = [I(t, s1), I(t, s2), ...] where Si Belongs to S(R)  
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Figure 3.2 Hybrid Spatial-Keyword Index [32] 

We organized posting elements in a B+tree to allow fast random and range retrieval. 

Figure 3.2 shows the structure of the hybird index [75][76]. 

However, this algorithm whichi invited by Cary, A is indexing the tuples in a 

particular sequence, which is not feasible in a large-scale index enviorment. To address 

this challege, my work is added a new componet of the algorithm, named split, and merge 

modules to split the input data set quickly into different parts, and finally merge all indices, 

to facilate multi-core or multi-machine index loading, to significantly increase the 

performance of the algorithm [77][78]. 

We employed a Z-order value to quickly set the split points. In mathematical 

analysis, Z-order, Morton order, or Morton code, is a function that maps multidimensional 

data to one dimension, while preserving locality of the data points. It was introduced in 

1966 by G. M. Morton [79]. The Z-value of a point in a multidimensional space is 

calculated by interleaving the binary representations of its coordinate values. Once the data 

is sorted into this ordering, any one-dimensional data structure can be used such, as binary 

search trees, B-trees, skip lists, or hash tables. The resulting ordering can equivalently be 

described as the order one would get from a depth-first traversal of a quadtree; because of 



 

24 

 

its close connection with quadtrees, the Z-ordering can be used to efficiently construct 

quadtrees and related higher dimensional data structures. 

The Split Algorithm works as follows: 

1. Get the Z-order Value of a tuple of coordinate to get the Split points 

2. Create a Split point array 

3. For each entry, perform a binary search in the Split point array to find out the 

partition index 

4. Write the entry into corresponding partition file 

5. Send the partitioned files to a thread or a loading machine to start index loading 

The Index Merge Algorithm works as follows: 

1. Save Split point array and load it when querying 

2. For each search point, perform a binary search in Split point array to find  the 

partition index 

3. Perform the query procedure in the corresponding spatial keywords index 

4. Find the eligible entry and return a list of the results  

With this improvement, we have added a Quadtree at the top of the R-Tree index 

to improve the performance of multi-task loading [81]. Because the partitions of the data 

file are easy to control, the depth of the Quadtree is usually short, wich means the 

binarySearch in Split point runs quickly and takes O(log(m)). 

3.3.2 The Structure of sksOpen 

With the improvement of methods for processing top-k spatial Boolean queries by 

introducing the Split and Merge modules, we can utilize the MapReduce model to create 
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the sksOpen indices for Big Data. The performance of the loading of indices is significantly 

improved. 
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Figure 3.3 MapReduce design of sksOpen 

As shown in Figure 3.3, the Map module splits the spatial data into partitions 

depending on how many hardware resources will be used for index loading. After each 

loading process is finished, the Reduce module will automatically merge the indices of the 

data partitions to produce the final data index. After that, the database can be efficiently 

queried [80]. When a query comes, the Query Engine will examine the final data index, 

and then produce the query results list. With the results list, the TerraFly visualization 

engine will offer visualization with a unique URL, which can be shared with other users. 
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Figure 3.4 Loading Process 

The loading process of sksOpen is one of the key modules. Figure 3.4 shows details 

of the loading process. 

3.4 Visualization of sksOpen 

For spatial object visualization, the system supports both map object visualization 

and data list object visualization. T visualization is dynamic and interactive. 

Integrated with TerraFly map API and JavaScript, the query results of spatial object 

can be shown on a much better interface, including both map and object lists. 
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Figure 3.5 Visualization of a Hotels’ query results 

Figure 3.5 shows visualization of a query of hotel information in Miami. When 

users query, for example, search for hotels of 4 stars or above and less than $200 per night 

near downtown Miami, the visualization of results will be shown as in Figure 3.5. The map 

on the top shows the location of the hotel results. When the mouse hovers over a hotel 

location, a popup appears with more detailed information. Below the map visualization, 

there is a table of results hyperlinked to further querying.  
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Figure 3.6 Interactive list Visualization 

As shown in Figure 3.6, if the mouse hovers over any object, more data appear as 

a layer over the page.  

3.5 Case study 

3.5.1 Setup 

This section evaluates the proposed sksOpen service system. As a typical web 

application, sksOpen provides a variety of web services via Apache Tomcat to serve online 

web requests. The test bed is set up on a Dell PowerEdge servers, each with XEON Intel 

E5520 2.27 GHz, 16GB (4x4GB) ECC -- DDR3 1066MHz, and one 1TB 7.2 RPM SAS 

disk. CentOS 5.6 are installed to provide the environment for sksOpen.  
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3.5.2 Performance study 

The Test data file is “us_consumer_2012_full”. The data is Person Individual U.S. 

Consumers and White Pages, which is 68GB, 173million records, and for each records 

there are 136 fields. The loading process map the workload into 40 parts, and eventually 

takes 28 hours in to construct the final index, the loading process can be accelerated by 

adding computing resources. 

For the query performance, we comparing KNN query and KNN query with 

Boolean restriction. For KNN query, query the top 50 records near Miami Beach, the query 

results as long as 38339 characters returned in 1.211971 seconds includes the disk access 

time for record retrieval. For KNN query Boolean restriction CITY=Miami and 

FIRST_NAME=jose, query the top 50 records near Miami Beach, the query results as long 

as 33308 characters returned in 1.707193 seconds includes the disk access time for record 

retrieval. Two Boolean restrictions just take 30% more query time, and comparing with 

most of Boolean queries which have to retrieve data respectively and then join with each 

other, this is a good performance. 

3.5.3 User experience study 

In this section, we present a case study on using TerraFly sksOpen for spatial data 

indexing, query, and visualization.  
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Figure 3.7 Visualization of Block-group Median Income query 

John wants to analyze the relationship between median income in locales and 

property values. John enters a TerraFly page presenting visualization of median income 

data of U.S. Census Block Groups, as shown in Figure 3.7. John notices a place near Miami 

(zip code 33140) that has a lower median average income than areas nearby. Then John 

wants to examine the property values of this location. 

Although he has access to a data set of all Florida properties, it is too large to use 

directly. There are 10 million records in the data set, and each record has 173 fields. He 

decides to index the file by sksOpen, in order to search the property information near the 

place. 
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Figure 3.8 Query result of properties data in an unfriendly database 

By triggering a URL to put the dataset into the sksOpen server, the loading process 

begins. With the help of MapReduce, sksOpen finishes loading in a couple of minutes. 

Then, John enters search conditions to finalize the query: properties near 33140 with 

pricing lower than 1M. Instead of the result shown in Figure 3.8, as most open index and 

query tools offer, John got a map visualization shown in Figure 3.9. John can change the 

query conditions to explore the data set as he desires. All the 173 fields of the data set can 

be queried. 
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Figure 3.9 TerraFly Visualization of Query results 

3.6 Related work 

Spatial object index, query, and visualization services, can significantly improve 

the data analysis efficiently. TerraFly sksOpen is one of the first systems open online that 

allows users to index their own data, and provide both interactive map and list visualization. 

For the algorithm of processing Top-k Spatial Boolean queries, the R-tree traversal 

method in our work is inspired by Hjaltason and Samet’s incremental top-k nearest 

neighbor algorithm using R-trees [17]. Performance improvements on the original R-tree 

work have been proposed, e.g. R*-tree, R+-tree, and Hilbert R-tree. Any of these variants 

can replace the R-tree index used in the proposed hybrid spatial keyword index without 

modifying our search algorithms. In information retrieval, inverted files are arguably the 

most efficient index structures for free-text search [21].Our approach combines modified 

versions of R-trees and inverted files to achieve effective pruning of the search space [32], 

with an extra quad-tree index to implement MapReduce.  
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CHAPTER 4 

4 GeoCloud: Online Spatial Data Analysis and Visualization 

With the exponential growth of the usage of web map services, the geo data analysis 

has become more and more popular. This paper develops an online Spatial Data Analysis 

System, TerraFly GeoCloud, which facilitates the end user to visualize and analyze spatial 

data, and to share the analysis results. Built on the TerraFly Geo spatial database, TerraFly 

GeoCloud is an extra layer running upon TerraFly map supporting many different 

visualization functions and spatial data analysis models. TerraFly GeoCloud also enables 

the MapQL technology to create maps using SQL-like statements.  

4.1 Introduction 

With the exponential growth of the World Wide Web, there are many domains, 

such as water management, crime mapping, disease analysis, and real estate, open to 

Geographic Information System (GIS) applications. The Web can provide a giant amount 

of information to a multitude of users, making GIS available to a wider range of public 

users than ever before. Web-based map services are the most important application of 

modern GIS systems. For example, Google Maps currently has more than 350 million users. 

There are also a rapidly growing number of geo-enabled applications which utilize web 

map services on traditional computing platforms as well as the emerging mobile devices. 

However, due to the highly complex and dynamic nature of GIS systems, it is quite 

challenging for the end users to quickly  understand and analyze the spatial data, and to 

efficiently share their own data and analysis results to others. First, typical geographic 

visualization tools are complicated and fussy with a lot of low-level details, thus they are 
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difficult to use for spatial data analysis.  Second, the analysis of large amount spatial data 

is very resource-consuming. Third, current spatial data visualization tools are not well 

integrated for map developers and it is difficult for end users to create the map applications 

on their own spatial datasets.  

To address the above challenges, this paper presents TerraFly GeoCloud, an online 

spatial data analysis and visualization system, which allows end users to easily visualize 

and share various types of spatial data. First, TerraFly GeoCloud can accurately visualize 

and manipulate point and polygon spatial data with just a few clicks.  Second, TerraFly 

GeoCloud employs an analysis engine to support the online analysis of spatial data, and 

the visualization of the analysis results. Many different spatial analysis functionalities are 

provided by the analysis engine. Third, based on the TerraFly map API, TerraFly 

GeoCloud offers a MapQL language with SQL-like statements to execute spatial queries, 

and render maps to visualize the customized query results.  

Our TerraFly GeoCloud online spatial data analysis and visualization system is 

built upon the TerraFly system using TerraFly Maps API and JavaScript TerraFly API add-

ons in a high performance cloud Environment. The function modules in the analysis engine 

are implemented using C and R language and python scripts. Comparing with current GIS 

applications, our system is more user-friendly and offers better usability in the analysis and 

visualization of spatial data. The system is available at http://terrafly.fiu.edu/GeoCloud/. 

http://terrafly.fiu.edu/GeoCloud/
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4.2 Background 

4.2.1 TerraFly geospatial database 

TerraFly is a system for querying and visualizing of geospatial data developed by 

High Performance Database Research Center (HPDRC) lab in Florida International 

University (FIU). This TerraFly system serves worldwide web map requests over 125 

countries and regions, providing users with customized aerial photography, satellite 

imagery and various overlays, such as street names, roads, restaurants, services and 

demographic data [1]. 

TerraFly Application Programming Interface (API) allows rapid deployment of 

interactive Web applications and has been used to produce systems for disaster mitigation, 

ecology, real estate, tourism, and municipalities. TerraFly's Web-based client interface is 

accessible from anywhere via any standard Web browser, with no client software to install. 

TerraFly allows users to virtually ‘fly’ over enormous geographic information 

simply via a web browser with a bunch of advanced functionalities and features such as 

user-friendly geospatial querying interface, map display with user-specific granularity, 

real-time data suppliers, demographic analysis, annotation, route dissemination via 

autopilots and application programming interface (API) for web sites, etc. [1-7][10]. 

TerraFly's server farm ingests geo-locates, cleanses, mosaics, and cross-references 

40TB of base map data and user-specific data streams. The 40TB TerraFly data collection 

includes, among others, 1-meter aerial photography of almost the entire United States and 

3-inch to 1-foot full-color recent imagery of major urban areas. TerraFly vector collection 

includes 400 million geo-located objects, 50 billion data fields, 40 million polylines, 120 
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million polygons, including: all US and Canada roads, the US Census demographic and 

socioeconomic datasets, 110 million parcels with property lines and ownership data, 15 

million records of businesses with company stats and management roles and contacts, 2 

million physicians with expertise detail, various public place databases (including the 

USGS GNIS and NGA GNS), Wikipedia, extensive global environmental data (including 

daily feeds from NASA and NOAA satellites and the USGS water gauges), and hundreds 

of other datasets [66][82]. 

4.2.2 Visualizing spatial data 

Information visualization (or data visualization) techniques are able to present the 

data and patterns in a visual form that is intuitive and easily comprehendible, allow users 

to derive insights from the data, and support user interactions [83].   

 

Figure 4.1 Population Total (height) vs. Density (color) of US 

For example, Figure 4.1 shows the map of Native American population statistics 

which has the geographic spatial dimensions and several data dimensions. The figure 

displays both the total population and the population density on a map, and users can easily 

gain some insights on the data by a glance [5]. In addition, visualizing spatial data can also 
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help end users interpret and understand spatial data mining results.  They can get a better 

understanding on the discovered patterns.  

Visualizing the objects in geo-spatial data is as important as the data itself. The 

visualization task becomes more challenging as both the data dimensionality and richness 

in the object representation increase. In TerraFly GeoCloud, we have devoted lots of effort 

to address the visualization challenge including the visualization of multi-dimensional data 

and the flexible user interaction. 

TerraFly GeoCloud integrates spatial data mining and data visualization. The 

integration of spatial data mining and information visualization has been widely to discover 

hidden patterns.  For spatial data mining to be effective, it is important to include the 

visualization techniques in the mining process and to generate the discovered patterns for 

a more comprehensive visual view [68]. 

4.2.3 Map Rendering 

The process of rendering a map generally means taking raw geospatial data and 

making a visual map from it. Often it applies more specifically to the production of a raster 

image, or a set of raster tiles, but it can refer to the production of map outputs in vector-

based formats. "3D rendering" is also possible when taking the map data as an input. The 

ability of rendering maps in new and interesting styles, or highlighting features of special 

interest, is one of the most exciting aspects in spatial data analysis and visualization.  

TerraFly map render engine is a toolkit for rendering maps and   is used to render 

the main map layers. It supports a variety of geospatial data formats and provides flexible 
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styling options for designing many different kinds of maps, and the render speed is fast 

[85][86]. 

TerraFly map render engine is written in C++ and can be used as a web service. It 

uses the AGG library and offers anti-aliasing rendering with pixel accuracy. It can read 

different kind of file like PostGIS, TIFF rasters, .osm files, and other shape files. Packages 

are available for both Window and Linux [86]. 

4.3 TerraFly GeoCloud 

 

Figure 4.2 The Architecture of TerraFly GeoCloud 

Figure 4.2 shows the system architecture of TerraFly GeoCloud.  Based on the 

current TerraFly system including the Map API and all sorts of TerraFly data, we 

developed the TerraFly GeoCloud system to perform online spatial data analysis and 

visualization. In TerraFly GeoCloud, users can import and visualize various types of spatial 

data (data with geo-location information) on the TerraFly map, edit the data, perform 

spatial data analysis, and visualize and share the analysis results to others. Available spatial 

data sources in TerraFly GeoCloud include but not limited to demographic census, real 
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estate, disaster, hydrology, retail, crime, and disease. In addition, the system supports 

MapQL, which is a technology to customize map visualization using SQL-like statements. 

The spatial data analysis functions provided by TerraFly GeoCloud include spatial 

data visualization (visualizing the spatial data), spatial dependency and autocorrelation 

(checking for spatial dependencies), spatial clustering (grouping similar spatial objects), 

and Kriging (geo-statistical estimator for unobserved locations).  

 

Figure 4.3 The Workflow of TerraFly GeoCloud Analysis 

Figure 4.3 shows the data analysis workflow of the TerraFly GeoCloud system. 

Users first upload datasets to the system, or view the available datasets in the system. They 

can then visualize the data sets with customized appearances. By Manipulate dataset, users 

can edit the dataset and perform pre-processing (e.g., adding more columns). Followed by 

pre-processing, users can choose proper spatial analysis functions and perform the analysis. 

After the analysis, they can visualize the results and are also able to share them with others. 
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Figure 4.4  Interface of TerraFly GeoCloud 

Figure 4.4 showed the interface of the TerraFly GeoCloud system. The top bar is 

the menu of all functions, including Data, analysis, Graph, Share, and MapQL. The left 

side shows the available datasets, including both the uploaded datasets from the user and 

the existing datasets in the system. The right map is the main map from TerraFly. This map 

is composed by TerraFly API, and it includes a detailed base map and diverse overlays 

which can present different kinds of geographical data [87]. 

TerraFly GeoCloud also provides MapQL spatial query and render tools. MapQL 

supports SQL-like statements to realize the spatial query, and after that, render the map 

according to users’ inputs.  MapQL tools can help users visualize their own data using a 

simple statement [88]. This provides users with a better mechanism to easily visualize 

geographical data and analysis results.  

List of 
uploaded 
Datasets

Menu bar TerraFly Map

Layer 
controls



 

41 

 

4.4 Visualization in TerraFly GeoCloud 

4.4.1 Spatial Data Visualization 

 

Figure 4.5 Spatial Data Visualization: Point Data 

For spatial data visualization, the system supports both point data and polygon data 

and users can choose color or color range of data for displaying. As shown in Figures, the 

point data is displayed in Figure 4.5, and the polygen data is displayed in Figure 4.6.  

The data labels are shown on the base map as extra layers for point data, and the 

data polygons are shown on the base map for polygon data. Many different visualization 

choices are supported for both point data and polygon data. For point data, user can 

customize the icon style, icon color or color range, label value and so on. For polygon data, 

user can customize the fill color or color range, fill alpha, line color, line width, line alpha, 

label value and so on. 
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Figure 4.6 Spatial Data Visualization: Polygon Data 

4.4.2 Spatial Data Mining Results Visualization 

TerraFly GeoCloud integrates spatial data mining and data visualization. The 

spatial data mining results can be easily visualized. In addition, visualization can often be 

incorporated into the spatial mining process. 

a) Spatial dependency and Auto-Correlation 

Spatial dependency is the co-variation of properties within geographic space: 

characteristics at proximal locations that appear to be correlated, either positively or 

negatively. Spatial dependency leads to the spatial autocorrelation problem in statistics [89]. 

Spatial autocorrelation is more complex than one-dimensional autocorrelation 

because spatial correlation is multi-dimensional (i.e. 2 or 3 dimensions of space) and multi-

directional. The TerraFly GeoCloud system provides auto-correlation analysis tools to 
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discover spatial dependencies in a geographic space, including global and local clusters 

analysis where Moran's I measure is used [90].  

Formally, Moran’s I, the slope of the line, estimates the overall global degree of 

spatial autocorrelation as follows: 

𝐼 =  
𝑛

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗

𝑛
𝑖

×
∑ ∑ 𝑤𝑖𝑗(𝑦𝑖 − �̅�)(𝑦𝑗 − �̅�)𝑛

𝑗
𝑛
𝑖

∑ (𝑦𝑗 − �̅�)2𝑛
𝑖

 

where wij is the weight, wij=1 if locations i and j are adjacent and zero otherwise 

wii=0 (a region is not adjacent to itself).yi and  �̅�  are the variable in the ith location and the 

mean of the variable, respectively. n is the total number of observations. Moran’s I is used 

to test hypotheses concerning the correlation, ranging between –1.0 and +1.0. 

Moran’s I measures can be displayed as a checkerboard where a positive Moran’s 

I measure indicates the clustering of similar values and a negative Moran’s I measure 

indicate dissimilar values. TerraFly GeoCloud system provides auto-correlation analysis 

tools to check for spatial dependencies in a geographic space, including global and local 

clusters analysis [91]. 

Local Moran’s I is a local spatial autocorrelation statistic based on the Moran’s I 

statistic. It was developed by Anselin as a local indicator of spatial association or LISA 

statistic [92]. The fact that Moran's I is a summation of individual cross products is 

exploited by the "Local indicators of spatial association" (LISA) to evaluate the clustering 

in those individual units by calculating Local Moran's I for each spatial unit and evaluating 

the statistical significance for each Ii. From the previous equation we then obtain: 

𝐼𝑖 = 𝑧𝑖 ∑ 𝑤𝑖𝑗𝑧𝑗

𝑛

𝑗
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where zi are the deviations from the mean of yi, and the weights are row standardized. 

 

Figure 4.7 Average properties price by zip code in Miami 

Figure 4.7 shows an example of spatial auto-correlation analysis on the average 

properties price by zip code data in Miami (polygon data). Each dot here in the scatterplot 

corresponds to one zip code. The first and third quadrants of the plot represent positive 

associations (high-high and low-low), while the second and fourth quadrants represent 

associations  (low-high, high-low). For example, the green circle area is in the low-high 

quadrants. The density of the quadrants represents the dominating local spatial process. 

The properties in Miami Beach are more expensive, and are in the high-high area.  
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Figure 4.8 Properties value in Miami 

Figure 4.8 presents the auto-correlation analysis results on the individual properties 

price in Miami (point data). Each dot here in the scatterplot corresponds to one property. 

As the figure shows, the properties near the big lake are cheaper, while the properties along 

the west are more expensive. 

b) Spatial Data Clustering 

The TerraFly GeoCloud system supports the DBSCAN (for density-based spatial 

clustering of applications with noise) data clustering algorithm [93]. It is a density-based 

clustering algorithm because it finds a number of clusters starting from the estimated 

density distribution of corresponding nodes.  

DBSCAN requires two parameters as the input:  eps and the minimum number of 

points required to form a cluster minPts. It starts with an arbitrary starting point that has 

not been visited so far. This point's neighborhood is retrieved, and if it contains sufficiently 

many points, a cluster is started. Otherwise, the point is labeled as a noise point [93]. If a 

point is found to be a dense part of a cluster, its neighborhood is also part of that cluster. 
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Hence, all points that are found within the neighborhood are added. This process continues 

until the density-connected cluster is completely identified. Then, a new unvisited point is 

retrieved and processed, leading to the discovery of a further cluster or noise points [94]. 

 

Figure 4.9 DBSCAN clustering on the crime data in Miami 

Figure 4.9 shows an example of DBSCAN clustering on the crime data in Miami. 

As shown in Figure 6, each point is an individual crime record marked on the place where 

the crime happened, and the number displayed in the label is the crime ID. By using the 

clustering algorithm, the crime records are grouped, and different clusters are represented 

by different colors on the map. 

c) Kriging 

Kriging is a geo-statistical estimator that infers the value of a random field at an 

unobserved location (e.g. elevation as a function of geographic coordinates) from samples 

(see spatial analysis) [95].  
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Figure 4.10 Kriging data of the water level in Florida 

Figure 4.10 shows an example of Kriging. The data set is the water level from water 

stations in central Florida. Note that not all the water surfaces are measured by water 

stations. The Kriging results are estimates of the water levels and are shown by the yellow 

layer. 

4.4.3 Customized Map Visualization (Supported by MapQL) 

TerraFly GeoCloud also provides MapQL spatial query and render tools, which 

supports SQL-like statements to facilitate the spatial query and more importantly, render 

the map according users’ requests. This is a better interface than API to facilitate developer 

and end user to use the TerraFly map as their wish. By using MapQL tools, users can easily 

create their own maps.  
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a) Implementation 

The implementation of MapQL is shown in Figure 4.11. The input of the whole 

procedure is MapQL statements, and the output is map visualization rendered by the 

MapQL engine. 

 

Figure 4.11 MapQL implementation 

Shown in Figure 4.11, the first step is syntax check of the statements. Syntax check 

guarantees that the syntax conforms to the standard, such as the spelling-check of the 

reserved words. Semantic check ensures that the data source name and metadata which 

MapQL statements want to visit are correct. After the above two checks, system will parse 

the statements and store the parse results including the style information into a spatial 

database. The style information includes where to render and what to render. After all the 

style information is stored, system will create style configuration objects for render. The 

last step is for each object, load the style information form spatial database and render to 

the map according to the style information. 
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We implemented the MapQL tools using C++. For the last step which is rendering 

the objects to the map visualization, we employed the TerraFly map render engine [8].  

For example, if we want to query the house prices near Florida International 

University, we use MapQL statements like this: 

SELECT  

    '/var/www/cgi-bin/house.png' AS T_ICON_PATH,  

r.price AS T_LABEL,  

    '15' AS T_LABEL_SIZE,  

r.geo AS GEO 

FROM  

realtor_20121116 r  

WHERE  

ST_Distance(r.geo,  GeomFromText('POINT(-80.376283 25.757228)')) < 0.03; 

 

There are four reseverd words in the statements, T_ICON_PATH , T_LABEL,  

T_LABEL_SIZE , and GEO. We use T_ICON_PATH to store the customized icon. Here 

we choose a local png file as icon. T_LABEL denotes that icon label that will be shown 

on the map, . T_LABEL_SIZE is the pixel size of the label; and GEO is the spatial search 

geometry. 

The statement goes through the syntax check first. If there is incorrect usage  of 

reserved words or wrong spelling of the syntax, it will be corrected or   Error information 

will be sent to users. For example, if the spelling of “select” is not correct, Error 

information will be sent to user.  Semantic check makes sure that the data source name 

realtor_20121116 and metadata r. price and r.geo are exist and available.  

After the checks, the system parsed the statements. The SQL part will return 

corresponding results including the locations and names of nearby objects, the MapQL 

part will collect the style information like icon path and icon label style. Both of them are 
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stored into a spatial database.  The system then created style configuration objects for 

query results. The last step is rendering all the objects on the map visualizations.  The 

style information needed includes icon picture and label size, and the data information 

includes label value and location (Lat, Long). 

 

Figure 4.12 Query data near the point 

Figure 4.12 shows the result of this query. Please be noticed that the unit of the 

distance function in all the demos is Lat-Long. 

b) More Samples 

Figure 4.13 shows all the hotels along a certain street within a certain distance and 

also displays the different stars of the hotels. The MapQL statement for this query is listed 

below: 

SELECT  

    CASE  

        WHEN star >= 1 and star < 2 THEN '/var/www/cgi-bin/hotel_1star.png'  

        WHEN star >= 2 and star < 3 THEN '/var/www/cgi-bin/hotel_2stars.png'  

        WHEN star >= 3 and star < 4 THEN '/var/www/cgi-bin/hotel_3stars.png'  
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        WHEN star >= 4 and star < 5 THEN '/var/www/cgi-bin/hotel_4stars.png'  

        WHEN star >= 5 THEN '/var/www/cgi-bin/hotel_2stars.png'  

        ELSE '/var/www/cgi-bin/hotel_0star.png'  

    END AS T_ICON_PATH,  

h.geo AS GEO 

FROM  

osm_fl o  

LEFT JOIN 

hotel_all h  

ON  

ST_Distance(o.geo, h.geo) < 0.05  

WHERE 

    o.name = 'Florida Turnpike'; 

 

Figure 4.13 Query data along the line 

Figure 4.14 shows the traffic of Santiago where the colder the color is, the faster 

the traffic is, the warmer the color is, and the worse the traffic is. The MapQL statement is 

listed below: 

SELECT  

    CASE  

        WHEN speed >= 50 THEN 'color(155, 188, 255)'  

        WHEN speed >= 40 and speed < 50 THEN 'color(233, 236, 255)'  

        WHEN speed >= 30 and speed < 40 THEN 'color(255, 225, 198)'  
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        WHEN speed >= 20 and speed < 30 THEN 'color(255, 189, 111)'  

        WHEN speed >= 10 and speed < 20 THEN 'color(255, 146, 29)'  

        WHEN speed >= 5 and speed < 10 THEN 'color(255, 69, 0)'  

        WHEN speed >= 0 and speed < 5 THEN 'color("red")'  

else 'color("grey")'  

    END AS T_FILLED_COLOR,  

    '3' AS T_THICKNESS,  

GEO 

FROM santiago_traffic; 

 

Figure 4.14 Traffic of Santiago 

Figure 4.15 shows the different average incomes with in different zip codes. In this 

demo, users can customize the color and style of the map layers, different color stand for 

different average incomes. And the MapQL statement is listed below: 

SELECT  

u.geo AS GEO, 

u.zip AS T_LABEL,  

    '0.7' AS T_OPACITY,  

    '15' AS T_LABEL_SIZE, 

'color("blue")' AS T_BORDER_COLOR, 

    CASE  

        WHEN avg(i.income) < 30000 THEN 'color(155, 188, 255)' 

        WHEN avg(i.income) >= 30000 and avg(i.income) < 50000 THEN 'color(233, 236, 255)' 

        WHEN avg(i.income) >= 50000 and avg(i.income) < 70000 THEN 'color(255, 225, 198)' 
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        WHEN avg(i.income) >= 70000 and avg(i.income) < 90000 THEN 'color(255, 189, 111)' 

        WHEN avg(i.income) >= 90000 and avg(i.income) < 110000 THEN 'color(255, 146, 29)' 

        WHEN avg(i.income) >= 110000 and avg(i.income) < 130000 THEN 'color(255, 69, 0)' 

        WHEN avg(i.income) >= 130000 THEN 'color("red")' 

else 'color("grey")'  

    END AS T_FILLED_COLOR 

FROM  

us_zip u left join income i 

ON  

ST_Within(i.geo, u.geo)='t'  

GROUP BY  

u.geo, u.zip; 

 

Figure 4.15 Income at New York 

All these examples demonstrate that in TerraFly GeoCloud, users can easily create 

different map applications using simple SQL-like statements.  

4.5 Case Study  

This section is the cases studies of the proposed GeoCloud service. 
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4.5.1 Setup 

As a typical web application, GeoCloud provides a variety of web services via 

Internet Information Services (IIS) to serve online web requests. The test bed is set up on 

a Dell PowerEdge servers, each with XEON Intel E5520 2.27 GHz, 16GB (4x4GB) ECC 

-- DDR3 1066MHz, and one 1TB 7.2 RPM SAS disk. Windows server 2008 and SQL 

Server 2008 are installed to provide the environment for GeoCloud.  

4.5.2 Case Study for realtor data analysis 

In this section, we present a case study on using TerraFly GeoCloud for spatial data 

analysis and visualization. As discussed in 3.4.2, we know the results of auto correlation 

can be shown in a scatter diagram, where the first and third quadrants of the plot represent 

positive associations, while the second and fourth quadrants represent negative 

associations. The second quadrant stands for low-high which means the value of the object 

is low and the values of surrounding objects are high.  

A lay user whose name is Erik who has some knowledge about the database and 

data analysis wanted to invest a house property in Miami with a good appreciation potential. 

By using TerraFly GeoCloud, he may obtain some ideas about where to buy. He believes 

that if a property itself has low price and the surrounding properties have higher values, 

then the property may have good appreciation potential, and is a good choice for investment. 

He wants to first identify such properties and then do a field trip with his friends and the 

realtor agent. 
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Figure 4.16 Data Set Upload and Visualization 

To perform the task, first, Erik checked the average property prices by zip code in 

Miami which is shown in Figure 4.7. He found the green circled area in the low-high 

quadrants, which means that the average price of properties of this area is lower than the 

surrounding areas. Then, Erik wanted to obtain more insights on the property price in this 

area. He uploaded a detailed spatial data set named as south_florida_house_price into the 

TerraFly GeoCloud system as shown in Figure 4.16. He customized the label color range 

as the properties price changes. And then, he chose different areas in the green circled area 

in Figure 4.7 to perform the auto-correlation analysis.  
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Figure 4.17 Properties in Miami 

Finally, he found an area shown in Figure 4.17, where there are some good 

properties in the low-high quadrants (in yellow circles) with good locations. And one 

interesting observation is, lots of properties along the road Gratigny Pkwy has lower prices. 

He was then very excited and wanted to do a query to find all the cheap properties with 

good appreciation potential along the Gratigny Pkwy. Erik composed the MapQL 

statements like: 

SELECT  

    CASE  

        WHEN h.pvalue >= 400000 THEN '/var/www/cgi-bin/redhouse.png'  

        WHEN h.pvalue >= 200000 and h.pvalue < 400000 THEN '/var/www/cgi-bin/bluehouse.png'  

        WHEN h.pvalue >= 100000 and h.pvalue < 200000 THEN '/var/www/cgi-bin/greenhouse.png'  

        ELSE '/var/www/cgi-bin/darkhouse.png'  

    END AS T_ICON_PATH,  

h.geo AS GEO  

FROM  

osm_fl o  

LEFT JOIN 

south_florida_house_price h 

ON  

ST_Distance(o.geo, h.geo) < 0.05  

WHERE 

o.name = 'Gratigny Pkwy' AND 



 

57 

 

h.std_pvalue<0 AND 

h.std_sl_pvalue>0; 

 

Figure 4.18 MapQL results 

The Figure 4.18 presents the final results of the MapQL statements. Finally, Erik 

sent the URL of the map visualization out by email, waiting for the response of his friends 

and the realtor agent. 

 

Figure 4.19 The flow path of Erik case 

Figure 4.19 illustrates the whole workflow of the case study.  In summary, Erik first 

viewed the system build-in datasets, conducted the data analysis, and then he identified 

properties of interest.   He then composed MapQL statements to create his own map 

visualization to share with his friends.  The case study demonstrates that TerraFly 
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GeoCloud supports the integration of spatial data analysis and visualization and also offers 

user-friendly mechanisms for customized map visualization. 

4.5.3 A case study for Epidemiological Data Analysis 

In this section we provide an example of how our geospatial epidemiology system 

can be employed in epidemiologic research [96][97]. Assume a researcher studies lung 

cancer in Florida. She can upload and choose the mor_price_income dataset to TerraFly 

GeoCloud - shown in Figure 20. 

 
Figure 4.20 Datasets in TerraFly GeoCloud 

She can then choose the disease analysis button to draw a disease map. In this 

function, she can choose a legend group number; a disease map is displayed then, as shown 

in Figure 21. 
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Figure 4.21 Lung cancer disease map 

From Figure 21 we see how this map, with legend at the top left corner, gives a 

direct summary of the disease data [98-110]. For lung cancer in Florida, the mortality in 

the central region is higher and in the south is lower. However, the researcher cannot have 

an accurate analysis just from this one map. She can further choose the cluster and outliner 

function, which uses Local Moran’s I to perform further analysis. This function provides 

three maps: local Moran’s I map, z-value map, and p-value map. Figure 9 shows the p-

value map, from which the researcher can know which counties form a statistically 

significant cluster and which counties are statistically significant outliners. 
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Figure 4.22 P-value map of Local Moran I 

Now the researcher may want to know what kind of relationship there is between 

lung cancer mortality and the median income of each county. For this purpose, she can use 

the median income dataset provided by the GeoCloud system, and apply to it the spatial 

auto-regression tool [111-117]. Figure 10 shows the result of this model. From the result, 

we learn that when the mortality of surrounding areas increase by 1, the mortality of this 

county will increase of 0.233, and when the median income in the surrounding area 

increases by $10000, the mortality of this county will decrease of 0.09. 
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Figure 4.23 Spatial auto-regression of lung cancer mortality and median income 

4.6 Related Work and Products 

In the geospatial discipline, web-based GIS services can significantly reduce the 

data volume and required computing resources at the end-user side [33][34]. To the best of 

our knowledge, TerraFly GeoCloud is one of the first systems to study the integration of 

online visualization of spatial data, data analysis modules and visualization customization 

language. 

Various GIS analysis tools are developed and visualization customization 

languages have been studied in the literature. ArcGIS is a complete, cloud-based, 

collaborative content management system for working with geographic information. But 

systems like ArcGIS and Geoda focus on the content management and share, not online 

analysis[36][37]. Azavea has many functions such as optimal Location find, Crime analysis, 

data aggregation and visualization. It is good at visualization, but has very limited analysis 

functions [38]. 
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Various types of solutions have been studied in the literature to address the problem 

of visualization of spatial analysis [37].  However, on one hand, good analysis visualization 

tools like Geoda and ArcGIS do not have online functions. To use them, users have to 

download and install the software tools, and download the datasets. On the other hand, 

good online GIS systems like Azavea, SKE, and GISCloud have limited analysis functions. 

Furthermore, none of above products provides a simple and convenient way like MapQL 

to let user create their own map visualization [39][40]. The related products are 

summarized in Table 1. Our work is complementary to the existing works and our system 

also integrates the data mining and visualization.    
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Table 1: GIS Visualization Products 

Name Website 
Product features 

description 
Comments 

ArcGIS 
Online 

http://www.arcgis.co
m 

http://www.arcgis.com 
ArcGIS Online is a 
complete, cloud-based, 
collaborative content 
management system for 
working with geographic 
information. 

No online Analysis,  
focus on the content 
management and 
share. 

Azavea 
http://www.azavea.c

om/products/  

optimal Location 
find,  Crime analsis, data 
aggregated and visualized 

Good visualization.  
Very limited Analysis 
functions 

SKE 
http://www.skeinc.c
om/GeoPortal.html  

Spatial data Viewer  
Focus on the spatial 
data viewer. 

GISCloud 
http://www.giscloud.

com 

with few analysis (Buffer , 
Range , Area , 
Comparison , Hotspot , 
Coverage , Spatial 
Selection ) 

Very limited simple 
analysis. 

GeoIQ 

http://www.geoiq.co
m/ 

http://geocommons.
com/ 

filtering, buffers, spatial 
aggregation and predictive 

Focus on GIS, very 
good Visualization and 
interactive operation. 
Very limited and simple 
analysis: currently 
provide 
predictive(Pearsons 
Correlation). 

 

  

http://www.arcgis.com/
http://www.arcgis.com/
http://www.azavea.com/products/
http://www.azavea.com/products/
http://www.skeinc.com/GeoPortal.html
http://www.skeinc.com/GeoPortal.html
http://www.giscloud.com/
http://www.giscloud.com/
http://www.geoiq.com/
http://www.geoiq.com/
http://geocommons.com/
http://geocommons.com/
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CHAPTER 5 

5 v-TerraFly: Autonomic Resource Management for Virtualized Web Map  

v-TerraFly: Autonomic Resource Management for Virtualized Web Map Service 

System is another very important part of modern map system. With the fast growing use 

of web-based map services, the resource management of such services are becoming 

increasing important to deliver user desired Quality of Service. Map systems often serve 

dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it 

challenging to meet the response time targets of map requests while using the resources 

efficiently. This paper proposes a virtualized web map service system, v-TerraFly, and its 

autonomic resource management in order to address this challenge. Virtualization 

facilitates the deployment of web map services and improves their resource utilization 

through encapsulation and consolidation. Autonomic resource management allows 

resources to be automatically provisioned to a map service and its internal tiers on demand. 

Specifically, this paper proposes new techniques to predict the demand of map workloads 

online and optimize resource allocations considering both response time and data freshness 

as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production 

web map service, and evaluated using real TerraFly workloads. The results show that v-

TerraFly can accurately predict the workload demands: 18.91% more accurate; and 

efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and 

saves re-source usages by 20.83% compared to traditional peak-load-based resource 

allocation. 
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5.1 Introduction 

With the exponential growth of the World Wide Web, there are more domains open 

to Geographic Information System (GIS) applications. Internet can provide information to 

a multitude of users, making GIS available to a wider range of public users than ever before. 

Web-based map services are the most important application of modern GIS systems. For 

example, Google Maps has more than 350 million users. There are also a rapidly growing 

number of geo-enabled applications which consume web map services on traditional 

computing platforms as well as the emerging mobile devices. 

Virtual machines (VM) are powerful platforms for hosting web map service sys-

tems. VMs support flexible resource allocation to both meet web map services system 

demands and share resources with other applications. Virtualization is also enabling 

technology for the emerging cloud computing paradigm, which further allows highly 

scalable and cost-effective web map services hosting leveraging its elastic resource 

availability and pay-as-you-go economic model [54].  

However, due to the highly complex and dynamic nature of web map service 

systems, it is challenging to efficiently host them using virtualized resources. First, typical 

web map services have to serve dynamically changing workloads, which makes it difficult 

to host map services on shared resources without compromising performance or wasting 

resources. Second, a web map service often consists of several tiers which have different 

intensive resource needs and result in dynamic internal resource contention. Third, for a 

typical web map service, both response time for requests and the freshness of the returned 

data are critical factors of the Quality of Service (QoS) required by users. 
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To address the above challenges, this paper presents v-TerraFly, an autonomic 

resource management approach for virtualized map service systems, which can 

automatically optimize the QoS (considering both response time and data freshness) while 

minimizing the resource cost [118][119]. First, v-TerraFly can accurately predict the 

workload demands of a web map service online based on a novel two-way forecasting 

algorithm that considers both historical hourly patterns and daily patterns. Second, based 

on the predicted workload, v-TerraFly can automatically estimate the resource demands of 

its various tiers based on performance profiles created using machine learning techniques. 

Third, v-TerraFly employs a new QoS model that captures the balance between response 

time and data freshness and uses this model to automatically optimize the resource 

allocation of a web map service system [120]. 

This proposed v-TerraFly system is realized on Hyper-V virtual machine 

environments and evaluated by experiments using real workloads collected from the 

production TerraFly system. The results show that the proposed two-level workload 

prediction method is outperforms traditional exponential smoothing prediction by 18.91%, 

and the system improves the QoS by 26.19% compared to traditional statically node 

allocation. In the meantime, it saves resource usages by 20.83% compared to traditional 

peak-load-based resource allocation. 

In summary, this paper’s main contributions are: 1) created a VMbased map service 

system, v-TerraFly, which virtualizes all tiers of a typical web map service and supports 

dynamic resource allocations to the different tiers; 2) proposed a novel autonomic resource 

management approach for virtualized map services, which automatically allocate resources 

to different tiers of the service and optimize the allocations based on the performance and 



 

67 

 

data freshness tradeoff; 3) evaluated v-TerraFly using real workloads collected from 

production web map service system which shows substantial improvement on QoS and 

resource efficiency. 

5.2  Background 

 

Figure 5.1 Web enabled Map Service 

As a promising new trend in GIS, web map service exhibits its excellence in serving 

online map requests responsively and delivering geographical information precisely over 

the Internet [121]. A typical online satellite-based web map service, such as Google maps, 

Bing maps, and Yahoo maps [122], are usually built upon several major tiers (Figure 5.1). 

A Preprocessor preloads images and geographic features from raw data repository and 

splits them into grid format, known as image tiles, to facilitates the Processor quickly 

locate and fetch data. Then a tile Processor retrieves and integrates all tiles needed in a 
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customer query. As its upper tier, a generic map interface access this imagery by geo-

location, and a client app (or browser) to show the map to end users. 

In this paper, we use TerraFly as a case study of the web map system [1]. TerraFly 

serves worldwide web map requests over 125 countries and regions, providing users with 

customized aerial photography, satellite imagery and various overlays, such as street names, 

roads, restaurants, services and demographic data. Following the typical architecture 

described above, TerraFly contains two major tiers (Figure 5.1): an Image Loader Tier 

preprocesses the raw imagery data from repository; an Image Reader Tier processes image 

tiles and retrieves queried images [123]. More details about these tiers are described in 

Next Section. 

Traditionally, web map services are hosted on dedicated physical servers with 

sufficient hardware resources to satisfy their expected peak workloads in order to provide 

responsive web services to the users. However, this becomes inefficient for real-world 

situations where the workloads are intrinsically dynamic in terms of their busty arrival 

patterns and ever changing unit processing costs [124]. Consequently, peak-load based 

resource provision often leads to underutilization of resources for normal state workloads 

and causes substantial overhead. 
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Figure 5.2 v-TerraFly system 

Using VMs to host multi-tier web map services can effectively address this 

limitation because virtualized resources, including CPU, memory, and I/O, are decoupled 

from their physical infrastructures and can be flexibly allocated to different tiers of the web 

map system [125]. This approach allows the resource capacity of each tier to elastically 

grow and shrink to serve its dynamic. In this way, different tiers transparently share the 

consolidated resources with each other and/or other applications with strong isolation. Such 

benefits are important to the efficiency of web map service hosting in both typical data 

centers and emerging cloud systems. On one hand, users need to pay for only the resources 

their services actually consume. On the other hand, resource providers only need to allocate 

resources as required by the services while saving valuable resources for hosting other 

applications [126].  

Virtualization also offers a new paradigm for web map service deployments. 

Modern web map services are sophisticated systems, where their installation and 
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configuration require substantial domain knowledge and experience as well as considerable 

efforts from the administrators. VM-based web map service hosting allows carefully 

installed software to be distributed as simply as copying the data that represents the VMs. 

In addition, this approach allows web map services to be quickly replicated and distributed 

for performance and reliability improvements. 

5.3 v-TerraFly 

5.3.1 Architecture 

To enable the autonomic resource management in TerraFly, we leverage VM 

techniques to virtualize this multi-tier system, denoted as v-TerraFly. The two critical 

resource intensive tiers of TerraFly, the image Loader and Reader Tiers, are deployed on 

the VMs instead of physical servers.  

Figure 5.2 shows the architecture of this v-TerraFly. The users interact with the 

application tier which handles most of the business logic and provides advanced 

application services, such as universal mapping, realtor mapping and water management, 

by sending the mapping queries including position and resolution requirements to the tiers 

below. Then the image Reader Tier is invoked to compute and locate associated map tiles 

from indexed imagery database according to the requests from the application. To maintain 

the data freshness, the organized imagery database is updated by the Loader Tier 

periodically at the same time. Loader contiguously extracts the incoming raw map data 

from the raw imagery repository, preprocesses and organizes the raw data to destination 

projection, and then convert them destination file type, finally update them into organized 

imagery database. 
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Due to the internal nature of mapping service system, these two tiers of v-TerraFly 

exhibit distinct resource usage behaviors in the production environment. On one hand, the 

Reader Tier may experience different number of concurrent users during different periods 

of a day, which results in highly dynamic workloads with varying intensity against the 

Loader. On the other hand, the Leader does not have stringent performance requirement as 

the Roader does but still needs reserved resource to guarantee the data freshness. Therefore, 

it is beneficial to host these two tiers together on virtualized cluster nodes to multiplex the 

common computing resources so that the total resource capacity can be better utilized 

among different tiers.  For example, more VMs are allocated to the Roader Tier during 

daytime when peak-load of user requests is expected to happen but the loading process is 

less active; but shifting more VMs to the Leader over night to allow data updates 

accumulated in daytime.  

Virtualization in TerraFly also improves the flexibility in terms of the system 

reliability and scalability. VM is the computing resource in both Loader and Reader Tiers. 

With the load balance in both tier, the work load of each VM is the same, therefore, the 

VMs in the same tier are considered identical.  Since the computing resources can be 

partitioned through VM nodes, the network bandwidth which is always a bottleneck in the 

original system can be now well balanced among VMs. Furthermore, by pairing every two 

VMs as complementary Reader nodes, it is able to provide more reliable service under 

unexpected system failure by simply replacing the failure VM with its corresponding 

backupped VM [127]. 
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5.3.2 Virtual Load balance cluster 

Network Load Balancing can provide high availability and reliability, as well as 

high scalability. Web applications are stateless applications, and every client request to a 

stateless application is a separate transaction, so it is possible to distribute the requests 

among multiple servers to balance the load. One attractive feature of Network Load 

Balancing is that all servers in a cluster monitor each other with a heartbeat signal, so there 

is no single point of failure. 

Use of a virtual machine will facilitate the build of load balancing clusters. Two 

host servers build pairs of VMs, and then the pairs construct different load balance clusters 

(Figure 3). For application layers, each server will have a paired server, to respond to 

requests together. This is an implementation of dual-server auto fail-over, offering better 

reliability. 

5.3.3 Motivating Examples 

In this section, we demonstrate both the necessity and benefits of resource 

consolidation in a map service system. 

 

Figure 5.3 TerraFly System Workload Hourly Distribution 
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Figure 5.4 Performance and Resource cost comparison using different deployment schemes 

For web map services, the performance of Reader Tier and Loader Tier are both 

important. Better Reader Tier performance provides shorter page response time; better 

Loader Tier performance provides faster loading of new map data. But both tiers are 

resource intensive and they will compete with each other on resource allocation. The goal 

is balance the both tier to achieve best quality of service when we have limited resource.  

The workloads of web map service can be highly dynamic over time. Based on the 

analysis on the web service logs of TerraFly, it is observed that there were millions of web 

requests received on the Reader server over the year of 2012,  i.e., more than 450 visits per 

second on average. However, this workload varies significantly on hourly basis. Figure 5.3 

shows a typical one-day TerraFly workload trace. It shows that the request rate drops to 

150 (visits per second) in the morning (around 9:00am) while rising quickly up to 900 

(visits per second) in the afternoon. It would be more efficiently for us to turn off some 

Reader VM.  

Assuming the variation in workload which follows such a time-related pattern is 

predictable, by virtualizing the Reader Tier of TerraFly we can easily save resources when 
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the workload intensity is low by simply turning off some Reader VMs, and as the workload 

intensity increases, we can bring back them online to process the additional requests.    

To further quantify the resource savings, we replay this one-day trace using two 

deployment schemes for the Reader Tier: the static scheme deploy the Read tier on the 

fixed number of computing nodes throughout the entire experiment (2, 4, 6, 8 and 10 nodes 

respectively); the dynamic schema only assigns sufficient nodes needed by the workload 

in every hour. The response time is used as the performance metric and the desired QoS 

target is set to (0.7s). Fig. 4 compares the average response time in every hour using 

different schemes. We use node-hour as the cost unit in terms of computing resource.  By 

measuring the number Ni of active nodes used in the ith hour, the total amount of the 

resource during certain time period T (hours) can be computed as ∑ 𝑁𝑖
𝑇
𝑖 . 

Fig. 4 compared the measured response times in every hour using different 

deployments as well as the total resource costs needed in one day. As we can see among 

the static deployment configurations, only the 10-node configuration can always meet the 

desired target, however at the cost of the highest total resource amount (240 node-hour); 

others suffer different levels of QoS violation as the workload changes dynamically.    

In contrast, the dynamic deployment scheme is able to track the QoS target all the 

time with only 148 node-hour, saving about 23% of the resources compared to the static 

8-node configuration which cannot satisfy the QoS target, and saving 38 % of the resources 

compared to the static 10-node configuration which can satisfy the QoS target. Its resource 

utilization is as efficient as the 6-node configuration but delivers much better performance. 

The above example shows strong evidence of the importance of map service 

virtualization and its online resource management. Currently, our traditional TerraFly 
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system is deployed on the 8 physical Reader Tier nodes and 2 Loader Tier nodes. It works 

well for supporting up to 800 concurrent users, and about 6GB fresh data can be load each 

hour by the 2 Loader nodes (Refer to 4.3 Resource Model); but the system scalability is 

limited due to its fixed physical capacity. It cannot shift resources between Reader and 

Loader Tiers even when one tier has idle resource and another has insufficient resources. 

The inability of shifting resources between tiers results the waste of resources. 

However, there are several challenges to dynamic resource management of a 

virtualized web map service. First, the dynamics in the realistic workload causes the 

demand of CPU consumption change over time; second, resources also need to be 

dynamically allocated between the Reader Tier to optimize response time and the Loader 

Tier to keep the data fresh. 

These challenges can be well addressed by an autonomic VM-based resource 

management solution which can flexibly partition shared resources and allocate resource 

on-demand for dynamic workload in order to guarantee performance and improve resource 

utilization.  
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Figure 5.5 Autonomic resource management system for v-TerraFly 
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5.4 Autonomic Resource Management in v-TerraFly 

5.4.1 General Approach 

Figure 5.5 illustrates the framework of our proposed autonomic resource 

management system for v-TerraFly, which consists of three key modules. In this paper, we 

focus on the resource management for both Reader and Loader Tiers，since they are the 

most resource intensive tiers in v-TerraFly. 

Table. 1.   Parameter Description 

Parameter Description 

w(t) Workload at time t 

rR(t) Reader VM CPU resource need at time t 

rL(t) Loader VM CPU resource need at time t 

𝒘𝒉
𝑫𝒆𝒔 Horizontal double exponential smoothing prediction 

𝒘𝒅
𝑫𝒆𝒔 Vertical double exponential smoothing prediction 

𝒘′ Two-level double exponential smoothing 

 

As a workload executes on the VMs, the Workload Sensor monitors the actual 

workload at current time step, noted as w(t). The Workload Predictor then forecasts the 

future workload w(t+1) for the next time step based on a prediction model. Based on the 

predicted workload, the Reader profile and Loader profile which are trained offline are 

used to estimate their resource demands for time t+1, denoted by rR(t+1) and rL(t+1) 

respectively. The estimated resource demands are then used by the Resource Allocator to 

make the actual allocations by assigning appropriate number of VMs to the Reader Tier 
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and Loader Tier. Together, these modules form a closed-loop which runs continuously 

(e.g., every hour,) for v-TerraFly’s resource control and optimization. In the rest of this 

section, we describe the key components of this autonomic system in details. 

5.4.2 Workload Prediction 

In order to accurately and timely predict the workload on v-TerraFly, we propose 

new forecasting techniques to discover and exploit patterns in user visiting behaviors such 

as those observed in Figure 5.3. Specifically, we propose a new two-level time series 

prediction approach to build a prediction model based on the historical workload 

measurements, i.e., the request rate observed from the Reader Tier of v-TerraFly. Based 

on such a model, the workload predictor in v-TerraFly is able to estimate the workload 

intensity for the next time period. 

Time series analysis techniques are widely applied in economic data analysis to 

provide statistical prediction and therefore guide business decisions. A variety of time 

series prediction methods are available such as the Moving Averages, Linear Regression 

and Exponential Smoothing [129][130][131]. In this paper, the TerraFly workload 

prediction based on the double exponential smoothing (DES) method [132] which is 

suitable for discrete data sequence with repeated changing patterns.  

DES  is a smoothing-based forecasting method that can be applied to time series 

data, a sequence of observations with equally spaced intervals, expressed as {Y(0), Y(1),.., 

Y(t)}. Then in DES, the estimate for the t+1 time intervals can be computed as: 

𝑌𝐷𝑒𝑠(𝑡 + 1) = 2𝑆′(𝑡) − 𝑆′′(𝑡) + (
𝛼

1 − 𝛼
) (𝑆′(𝑡) − 𝑆′′(𝑡)) 

𝑆′(𝑡)  =  𝛼𝑌(𝑡)  +  (1 −  𝛼)𝑆′(𝑡 − 1) 
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𝑆′′(𝑡)  =  𝛼𝑆′(𝑡)  +  (1 −  𝛼)𝑆′′(𝑡 − 1) 

The equation shows a linear combination of smoothing based statistics associated 

with a smoothing weight 𝛼. The first two components reflect the variation of mean of the 

overall data while the third tracks the trend of the data. S’ is denoted as the singly-smoothed 

series which smoothed the next measure by assigning a exponentially decreased smoothing 

weight to the data of the series and computing the weighted average of the observed series. 

More intuitively, the most recent data is of more importance to the current estimates, i.e., 

the weight assigned to the data k periods old is(1 − 𝛼)𝑘, therefore the closer to 1 of the 

value of 𝛼, less smoothing effect but greater weight to the recent changes. S’’ is denoted 

as the doubly-smoothed series computed by recursively applying the same exponential 

smoothing operation to the singly-smoothed series S’ using the same smoothing weight.  

In order to perform the time-series-based forecast in v-TerraFly, the workload can 

be represented as a sequence of intensity measurements that come from a continuing time 

series at time intervals T, denoted as { … w(t-2T), w(t-T), w(t)}. More specifically, the 

workload measurement can be either the average request rate or the number of concurrent 

client sessions observed in every hour; the time interval T can be either one hour or one 

day (24 hour).  

We propose a new two-level double exponential smoothing forecasting model to 

capture both the daily pattern and hourly pattern of v-TerraFly workload as follows.  

Eq. 1: 𝑤′(𝑡 + 1) = 𝜇ℎ𝑤ℎ
𝐷𝑒𝑠(𝑡 + 1) + 𝜇𝑑𝑤𝑑

𝐷𝑒𝑠(𝑡 + 1) 

where 𝑤ℎ
𝐷𝑒𝑠 is the horizontal double exponential smoothing prediction based on the hourly 

pattern in the workload, and 𝑤𝑑
𝐷𝑒𝑠 is the vertical double exponential smoothing prediction 

based on the daily pattern of the workload.  
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Eq. 2: 𝑤ℎ
𝐷𝑒𝑠(𝑡) = 2𝑆′(𝑡 − 1) − 𝑆′′(𝑡 − 1) + (

𝛼ℎ

1−𝛼ℎ
) (𝑆′(𝑡 − 1) − 𝑆′′(𝑡 − 1)) 

Eq. 3: 𝑤𝑑
𝐷𝑒𝑠(𝑡) = 2𝑆′(𝑡 − 24) − 𝑆′′(𝑡 − 24) + (

𝛼𝑑

1−𝛼𝑑
) (𝑆′(𝑡 − 24) − 𝑆′′(𝑡 − 24)) 

More specifically, 𝑤ℎ
𝐷𝑒𝑠(𝑡) , called horizontal prediction, is predicted based on 

{ 𝑤(𝑡 − 3), 𝑤(𝑡 − 2), 𝑤(𝑡 − 1)} from a hourly series; while 𝑤𝑑
𝐷𝑒𝑠(𝑡), vertical prediction, 

is based on the observation series {  𝑤(𝑡 − 48), 𝑤(𝑡 − 24), 𝑤(𝑡) } that are extracted 

vertically at the same hours but from continuing days, i.e., a 24-hour vertical time span. 

The associated 𝜇 factors which are set between 0 to 1 are used to balance the importance 

between three components.   

Since each level of DES operation is associated with a smoothing weights, we 

denote the weights in horizontal and vertical predictions as 𝛼ℎ and 𝛼𝑑 respectively. Then 

the proposed two-level DES model can be considered as a function of 𝛼ℎ and 𝛼𝑑, given 

observed workload series. Therefore the workload model is trained continuously online as 

soon as the new measurement is observed by optimizing both 𝛼ℎ and 𝛼𝑑 to minimize the 

weighted sum of squared errors between the prediction and the actual observation. Once 

the model is updated, it applies to the system immediately for the next prediction.  
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5.4.3 Performance Profiling 

 

Figure 5.6 Reader tier profiling 

Performance profiles relate the workload of the Reader and Loader Tiers to their 

resource demands according to the desired performance. Taking the predicted workload 

w(t+1) as the input, these profiles are used by the Resource Allocator to allocate resources 

to the Reader and Loader Tiers dynamically in order to achieve the desired QoS.  

For the Reader Tier, since the workload consists of online web requests, the 

intensity of the workload is specified by request rate w(t) as discussed in Section 4.2. The 

relevant performance metric is the average response time RT(t) of the requests completed 

during each control period (e.g., one hour). It can be considered as a function of the 

workload and the number of VM nodes rR(t) allocated to Reader Tier. Thus,  

Eq. 4:  𝑅𝑇(𝑡) = ∅(𝑤(𝑡), 𝑟𝑅(𝑡)) 

The strategy to build this mapping is offline profiling. Given a specific workload 

w, we map the number of nodes n allocated to the Reader Tier to the performance RT by 

iterating over the allocation space and collecting corresponding performance 
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measurements under each allocation candidate. Then we repeat the above step under 

different workloads by varying the number of the concurrent users in v-TerraFly. Figure 

5.6 illustrates the mapping results by using two to ten Reader nodes to serve a workload 

with 40 to 240 concurrent users. Such a mapping provides the least number of VM nodes 

needed for a given workload to meet a specific QoS target. For example, if desired response 

time is set to 0.7 second, then the minimal number of VMs needed is two for a workload 

with about 40 users and 10 when there are more than 230 concurrent users.  

 

Figure 5.7 Reader tier profiling 

In order to reduce the time required for performance profiling, we collected only a 

subset of the Reader configurations under a subset of the workload intensities, and use 

linear regression to build the Reader Tier entire performance profile. As shown in Figure 

5.7, we got the profile mode and the R square is 0.9131. 

We profiled both the CPU and I/O resource usages of the Reader Tier, as shown in 

Figure 5.7. The results show that both the CPU and I/O demands follow the exact same 
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pattern as the workload varies, which validates the use of identical VM nodes as the 

resource allocation unit of the Reader Tier.  

 

Figure 5.8 Loader tier CPU usage profiling 

For the Loader Tier, since the workload mainly consists of batch jobs which loads 

raw data into organized repository, the workload intensity is given by the concurrency level, 

i.e., the average throughput achieved every control period. Allocating more VMs to the 

Loader Tier allows it to obtain higher throughout and finish the loading process sooner. 

We use offline profiling to create a model for Loader that represents the relationship 

between the throughput (I/O) and the number of VM nodes for the Loader Tier. We use 

different amount of map Loader nodes to load a given imagery dataset and monitor the 

throughput. We then use linear regression to learn the entire model based on the training 

data. As shown in Figure 5.8, the throughput of Loader Tier is almost linear with respect 

to the number of Loader VMs. Using linear regression, the R square is only 0.9996. 
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5.4.4 QoS Model 

In this section, we propose a novel QoS model to consider both the responsiveness 

in serving user mapping requests and the quality of returning geographic information. In a 

virtualized web mapping system, both Reader and Loader VMs are usually co-hosted in a 

cluster/data center and compete for the common physical resources, while the former 

guarantees acceptable response time and the latter keeps the imagery data up to date. Since 

the performances from both tiers are critical, we need to well balance the importance 

between them especially when the total resource capacity is constrained. Therefore, a new 

QoS model is defined to represent the overall system performance at measuring time period 

t.   

Eq. 5: 𝑄𝑜𝑆(𝑡) = 𝑟(𝑡) × 𝑓(𝑡) 

where r(t) and f(t) are the performance metrics for the Reader and Loader Tier respectively.  

The former QoS component r(t) is called the normalized response time, which 

measures the quality of web mapping services at time t and can be calculated as following: 

Eq. 6: 𝑟(𝑡) =
𝑅𝑇𝑟𝑒𝑓

𝑅𝑇(𝑡)⁄  

where RTref is the desired average response time at Reader Tier and RT(t) is the actual 

performance measurement at time t. The higher of the value, the quicker the user requests 

served at Reader Tier.  

The latter QoS component f(t) is called the cumulative data freshness which 

measures the quality of data-loading process at Loader Tier at time t. It is calculated 

recursively based on the previous data freshness value and the current data incremental rate, 

expressed as following:   
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Eq. 7: 𝑓(𝑡) = (1 − 𝜌) × 𝑓(𝑡 − 1) + ∆𝐷(𝑡)/𝐷𝑟𝑒𝑓 

where 𝜌 is the decaying factor (predefined in the range of 0 to 1) indicating the data 

quality loss in terms of freshness during the past time period; Dref is the desired amount of 

fresh data per time period, ∆𝐷(𝑡) is the actual amount of data loaded during time period t. 

Initially phase 𝑡 = 0, 𝑓(0) = ∆𝐷(0)/𝐷𝑟𝑒𝑓. 

For instance, assuming we need to maintain 𝐷𝑟𝑒𝑓 = 300𝐺𝐵  amount of fresh data 

in repository every control period and the data freshness value at previous time period was 

𝑓(𝑡 − 1) = 0.9 𝑤ill be reduced to 0.864 at current time t given a decaying factor of 4.0%. 

If there is 15GB data loaded during current time period, then the incremental rate is 0.05 

and therefore the freshness value 𝑓(𝑡) = 0.864 + 0.05 = 0.914. Intuitively, we can say 

the current data quality is 91.4% fresh. Note that it is evident that the data freshness can be 

adjusted by controlling data incremental rate via resource management at Loader Tier. 

By maximizing the QoS as computed above, the v-TerraFly resource management 

system automatically optimize the response time and data freshness simultaneously, which 

are both important to the map service received by users.  

5.5 Evaluation 

5.5.1 Setup 

This section evaluates the proposed virtual web map service system and its 

autonomic resource management using the v-TerraFly prototype and real traces collected 

from the TerraFly production system. As a typical web application, TerraFly usually 

provides a variety of web services via IIS (Internet Information Services) to serve online 

web requests. The test bed is set up on two Dell PowerEdge 2970 servers, each with two 
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six-core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and one 1TB 7.2 RPM SAS disk. 

Windows Server 2008 and Hyper-V are installed to provide the virtualization environment 

for v-TerraFly. The resource management system for v-TerraFly is hosted on the 

hypervisor’s management VM. All guest VMs including both Reader and Loader Tier of 

TerraFly are installed Windows Server 2008 Data Center as the OS. Each Reader and 

Loader VM is configured with one core CPU, 2G memory, and 64 GB disk. The resource 

allocation is done by starting or stopping VMs via Hyper-V PowerShell Script. 

5.5.2 Workload Prediction 

We first evaluate the accuracy of our proposed two-level DES workload prediction 

algorithm by comparing it to two one-level DES approaches based on hourly pattern only 

(Horizontal) and daily pattern only (Vertical) respectively, as well as history average 

statistics (History Average). The evaluation is performed using a real one-month workload 

trace of the November 2012 extracted from the production TerraFly system’s logs. To 

conduct the experiment more efficiently, the real trace is replayed with a 60-fold speedup, 

i.e., using one minute in the experiment to simulate one hour in real world. The prediction 

and updates of the workload models (smoothing weights 𝛼ℎ and 𝛼𝑑, refer to Eq. 2 and Eq. 

3) are performed every minute to adapt to the dynamics.  
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Figure 5.9 Error and Standard deviation of different workload prediction approaches 

Figure 5.9 compares the online prediction errors of different approaches. Our 

proposed two-level prediction method delivers significantly better accuracy in predicting 

the request rate of one month workload. Overall, the 90 percentile average error rate of our 

two-level method is 10.01% with the lowest standard deviation of 145.3, both much lower 

than the other three prediction approaches which are 45.67% (Horizontal), 28.92% 

(Vertical), and 25.14% (History Average) respectively. These results demonstrate that our 

proposed method can effectively exploit both the hourly pattern and daily pattern in the 

workload and achieve accurate workload prediction. 

5.5.3 Resource Management of Reader Tier 

As discussed in Section 4.3, based on the predicted workload, the v-TerraFly 

resource management system automatically allocates resources to the Reader and Loader 

Tiers in order to optimize the QoS. This section evaluates the resource management for the 

Reader Tier alone and demonstrates whether it can achieve the Reader Tier’s response time 

target with the least amount of resources.  
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In the experiment, a real daily workload trace of October 4th 2012 is replayed 

against v-TerraFly with a 60-fold speedup. The resource allocator adjusts resources 

allocation every 1 minute. The QoS target is set to 0.7s in response time. Based on the 

profiling, the performance model of Reader Tier is R(t) = 2.4631 W(t) + 154.06, (as shown 

in Fig.7).  

 

Figure 5.10 Result: Response time 

 

Figure 5.11 Result: VM nodes cost by hours and total VM nodes Cost 
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Figure 5.10 and Figure 5.11 compare the response time and allocations of our 

dynamic approach to static 6, 8, 9 and 10-node deployment plans respectively. From the 

results, we can see that the online dynamic approach is able to achieve the response time 

target all the time throughout the entire experiment. Compared to the 6-node static plan 

which achieves 0.634 second in average page response time, the online dynamic plan 

improves the performance by 32.18%, i.e., 0.430 second in average response time, but at 

the cost of only 5.6% more resource allocation, i.e., 8 additional node-hour. There are 13 

data points where its response time exceeds 0.7 second in the 6-node static plan, which 

causes as much as 54.17% QoS violation; in contrast, no QoS violation occurs in the 

dynamic plan.  

Compared to the 8-node static plan, the dynamic plan saves as much as 20.83% of 

total resources, i.e., 40 node-hour. Although the static 8-node plan allocates substantially 

more with surplus resources, it still causes three QoS violations during the experiment. The 

9-node static plan meets the QoS target all the time except the 19th hour, and it costs 29.63% 

more total resources than the dynamic plan. The 10-node static plan is the only static plan 

that meets the QoS target all the time, but it costs 36.67% more total resources than the 

dynamic plan.  

Overall, it is evident that the online dynamic deployment plan can efficiently 

allocate resources to the Reader Tier while at the same time meet the response time target 

by flexibly adjusting its VM assignments in an online manner. 
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5.5.4 Resource Management of both Reader and Loader Tiers 

This section evaluates the proposed autonomic resource management approach for 

both Reader and Loader Tiers. Based on the QoS model defined in Section 4.4, the 

importance of both tiers needs to be balanced in order to optimize an overall QoS value 

which not only guarantees the responsiveness of map service but also maintains the data 

freshness of returned maps. 

In the experiment, we use the same workload trace described in Section 5.3, and 

compare our proposed approach to the traditional static deployment plan. The traditional 

method allocates a fixed number of nodes to Reader Tier to satisfy average response time 

by past experience and gives rest nodes to Loader Tier. Specifically, it assigns 7 nodes to 

the Read Tier and 3 nodes to the Loader Tier in order to achieve an average response time 

of 0.9 second and 303.3GB fresh data per day (average f(t) = 0.809, refer to Eq. 7).   

 

Figure 5.12 Result: response time improvement 
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Figure 5.13 Result: Throughput improvement 

Figure 5.12 and Figure 5.13compare the performance of the proposed dynamic plan 

to the traditional static plan in both response time of the Reader Tier and throughput of the 

Loader Tier. The static plan achieves an average response time of 0.897 seconds, while the 

dynamic plan shows slightly better 0.873 seconds. The latter also achieves higher average 

throughput (194.6 thousands requests per day) than the static one (185.1 thousands requests 

per day).  

 

Figure 5.14 Node Allocation per Hour 
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Figure 5.15 Result: QoS value improvement 

Although the performance improvement on the Reader Tier is not significant, 

Figure 5.15 shows that the proposed dynamic plan achieves much better overall QoS (26.19% 

improvement). The reason behind this substantial improvement is because the dynamic 

plan saves resources from the Reader Tier and allocates them to the Loader Tier, thereby 

making data loading faster without sacrificing Reader performance. Resources are 

dynamically balanced between these two tiers as the workload changes, where the 

autonomic resource management allocates only the necessary number of VM nodes to the 

Reader Tier to satisfy current workload, and reserve the rest to Loader Tier to load new 

data. 

For example, as showed in Figure 5.14, from Hour 7 to 10, since the workload on 

Reader Tier is less intense, the dynamic plan allocates more resource to the Loader Tier to 

allow the new data to be loaded as fast as possible. As a result, the dynamic plan loads 

much more new data (473.3GB Per day) at a varying loading rate than the traditional plan 

(303.3GB Per day), which loads data at a fixed rate. And the QoS value of the dynamic 
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plan (Avg QoS=1.079, refer to Eq. 5) is 26.20% higher the traditional plan (Avg QoS=0.855, 

refer to Eq. 5). 

In summary, our proposed autonomic resource management approach is able to 

automatically optimize the tradeoff between service responsiveness and data freshness by 

balancing the resource allocations between the Reader and Loader Tiers. 
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CHAPTER 6 

6 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this dissertation, we have improved a distributed disk-resident hybrid index for 

efficiently answering k-NN queries with Boolean constraints on textual content with 

MapReduce in sksOpen project. With this algorithm, we have implemented efficient online 

indexing, querying, and visualization system for Big Geospatial data, to allow online users 

to index their own spatial data, and offer query visualization. Our experimental study 

showed an improved performance and scalability on large spatial datasets over alternate 

methods, and a better interactive user interface. 

Web map services become increasingly widely used for various commercial and 

personal purposes.   GIS application needs to be able to easily analyze and visualize spatial 

data and satisfy the increasing demand of information sharing. TerraFly GeoCloud is an 

online spatial data analysis and visualization system, to address the challenges. TerraFly 

GeoCloud is built upon the TerraFly Geo spatial database, to offer a convenient way to 

analyze geo spatial data, visualize the results, and share the result by a unique URL.  Our 

system also allows users to customize their own spatial data visualization using a SQL-like 

MapQL language rather than writing codes with Map API.  

Virtualization can greatly facilitate the deployment of web map service systems and 

substantially improve their resource utilization. To fulfill this potential, the resource 

management of a virtualized web map system needs to be able to handle the dynamic 

workloads that the system typically serves and satisfy the often competing demands of the 
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various tiers of the system. v-TerraFly is presented to address these challenges. v-TerraFly 

is created by virtualizing the various tiers of a typical map service system and allowing 

resources to be dynamically allocated across the tiers. The resource management is done 

by predicting the workload intensity based on historical data and estimating the resource 

needs of the map service’s Reader and Loader Tiers based on their performance models. A 

unique QoS metric is then defined to capture the tradeoff between the service 

responsiveness and data freshness, and it is used to optimize the resource allocation to the 

Reader and Loader VMs. 

Experiments based on real TerraFly workload show that our system can accurately 

predict the workload’s resource demands online and automatically allocate the resources 

accordingly to meet the performance target and save substantial resource cost compared to 

peak-load-based resource allocation. It can also automatically optimize the tradeoff 

between responsiveness and data freshness by dynamically balancing the shared resources 

between the Reader and Loader VMs.  

6.2 Future Work 

In our future work, we will research and develop an extra layer between end users 

who have limit knowledge in writing SQL statements and the MapQL, a query composing 

interfaces for the MapQL statements, to facilitate lay users to create their own map 

visualizations. Also, we will improve the scale of TerraFly GeoCloud, conduct large-scale 

experiments and employ distributed computing as additional mechanisms for optimizing 

the system. In addition, we will explore how to apply the principle of MapQL to other 

applications that share similar characteristics with web GIS services. 
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Also, we will improve the scale of v-TerraFly, conducting larger experiments and 

employing live VM migration as an additional mechanism for optimizing resource 

management. We will also explore how to apply the principle of v-TerraFly to other 

applications that have similar dynamic and multi-tier characteristics as a web map service. 
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