

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

GEOSPATIAL DATA INDEXING ANALYSIS AND VISUALIZATION VIA WEB

SERVICES WITH AUTONOMIC RESOURCE MANAGEMENT

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Yun Lu

2013

ii

To: Dean Amir Mirmiran

 College of Engineering and Computing

This dissertation, written by Yun Lu, and entitled geospatial data indexing analysis and

visualization via web services with autonomic resource management, having been

approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

 Malek Adjouadi

 Tao Li

 Ming Zhao

 Naphtali Rishe, Major Professor

Date of Defense: November 07, 2013

The dissertation of Yun Lu is approved.

 Dean Amir Mirmiran

 College of Engineering and Computing

 Dean Lakshmi N. Reddi

 University Graduate School

Florida International University, 2013

iii

© Copyright 2013 by Yun Lu

All rights reserved.

iv

DEDICATION

I dedicate this dissertation to my family and my friends. Without their love, patience,

understanding and support, the completion of this work would never have been possible.

v

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advising professor, Dr.

Naphtali Rishe, who has continuously given me guidance and excellent support throughout

my entire Graduate and Doctoral studies at FIU.

I would like to thank my committee members, Professor Ming Zhao, Professor Tao

Li, and Professor Malek Adjouadi for serving on my dissertation defense committee and

giving enlightening comments.

I would like to thank all members who have been working in the HPDRC team, for

their generous support, and always willing to offer suggestions for work and research,

Finally and most important, I would like to express my deepest thank to my family,

who provides me with selfless support and generous encouragement during my dissertation

writing.

This material is based in part upon work supported by the National Science

Foundation under Grant Nos. MRI CNS-0821345, MRI CNS-1126619, CREST HRD-

0833093, I/UCRC IIP-1338922, I/UCRC IIP-0829576, RAPID CNS-1057661, RAPID

IIS-1052625, MRI CNS-0959985, AIR IIP-1237818, SBIR IIP-1330943, FRP IIP-

1230661, III-Large IIS-1213026, SBIR IIP-1058428, SBIR IIP-1026265, SBIR IIP-

1058606, SBIR IIP-1127251, SBIR IIP-1127412, SBIR IIP-1118610, SBIR IIP-1230265,

SBIR IIP-1256641. Includes material licensed by TerraFly (http://terrafly.com) and the

NSF CAKE Center (http://cake.fiu.edu).

vi

ABSTRACT OF THE DISSERTATION

 GEOSPATIAL DATA INDEXING ANALYSIS AND VISUALIZATION VIA WEB

SERVICES WITH AUTONOMIC RESOURCE MANAGEMENT

by

Yun Lu

Florida International University, 2013

Miami, Florida

Professor Naphtali Rishe, Major Professor

With the exponential growth of the usage of web-based map services, the web GIS

application has become more and more popular. Spatial data index, search, analysis,

visualization and the resource management of such services are becoming increasingly

important to deliver user-desired Quality of Service.

First, spatial indexing is typically time-consuming and is not available to end-users.

To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and

Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial

database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k

Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on

interactive maps to facilitate the user’s data analysis.

Second, due to the highly complex and dynamic nature of GIS systems, it is quite

challenging for the end users to quickly understand and analyze the spatial data, and to

efficiently share their own data and analysis results with others. Built on the TerraFly Geo

spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and

can efficiently support many different visualization functions and spatial data analysis

vii

models. Furthermore, users can create unique URLs to visualize and share the analysis

results. TerraFly GeoCloud also enables the MapQL technology to customize map

visualization using SQL-like statements [10].

Third, map systems often serve dynamic web workloads and involve multiple CPU

and I/O intensive tiers, which make it challenging to meet the response time targets of map

requests while using the resources efficiently. Virtualization facilitates the deployment of

web map services and improves their resource utilization through encapsulation and

consolidation. Autonomic resource management allows resources to be automatically

provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to

predict the demand of map workloads online and optimize resource allocations,

considering both response time and data freshness as the QoS target. The proposed v-

TerraFly system is prototyped on TerraFly, a production web map service, and evaluated

using real TerraFly workloads. The results show that v-TerraFly can accurately predict the

workload demands: 18.91% more accurate; and efficiently allocate resources to meet the

QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared

to traditional peak load-based resource allocation.

viii

TABLE OF CONTENTS

CHAPTER PAGE

CHAPTER 1 ..1

1 INTRODUCTION ..1

1.1 Motivation ..1

1.2 My work ...3

1.2.1 sksOpen ..3

1.2.2 GeoCloud ..3

1.2.3 v-TerraFly ...4

1.3 Dissertation Outline ..5

CHAPTER 2 ..6

2 LITERATURE REVIEW ...6

2.1 Geographic information retrieval systems ...6

2.2 Spatial data analysis and visualization ...9

2.3 Workload prediction and resource management ..11

CHAPTER 3 ..16

3 sksOpen: Efficient Indexing, Querying and Visualization of Geo-spatial Data16

3.1 Introduction ..16

3.2 Background ..17

3.2.1 TerraFly ..17

3.2.2 Spatial data visualization ..19

3.2.3 MapReduce ...19

3.2.4 K-NN ..20

3.3 Architecture of sksOpen ...21

3.3.1 The index algorithm of sksOpen ..21

3.3.2 The Structure of sksOpen ...24

3.4 Visualization of sksOpen ..26

3.5 Case study ...28

3.5.1 Setup ...28

3.5.2 Performance study ..29

3.5.3 User experience study ..29

3.6 Related work ...32

CHAPTER 4 ..33

4 GeoCloud: Online Spatial Data Analysis and Visualization33

4.1 Introduction ..33

4.2 Background ..35

4.2.1 TerraFly geospatial database ..35

4.2.2 Visualizing spatial data ..36

4.2.3 Map Rendering ...37

4.3 TerraFly GeoCloud ...38

ix

4.4 Visualization in TerraFly GeoCloud ..41

4.4.1 Spatial Data Visualization ..41

4.4.2 Spatial Data Mining Results Visualization ..42

4.4.3 Customized Map Visualization (Supported by MapQL)47

4.5 Case Study ..53

4.5.1 Setup ...54

4.5.2 Case Study for realtor data analysis ...54

4.5.3 A case study for Epidemiological Data Analysis ...58

4.6 Related Work and Products ..61

CHAPTER 5 ..64

5 v-TerraFly: Autonomic Resource Management for Virtualized Web Map64

5.1 Introduction ..65

5.2 Background ..67

5.3 v-TerraFly ...70

5.3.1 Architecture ..70

5.3.2 Virtual Load balance cluster ...72

5.3.3 Motivating Examples ...72

5.4 Autonomic Resource Management in v-TerraFly ..76

5.4.1 General Approach ...76

5.4.2 Workload Prediction ...77

5.4.3 Performance Profiling ..80

5.4.4 QoS Model ...83

5.5 Evaluation ...84

5.5.1 Setup ...84

5.5.2 Workload Prediction ...85

5.5.3 Resource Management of Reader Tier ...86

5.5.4 Resource Management of both Reader and Loader Tiers89

CHAPTER 6 ..93

6 CONCLUSIONS AND FUTURE WORK ...93

6.1 Conclusions ..93

6.2 Future Work ...94

LIST OF REFERENCES ...96

VITA ...106

x

LIST OF FIGURES

FIGURE PAGE

Figure 3.1 An super-node and leaf nodes .. 22

Figure 3.2 Hybrid Spatial-Keyword Index .. 23

Figure 3.3 MapReduce design of sksOpen ... 25

Figure 3.4 Loading Process ... 26

Figure 3.5 Visualization of a Hotels’ query results .. 27

Figure 3.6 Interactive list Visualization .. 28

Figure 3.7 Visualization of Block-group Median Income query 30

Figure 3.8 Query result of properties data in an unfriendly database 31

Figure 3.9 TerraFly Visualization of Query results .. 32

Figure 4.1 Population Total (height) vs. Density (color) of US 36

Figure 4.2 The Architecture of TerraFly GeoCloud ... 38

Figure 4.3 The Workflow of TerraFly GeoCloud Analysis .. 39

Figure 4.4 Interface of TerraFly GeoCloud ... 40

Figure 4.5 Spatial Data Visualization: Point Data .. 41

Figure 4.6 Spatial Data Visualization: Polygon Data ... 42

Figure 4.7 Average properties price by zip code in Miami .. 44

Figure 4.8 Properties value in Miami ... 45

Figure 4.9 DBSCAN clustering on the crime data in Miami .. 46

Figure 4.10 Kriging data of the water level in Florida ... 47

Figure 4.11 MapQL implementation .. 48

Figure 4.12 Query data near the point .. 50

xi

Figure 4.13 Query data along the line ... 51

Figure 4.14 Traffic of Santiago ... 52

Figure 4.15 Income at New York ... 53

Figure 4.16 Data Set Upload and Visualization.. 55

Figure 4.17 Properties in Miami ... 56

Figure 4.18 MapQL results ... 57

Figure 4.19 The flow path of Erik case ... 57

Figure 4.20 Datasets in TerraFly GeoCloud ... 58

Figure 4.21 Lung cancer disease map ... 59

Figure 4.22 P-value map of Local Moran I ... 60

Figure 4.23 Spatial auto-regression of lung cancer mortality and median income 61

Figure 5.1 Web enabled Map Service ... 67

Figure 5.2 v-TerraFly system .. 69

Figure 5.3 TerraFly System Workload Hourly Distribution ... 72

Figure 5.4 Performance and Resource cost comparison using different deployment

schemes ... 73

Figure 5.5 Autonomic resource management system for v-TerraFly 75

Figure 5.6 Reader tier profiling .. 80

Figure 5.7 Reader tier profiling .. 81

Figure 5.8 Loader tier CPU usage profiling .. 82

Figure 5.9 Error and Standard deviation of different workload prediction approaches ... 86

Figure 5.10 Result: Response time ... 87

Figure 5.11 Result: VM nodes cost by hours and total VM nodes Cost 87

xii

Figure 5.12 Result: response time improvement .. 89

Figure 5.13 Result: Throughput improvement .. 90

Figure 5.14 Node Allocation per Hour ... 90

Figure 5.15 Result: QoS value improvement .. 91

1

CHAPTER 1

1 INTRODUCTION

1.1 Motivation

With the exponential growth of the World Wide Web, there are many domains,

such as water management, crime mapping, disease analysis, and real estate, open to

Geographic Information System (GIS) applications. The Web can provide a giant amount

of information to a multitude of users, making GIS available to a wider range of public

users than ever before. Web-based map services are the most important application of

modern GIS systems. For example, Google Maps currently has more than 350 million users.

There are also a rapidly growing number of geo-enabled applications which utilize web

map services on traditional computing platforms as well as the emerging mobile devices.

More people employ Web applications to update their geographical information via

the process known as Geotagging. Geotagging can help users find a wide variety of

location-specific information. For example, one can find images taken near a given location

by entering latitude and longitude coordinates into a suitable image search engine [11].

Geotagging-enabled information services can also potentially be used to find location-

based news, websites, and other resources. Geotagging can tell users the location of the

content of a given picture or other media, and conversely on some media platforms, show

media relevant to a given location [12].

However, it is quite challenging for users to manipulate spatial data. On one hand,

typical geographic visualization tools do not offer spatial data index functions or

application programming interfaces (API) to the public. On the other hand, even if users

2

have access to spatial data index services, it is very difficult to get the visualization of query

results of their own spatial data.

At the same time, it is also challenging for the end users to quickly understand and

analyze the spatial data, and to efficiently share their own data and analysis results with

others. First, typical geographic visualization tools are complicated and fussy with a lot of

low-level details, thus they are difficult to use for spatial data analysis. Second, the analysis

of large amount spatial data is very resource-consuming. Third, current spatial data

visualization tools are not well integrated for map developers, and it is difficult for end

users to create the map applications on their own spatial datasets [10].

At last, virtual machines (VM) are powerful platforms for hosting web map service

systems. But due to the highly complex and dynamic nature of web map service systems,

it is challenging to efficiently host them using virtualized resources. First, typical web map

services have to serve dynamically changing workloads, which makes it difficult to host

map services on shared resources without compromising performance or wasting resources.

Second, a web map service often consists of several tiers which have different intensive

resource needs and result in dynamic internal resource contention. Third, for a typical web

map service, both response time for requests and the freshness of the returned data are

critical factors of the Quality of Service (QoS) required by users.

To address the above challenges, we need a search engine which opens to public

and provide easy and clear visualization; and we need a spatial analysis platform to provide

user with in needed analysis tools and data; and at last, we need powerful background

support with virtualized hosted system which can automatically optimize the QoS while

minimizing the resource cost [13][14].

3

1.2 My work

Motivated by the above challenges, my work concentrate in three directions:

sksOpen, GeoCloud and v-TerraFly. Putting them together, we have a better solution of

web based GIS system.

1.2.1 sksOpen

TerraFly sksOpen is an efficient online indexing, querying, and visualization

system for Big Geospatial Data, which allows users to easily create indices of spatial

objects and to query and visualize the results and share them via unique URLs. The

TerraFly sksOpen Online Spatial Object Index and Visualization System is built using

TerraFly Maps API, and JavaScript TerraFly API add-ons in a high performance cloud

environment.

sksOpen, with MapReduce, improved a distributed disk-resident hybrid index for

efficiently answering k-NN queries with Boolean constraints on textual content. With this

algorithm, sksOpen have implemented efficient online indexing, querying, and

visualization system for Big Geospatial data, to allow online users to index their own

spatial data, and offer query visualization. Our experimental study showed an improved

performance and scalability on large spatial datasets over alternate methods, and a better

interactive user interface.

1.2.2 GeoCloud

TerraFly GeoCloud is an online spatial data analysis and visualization system,

which allows end users to easily visualize and share various types of spatial data. First,

TerraFly GeoCloud can accurately visualize and manipulate point and polygon spatial data

4

with just a few clicks. Second, TerraFly GeoCloud employs an analysis engine to support

the online analysis of spatial data, and the visualization of the analysis results. Many

different spatial analysis functionalities are provided by the analysis engine. Third, based

on the TerraFly map API, TerraFly GeoCloud offers a MapQL language with SQL-like

statements to execute spatial queries, and render maps to visualize the customized query

results.

TerraFly GeoCloud online spatial data analysis and visualization system is built

upon the TerraFly system using TerraFly Maps API and JavaScript TerraFly API add-ons

in a high performance cloud Environment. The function modules in the analysis engine are

implemented using C and R language and python scripts. Comparing with current GIS

applications, our system is more user-friendly and offers better usability in the analysis and

visualization of spatial data. The system is available at http://terrafly.fiu.edu/GeoCloud/.

1.2.3 v-TerraFly

Firstly, v-TerraFly can accurately predict the workload demands of a web map

service online based on a novel two-way forecasting algorithm that considers both

historical hourly patterns and daily patterns. Secondly, based on the predicted workload,

v-TerraFly can automatically estimate the resource demands of its various tiers based on

performance profiles created using machine learning techniques. Thirdly, v-TerraFly

employs a new QoS model that captures the balance between response time and data

freshness and uses this model to automatically optimize the resource allocation of a web

map service system.

5

VMs support flexible resource allocation to both meet web map services system

demands and share resources with other applications. Virtualization is also enabling

technology for the emerging cloud computing paradigm, which further allows highly

scalable and cost-effective web map services hosting, leveraging its elastic resource

availability and pay-as-you-go economic model.

This proposed v-TerraFly system is realized on Hyper-V virtual machine

environments and evaluated by experiments using real workloads collected from the

production version of TerraFly system. The results show that the proposed two-level

workload prediction method outperforms traditional exponential smoothing prediction by

18.91%, and the system improves the QoS by 26.19% compared to traditional statically

node allocation. In the meantime, it saves resource usages by 20.83% compared to

traditional peak-load-based resource allocation.

1.3 Dissertation Outline

The remainder of the dissertation is organized as follows. Chapter 2 discusses

research problem and related works. Chapter 3 describes the sksOpen system which is an

efficient Indexing, Querying and Visualization of Geo-spatial Data tool. Chapter 4

discusses TerraFly GeoCloud online spatial analysis and visualization system. Chapter 5

describes the v-TerraFly system, autonomic Resource Management for Virtualized Web

Map. Chapter 6 summarizes the conclusions and provides recommendations for future

research.

6

CHAPTER 2

2 LITERATURE REVIEW

In this thesis, we study and propose solution to three related research problems in

geospatial databases:

1. Parallel construction of R-tree and inverted file index on large spatial databases,

and provide efficient online querying, and visualization.

2. Efficient online spatial data analysis, visualization and sharing.

3. Accurately predict the workload demands of a web map service and

automatically optimize the resource allocation of a web map service system

In this chapter we describe the most relevant literature. We first show existing

approaches on K-NN search and visualization, and then we describe current and related

problems on online spatial data analysis. Finally, we survey existing work in workload

prediction and autonomic computing on web map service.

2.1 Geographic information retrieval systems

The R-tree traversal method in our work is inspired in Hjaltason and Samet’s [16]

incremental top-k nearest neighbor algorithm using R-trees [17]. Performance

improvements on the original R-tree work have been proposed, e.g. R*-tree [18], R+-tree

[19], and Hilbert R-tree [20]. Any of these variants can replace the Rtree index used in the

proposed hybrid spatial keyword index without modifying our search algorithms. In

information retrieval, inverted files are arguably the most efficient index structure for free-

text search [21][22].

There has been lot of interest in building geographic information retrieval systems.

The first work of this kind started in the context of digital library (DL) projects such as

7

GIPSY at UC Berkeley and Alexandria Digital Library Project at UC Santa Barbara [23].

In these projects, the main objective is to address the extraction of geographic references

found in the text by using ontologies, gazetteers, thesaurus, etc., and convert them to

coordinates for retrieving DL contents using geography.

In the context of geographic search engines, there are numerous academic projects.

Most of them can be broadly classified under 1) work that focused on extraction of

geographic references from documents and/or 2) efficient query processing. We will

briefly describe a few of these. In GeoSearch System [24], the geographic scope ofWeb

pages are extracted by analyzing the geographic references in text as well as the geographic

location where the Web sites are registered. In [25], the focus is on improving the extraction

techniques. In particular, after the relevant geographic references are extracted, ambiguities

such as multiple place name references and alternate place names are resolved using

techniques such as geo-matching and geo-propagation. Other relevant studies that

addressed geographic search on the Web is [24].

In the context of query processing for GIR, indexing techniques for processing text

and geographic data are the main focus. In [24], a simple inverted index structure for text

and grid file for geographic data are used. They propose a hybrid index structure in which

each keyword is combined with different partitions of space. In effect what they are

proposing is similar to [26]. The other technique proposed in their work concatenates

keyword with region identifier. For example, keyword earthquake is combined with spatial

region “R1” and represented as spatial-textual key “earthquakeR1”. All the documents that

are in “R1” and contains the text earthquake are attached as list to the key “earthquakeR1”.

There are drawbacks of this approach. First, for large set of objects, this approach will

8

generate a large number of false positives. For query containing multiple keywords and

spatial region, a number of such keys have to be looked up and filtered.

In a recent work, the authors propose to maintain individual indices for spatial and

textual data. They propose various approaches to retrieve data from each index before the

final merging of results. The spatial objects indexed in their applications are complex

footprints that are extended regions in space. They approximate them by using MBRs and

use memory-resident spatial index. Their approach does not scale well with increasing size

of the dataset. To alleviate the problem, they propose to compress the MBRs, but the

attempt generates large candidate set that needs to be fetched from the disk, with a high

rate of false positives. This will become a major performance bottleneck for large scale

GIR applications. In our work, we use disk-resident spatial index for GIR applications. Our

data structure performs significantly better than their approach with respect to two aspects:

1) first it reduces the number of disk accesses in identifying the candidate objects and as a

consequence 2) it reduces the overhead in merging the candidate objects [27].

In another much related work [26], the authors proposed a hybrid index by

combining the spatial and inverted list structures. Their approaches either use multiple R*-

trees to answer queries or generates more candidates for further filtering [27].

The problem of retrieving spatial objects satisfying non-spatial constraints has been

studied in the recent past. Park and Kim [28] proposed RS-trees, a combination of R-trees

and signature trees for attributes with controlled cardinality; signature chopping is

suggested to mitigate combinatorial errors [29] (database overrepresentation) of

superimposed signatures. Harinharan et al. [27] proposed to include a list of terms in every

node of an R-tree. De Felipe et al. [30] augmented signature files in R-tree nodes with

9

similar constraints as [28]. Recently, Cong et al. [31] augmented an inverted file in every

node of an R-tree, and used a ranking function that combines spatial proximity and text

relevancy. Our work differs in that we assume distance as ranking score, and we focus on

efficiently processing Boolean constraints on textual data. Further, none of the previous

works offer efficient processing of the complement logical operator, which limits their

applicability to the k-SB queries we considered in this work. Likewise, modern Web search

engines, like Google and Yahoo!, offer Local Search services. Advanced querying options

are provided to include and exclude certain terms from the search result. These are similar

to the k-SB queries we consider. However, specific search algorithms are kept confidential

by their owning companies [32]. Our approach combines modified versions of R-trees and

inverted files to achieve effective pruning of the search space [32], with an extra quad-tree

index to implement MapReduce.

2.2 Spatial data analysis and visualization

In the geospatial discipline, web-based GIS services can significantly reduce the

data volume and required computing resources at the end-user side [33][34]. To the best of

our knowledge, TerraFly GeoCloud is one of the first systems to study the integration of

online visualization of spatial data, data analysis modules and visualization customization

language.

The principles behind interactive spatial data analysis can be traced back to the

work on dynamic graphics for data analysis in general, originated by the statistician John

Tukey and a number of research groups at AT&T Bell Laboratories. An excellent review

of the origins of these ideas is given in the collection of papers edited by Cleveland and

10

McGill (1988), and early discussions of specific methods are contained in the papers by,

among others, Becker et al (1987), Becker and Cleveland (1987), and Stuetzle (1987).

More recent reviews of methods for the dynamic analysis of high-dimensional multivariate

data and other aspects of interactive statistical graphics can be found in papers by, among

others, Becker et al (1996), Buja et al (1991, 1996), Cleveland (1993), and Cook et al (1995)

[35].

Dynamic graphical methods started as enhancements to the familiar static displays

of data, by allowing direct manipulation by the user that results in ‘immediate’ change in

a graph. This had become possible by the availability of workstations with sufficient

computational power to generate the statistical graphs without delays and to allow

interaction with the data by means of an input device (light pen or mouse). The overall

motivation was to involve the human factor more directly in the exploration of data (i.e.

exploiting the inherent capabilities of the brain to detect patterns and structure), and thereby

gain richer insights than possible with the traditional rigid and static display. This was

achieved by allowing the user to delete data points, highlight (brush) subsections of the

data, establish links between the same data points in different graphs, and rotate, cut

through, and project higher-dimensional data. Furthermore, the user and not a preset

statistical procedure determined which actions to perform. Interactive statistical procedures

become particularly effective when datasets are large (many observations) and high-

dimensional (many variables), situations where characterization of the data by a few

numbers becomes increasingly unrealistic (for an early assessment see, for example,

Andrews et al 1988: 75). While dynamic graphics for statistics were originally mostly

11

experimental and confined to research environments, they have quickly become pervasive

features of the EDA capability in modern commercial statistical software packages [35].

Various GIS analysis tools are developed and visualization customization

languages have been studied in the literature. ArcGIS is a complete, cloud-based,

collaborative content management system for working with geographic information. But

systems like ArcGIS and Geoda focus on the content management and share, not online

analysis [36][37]. Azavea has many functions such as optimal Location find, Crime

analysis, data aggregation and visualization. It is good at visualization, but has very limited

analysis functions [38].

Various types of solutions have been studied in the literature to address the problem

of visualization of spatial analysis [37]. However, on one hand, good analysis visualization

tools like Geoda and ArcGIS do not have online functions. To use them, users have to

download and install the software tools, and download the datasets. On the other hand,

good online GIS systems like Azavea, SKE, and GISCloud have limited analysis functions.

Furthermore, none of above products provides a simple and convenient way like MapQL

to let user create their own map visualization [39][40]. Our work is complementary to the

existing works and our system also integrates the data mining and visualization.

2.3 Workload prediction and resource management

In the geospatial discipline, web-based map services can significantly reduce the

data volume and required computing resources at the end-user side [45]. To the best of our

knowledge, v-TerraFly is the first to study the virtualization of typical web map services

12

and propose QoS-driven resource management for a virtualized web map service through

workload forecasting and dynamic resource allocation [46].

Similarly to the birth of the Internet, one of the notable early self-managing projects

was initiated by DARPA for a military application in 1997. The project was called the

Situational Awareness System1 (SAS), which was part of the broader Small Units

Operations (SUO) program. Its aim was to create personal communication and location

devices for soldiers on the battlefield. Soldiers could enter status reports, for example,

discovery of enemy tanks, on their personal device, and this information would

autonomously spread to all other soldiers, which could then call up the latest status report

when entering an enemy area. Collected and transmitted data includes voice messages and

data from unattended ground sensors and unmanned aerial vehicles. These personal devices

have to be able to communicate with each other in difficult environmental conditions,

possibly with enemy jamming equipment in operation, and must at the same time minimize

enemy interception to this end [47]. The latter point is addressed by using multihop ad-hoc

routing; that is, a device sends its data only to the nearest neighbors, which then forward

the data to their own neighbors until finally all devices receive the data. This is a form of

decentralized peer-to-peer mobile adaptive routing, which has proven to be a challenging

self-management problem, especially because in this project the goal is keep latency below

200 milliseconds from the time a soldier begins speaking to the time the message is

received. The former point is addressed by enabling the devices to transmit in a wide band

of possible frequencies, 20–2,500 MHz, with bandwidths ranging from 10 bps to 4 Mbps.

For instance, when distance to next soldier is many miles, communication is possible only

at low frequencies, which results in low bandwidth, which may still be enough to provide

13

a brief but possibly crucial status report. Furthermore, there may be up to 10,000 soldiers

on the battlefield, each with their own personal devices connected to the network [47].

In 2001, IBM suggested the concept of autonomic computing. In their manifesto

[48], complex computing systems are compared to the human body, which is a complex

system, but has an autonomic nervous system that takes care of most bodily functions, thus

removing from our consciousness the task of coordinating all our bodily functions. IBM

suggested that complex computing systems should also have autonomic properties, that is,

should be able to independently take care of the regular maintenance and optimization tasks,

thus reducing the workload on the system administrators. IBM also distilled the four

properties of a self-managing (i.e., autonomic) system: self-configuration, self-

optimization, self-healing, and self-protecting.

Finally, we would like to mention an interesting project that started at NASA in

2005, the Autonomous Nanotechnology Swarm (ANTS). As an exemplary mission, they

plan to launch into an asteroid belt a swarm of 1000 small spacecraft (so-called pico-class

spacecraft) from a stationary factory ship in order to explore the asteroid belt in detail.

Because as much as 60–70% of the swarm is expected to be lost as they enter the asteroid

belt, the surviving craft must work together. This is done by forming small groups of

worker craft with a coordinating ruler, which uses data gathered from workers to determine

which asteroids are of interest and to issue instructions. Furthermore, messenger craft will

coordinate communications between members of the swarm and with ground control. In

fact, NASA has already previously used autonomic behavior in its DS1 (Deep Space 1)

mission and the Mars Pathfinder [49]. Indeed, NASA has a strong interest in autonomic

computing, in particular in making its deep-space probes more autonomous. This is mainly

14

because there is a long round-trip delay between a probe in deep space and mission control

on Earth. So, as mission control cannot rapidly send new commands to a probe—which

may need to quickly adapt to extraordinary situations—it is extremely critical to the success

of an expensive space exploration mission that the probes be able to make certain critical

decisions on their own.

Various automatic forecasting algorithms have been studied in the related work

[50], including different kinds of exponential smoothing. The work of Brown (1959) and

Gardner (1985) led to the use of exponential smoothing in automatic forecasting (e.g.,

Stellwagen &Goodrich, 1999) [42][43][44]. Hyndman (2002) developed a more general

class of methods with a uniform approach to calculate the prediction interval [41][42]. The

workload prediction algorithm proposed in this paper is based on exponential smoothing,

but it is novel in the use of two levels of double exponential smoothing to capture both

hourly pattern and daily pattern in the workload, which achieves much higher accuracy

than traditional exponential smoothing methods.

In particular, Dinda et al. studied prediction-based best-effort real-time service to

support distributed, interactive applications in shared computing environments. Two of the

examples are an earthquake visualization tool and a GIS map display tool, which were

shown to benefit from the service [51]. However, the workload prediction is based on linear

prediction which is often not sufficient for real-world dynamic workloads. In this paper,

we proposed a two-level exponential smoothing algorithm which shows good prediction

accuracy for real TerraFly workloads.

Various types of solutions have been studied in the literature to address the problem

of autonomic VM resource management. Different machine learning algorithms have been

15

considered to model VM resource usages [52][53][54][55]. Feedback control theory has

also been used to adjust VM resource allocations, which are often based on models trained

to identify the system and build the controller [56][57][58][59]. These various solutions

are complementary to this paper’s work which focuses on the management of virtualized

web map services. Meanwhile, this paper proposes a unique QoS model to capture multiple

important objectives and a new method to optimize resource allocation across multiple

competing tiers, which has not been studied in the related work and can be applied to

manage other multi-tier applications with similar characteristics.

16

CHAPTER 3

3 sksOpen: Efficient Indexing, Querying and Visualization of Geo-spatial Data

With the fast growing use of web-based map services, the performance of indexing

and querying of location-based data is becoming a critical quality of service aspect. Spatial

indexing is typically time-consuming and is not available to end-users. To address this

challenge, we have developed and open-sourced an Online Indexing and Querying System

for Big Geospatial Data, sksOpen. Integrated with the TerraFly Geospatial database [1],

TerraFly sksOpen is an efficient indexing and query engine for processing Top-k Spatial

Boolean Queries. Further, we provide ergonomic visualization of query results on

interactive maps to facilitate the user’s data analysis.

3.1 Introduction

With the exponential growth of Internet applications, there are many domains open

to Geographic Information System (GIS) applications. Massive amounts of spatial

information become available to a wide range of public uses [10]. More and more people

employ Web applications to update their geographical information via the process known

as Geotagging. For example, Google Maps currently has more than 350 million users.

There are also a rapidly growing number of geo-enabled applications, which utilize web

map services on traditional computing platforms as well as on emerging mobile devices.

Geotagging can help users find a wide variety of location-specific information. For

example, one can find images taken near a given location by entering latitude and longitude

coordinates into a suitable image search engine [11]. Geotagging-enabled information

services can also potentially be used to find location-based news, websites, and other

17

resources. Geotagging can tell users the location of the content of a given picture or other

media, and conversely on some media platforms, show media relevant to a given location

[12].

However, due to the highly complex and dynamic nature of GIS systems, it is quite

challenging for users to manipulate spatial data. On one hand, typical geographic

visualization tools do not offer spatial data index functions or application programming

interfaces (API) to the public. On the other hand, even if users have access to spatial data

index services, it is very difficult to get the visualization of query results of their own spatial

data.

To address the above challenges, we have developed TerraFly sksOpen, an efficient

online indexing, querying, and visualization system for Big Geospatial Data, which allows

users to easily create indices of spatial objects and to query and visualize the results and

share them via unique URLs.

The TerraFly sksOpen Online Spatial Object Index and Visualization System is

built using TerraFly Maps API, and JavaScript TerraFly API add-ons in a high performance

cloud environment.

3.2 Background

3.2.1 TerraFly

TerraFly is a system for querying and visualizing geospatial data developed by the

High Performance Database Research Center (HPDRC) lab at Florida International

University (FIU) [1-9]. The TerraFly system serves worldwide web map requests to over

125 countries and regions, providing users with customized aerial photography, satellite

18

imagery, and various overlays, such as street names, roads, restaurants, services and

demographic data [60][61].

The TerraFly API allows rapid deployment of interactive web applications, and has

been used to produce systems for disaster mitigation, ecology, real estate, tourism, and

municipalities. TerraFly's web-based client interface is accessible from anywhere, via any

standard web browser, with no client software to install [62][63].

TerraFly allows users to virtually ‘fly’ over enormous geographic information

simply via a web browser with several advanced functionalities and features, such as user-

friendly geospatial querying interfaces, map display with user-specific granularity, real-

time data suppliers, demographic analysis, annotation, route dissemination via autopilots,

API for web sites, etc [64][65].

TerraFly's server farm ingests geo-locates, cleanses, mosaics, and cross-references

40TB of base map data and user-specific data streams. The 40TB TerraFly data collection

includes, among others, 1-meter aerial photography of almost the entire United States, and

3-inch to 1-foot full-color recent imagery of major urban areas. TerraFly’s vector collection

includes 400 million geo-located objects, 50 billion data fields, 40 million polylines, 120

million polygons, including: all US and Canada roads, US Census demographic and

socioeconomic datasets, 110 million parcels with property lines and ownership data, 15

million records of businesses with company stats and management roles and contacts, 2

million physicians with expertise detail, various public place databases (including the

USGS GNIS and NGA GNS), Wikipedia, extensive global environmental data (including

daily feeds from NASA and NOAA satellites and the USGS water gauges), and hundreds

of other datasets [66][67].

19

3.2.2 Spatial data visualization

Information visualization (or data visualization) techniques are able to present the

data and patterns in a visual form that is intuitive and easily comprehensible, allowing users

to derive insights from the data, and support user interactions.

Visualizing the objects in geo-spatial data is as important as the data itself. The

visualization task becomes more challenging as both the data dimensionality and richness

in the object representation increases. In TerraFly data querying we have addressed the

visualization challenge, including the interactive map visualization spatial data and

interactive list visualization [68].

3.2.3 MapReduce

MapReduce is a programming model and an associated implementation for

processing and generating large data sets. Users specify a map function that processes a

key/value pair to generate a set of intermediate key/value pairs, and a reduce function that

merges all intermediate values associated with the same intermediate key.

Programs written in this functional style are automatically parallelized and

executed on a large cluster of commodity machines. The run-time system takes care of the

details of partitioning the input data, scheduling the program's execution across a set of

machines, handling machine failures, and managing the required inter-machine

communication. This allows programmers without much experience with parallel and

distributed systems to easily utilize the resources of a large distributed system.

Hadoop, a version of MapReduce, is an open-source software framework that

supports data-intensive distributed applications [69]. It is this programming paradigm that

20

allows for massive scalability across hundreds or thousands of servers in a Hadoop cluster.

The MapReduce concept is fairly simple to understand for those who are familiar with

clustered scale-out data processing solutions [70].

The term MapReduce denotes the two main tasks that Hadoop programs perform.

The first task, Map, takes a set of data and converts it into another set of data, where

individual elements are broken down into tuples (key/value pairs). The Reduce task takes

the output from a Map as input and combines those data tuples into a smaller set of tuples

[71].

3.2.4 K-NN

In pattern recognition, the k-nearest neighbor algorithm (k-NN) is a non-parametric

method for classifying objects based on closest training examples in the feature space. K-

NN is a type of instance-based learning, or lazy learning, where the function is only

approximated locally and all computation is deferred until classification [72]. The k-nearest

neighbor algorithm is amongst the simplest of all machine learning algorithms: an object

is classified by a majority vote of its neighbors, with the object being assigned to the class

most common amongst its k nearest neighbors (k is a positive integer, typically small). If

k = 1, then the object is simply assigned to the class of that single nearest neighbor [72].

Nearest neighbor rules in effect implicitly compute the decision boundary. It is also

possible to compute the decision boundary explicitly, and to do so efficiently, so that the

computational complexity is a function of the boundary complexity [73].

21

3.3 Architecture of sksOpen

TerraFly sksOpen is implemented in Java, and is a web service easily accessible

from anywhere. In this section, we will introduce the algorithm and software structure of

sksOpen.

3.3.1 The index algorithm of sksOpen

We improved the spatial object index algorithm developed by Cary, Rishe et al in

2010 [32]. The algorithm creates spatial object indices as a hybrid index; it includes both

an R-Tree spatial index and an inverted text file index. We have added a new “map”

algorithm to split the data set in order to speed up the index to fit large-scale spatial data

index [74].

By employing this hybrid index, we attained fast retrieval, even when matching

objects were located far away from one another, efficiently filtering-out of objects not

satisfying the query Boolean constraints on keywords, and maintained low storage

requirements while keeping high query performance.

The challenge is reducing the computations to eliminate as many non-candidate

objects as possible. In particular, NOT-semantics constraints may substantially shrink the

output size and lead to unnecessary scans.

The indexing approach leverages the strengths of R-trees in spatial search, and

modifies an inverted file for efficient processing of Boolean constraints. The combination

of indexing techniques yields the hybrid data structure: Spatial-Keyword Index (SKI) [32].

22

Next, we define the principal terminology in SKI [32], which invented by Cary, A.,

Wolfson, O., & Rishe, N. (2010, January). Efficient and scalable method for processing

top-k spatial boolean queries:

Figure 3.1 An super-node and leaf nodes [32]

R-tree Index (R): A modified R-tree built with spatial attributes. Entries in R’s inner

nodes are augmented with index ranges [a, b], where Sa and Sb are the left-most and right-

most, respectively, super nodes contained in the sub tree rooted at node entry. Ranges in

leaf-node entries contain a single value, the index of the super node containing the leaf

node.

Spatial Inverted File (SIF): A modified inverted file constructed on a vocabulary V.

The Lexicon contains terms in V and their document frequencies (df). Posting lists are

modified to include spatial information from R. Specifically, the posting list of a term t

contains all its term bitmaps sorted by the super node index as follows:

Posting(t) = [I(t, s1), I(t, s2), ...] where Si Belongs to S(R)

23

Figure 3.2 Hybrid Spatial-Keyword Index [32]

We organized posting elements in a B+tree to allow fast random and range retrieval.

Figure 3.2 shows the structure of the hybird index [75][76].

However, this algorithm whichi invited by Cary, A is indexing the tuples in a

particular sequence, which is not feasible in a large-scale index enviorment. To address

this challege, my work is added a new componet of the algorithm, named split, and merge

modules to split the input data set quickly into different parts, and finally merge all indices,

to facilate multi-core or multi-machine index loading, to significantly increase the

performance of the algorithm [77][78].

We employed a Z-order value to quickly set the split points. In mathematical

analysis, Z-order, Morton order, or Morton code, is a function that maps multidimensional

data to one dimension, while preserving locality of the data points. It was introduced in

1966 by G. M. Morton [79]. The Z-value of a point in a multidimensional space is

calculated by interleaving the binary representations of its coordinate values. Once the data

is sorted into this ordering, any one-dimensional data structure can be used such, as binary

search trees, B-trees, skip lists, or hash tables. The resulting ordering can equivalently be

described as the order one would get from a depth-first traversal of a quadtree; because of

24

its close connection with quadtrees, the Z-ordering can be used to efficiently construct

quadtrees and related higher dimensional data structures.

The Split Algorithm works as follows:

1. Get the Z-order Value of a tuple of coordinate to get the Split points

2. Create a Split point array

3. For each entry, perform a binary search in the Split point array to find out the

partition index

4. Write the entry into corresponding partition file

5. Send the partitioned files to a thread or a loading machine to start index loading

The Index Merge Algorithm works as follows:

1. Save Split point array and load it when querying

2. For each search point, perform a binary search in Split point array to find the

partition index

3. Perform the query procedure in the corresponding spatial keywords index

4. Find the eligible entry and return a list of the results

With this improvement, we have added a Quadtree at the top of the R-Tree index

to improve the performance of multi-task loading [81]. Because the partitions of the data

file are easy to control, the depth of the Quadtree is usually short, wich means the

binarySearch in Split point runs quickly and takes O(log(m)).

3.3.2 The Structure of sksOpen

With the improvement of methods for processing top-k spatial Boolean queries by

introducing the Split and Merge modules, we can utilize the MapReduce model to create

25

the sksOpen indices for Big Data. The performance of the loading of indices is significantly

improved.

Spatial
Data

Map
Loading
process

Loading
process

Reduce
Final data

index

Loading
process

Start
Query
Engine

TerraFly
Visualization

Engine
Query

Final results
Visualization

Figure 3.3 MapReduce design of sksOpen

As shown in Figure 3.3, the Map module splits the spatial data into partitions

depending on how many hardware resources will be used for index loading. After each

loading process is finished, the Reduce module will automatically merge the indices of the

data partitions to produce the final data index. After that, the database can be efficiently

queried [80]. When a query comes, the Query Engine will examine the final data index,

and then produce the query results list. With the results list, the TerraFly visualization

engine will offer visualization with a unique URL, which can be shared with other users.

26

Figure 3.4 Loading Process

The loading process of sksOpen is one of the key modules. Figure 3.4 shows details

of the loading process.

3.4 Visualization of sksOpen

For spatial object visualization, the system supports both map object visualization

and data list object visualization. T visualization is dynamic and interactive.

Integrated with TerraFly map API and JavaScript, the query results of spatial object

can be shown on a much better interface, including both map and object lists.

read tuple
dump tuple into

object
put objects into

nodes

Sort object
nodes

create spatial
inverted file

Join object node
with inverted

file

finallize the
spatial inverted

file

Move the index
files and clean
the tmp files

27

Figure 3.5 Visualization of a Hotels’ query results

Figure 3.5 shows visualization of a query of hotel information in Miami. When

users query, for example, search for hotels of 4 stars or above and less than $200 per night

near downtown Miami, the visualization of results will be shown as in Figure 3.5. The map

on the top shows the location of the hotel results. When the mouse hovers over a hotel

location, a popup appears with more detailed information. Below the map visualization,

there is a table of results hyperlinked to further querying.

28

Figure 3.6 Interactive list Visualization

As shown in Figure 3.6, if the mouse hovers over any object, more data appear as

a layer over the page.

3.5 Case study

3.5.1 Setup

This section evaluates the proposed sksOpen service system. As a typical web

application, sksOpen provides a variety of web services via Apache Tomcat to serve online

web requests. The test bed is set up on a Dell PowerEdge servers, each with XEON Intel

E5520 2.27 GHz, 16GB (4x4GB) ECC -- DDR3 1066MHz, and one 1TB 7.2 RPM SAS

disk. CentOS 5.6 are installed to provide the environment for sksOpen.

29

3.5.2 Performance study

The Test data file is “us_consumer_2012_full”. The data is Person Individual U.S.

Consumers and White Pages, which is 68GB, 173million records, and for each records

there are 136 fields. The loading process map the workload into 40 parts, and eventually

takes 28 hours in to construct the final index, the loading process can be accelerated by

adding computing resources.

For the query performance, we comparing KNN query and KNN query with

Boolean restriction. For KNN query, query the top 50 records near Miami Beach, the query

results as long as 38339 characters returned in 1.211971 seconds includes the disk access

time for record retrieval. For KNN query Boolean restriction CITY=Miami and

FIRST_NAME=jose, query the top 50 records near Miami Beach, the query results as long

as 33308 characters returned in 1.707193 seconds includes the disk access time for record

retrieval. Two Boolean restrictions just take 30% more query time, and comparing with

most of Boolean queries which have to retrieve data respectively and then join with each

other, this is a good performance.

3.5.3 User experience study

In this section, we present a case study on using TerraFly sksOpen for spatial data

indexing, query, and visualization.

30

Figure 3.7 Visualization of Block-group Median Income query

John wants to analyze the relationship between median income in locales and

property values. John enters a TerraFly page presenting visualization of median income

data of U.S. Census Block Groups, as shown in Figure 3.7. John notices a place near Miami

(zip code 33140) that has a lower median average income than areas nearby. Then John

wants to examine the property values of this location.

Although he has access to a data set of all Florida properties, it is too large to use

directly. There are 10 million records in the data set, and each record has 173 fields. He

decides to index the file by sksOpen, in order to search the property information near the

place.

31

Figure 3.8 Query result of properties data in an unfriendly database

By triggering a URL to put the dataset into the sksOpen server, the loading process

begins. With the help of MapReduce, sksOpen finishes loading in a couple of minutes.

Then, John enters search conditions to finalize the query: properties near 33140 with

pricing lower than 1M. Instead of the result shown in Figure 3.8, as most open index and

query tools offer, John got a map visualization shown in Figure 3.9. John can change the

query conditions to explore the data set as he desires. All the 173 fields of the data set can

be queried.

32

Figure 3.9 TerraFly Visualization of Query results

3.6 Related work

Spatial object index, query, and visualization services, can significantly improve

the data analysis efficiently. TerraFly sksOpen is one of the first systems open online that

allows users to index their own data, and provide both interactive map and list visualization.

For the algorithm of processing Top-k Spatial Boolean queries, the R-tree traversal

method in our work is inspired by Hjaltason and Samet’s incremental top-k nearest

neighbor algorithm using R-trees [17]. Performance improvements on the original R-tree

work have been proposed, e.g. R*-tree, R+-tree, and Hilbert R-tree. Any of these variants

can replace the R-tree index used in the proposed hybrid spatial keyword index without

modifying our search algorithms. In information retrieval, inverted files are arguably the

most efficient index structures for free-text search [21].Our approach combines modified

versions of R-trees and inverted files to achieve effective pruning of the search space [32],

with an extra quad-tree index to implement MapReduce.

33

CHAPTER 4

4 GeoCloud: Online Spatial Data Analysis and Visualization

With the exponential growth of the usage of web map services, the geo data analysis

has become more and more popular. This paper develops an online Spatial Data Analysis

System, TerraFly GeoCloud, which facilitates the end user to visualize and analyze spatial

data, and to share the analysis results. Built on the TerraFly Geo spatial database, TerraFly

GeoCloud is an extra layer running upon TerraFly map supporting many different

visualization functions and spatial data analysis models. TerraFly GeoCloud also enables

the MapQL technology to create maps using SQL-like statements.

4.1 Introduction

With the exponential growth of the World Wide Web, there are many domains,

such as water management, crime mapping, disease analysis, and real estate, open to

Geographic Information System (GIS) applications. The Web can provide a giant amount

of information to a multitude of users, making GIS available to a wider range of public

users than ever before. Web-based map services are the most important application of

modern GIS systems. For example, Google Maps currently has more than 350 million users.

There are also a rapidly growing number of geo-enabled applications which utilize web

map services on traditional computing platforms as well as the emerging mobile devices.

However, due to the highly complex and dynamic nature of GIS systems, it is quite

challenging for the end users to quickly understand and analyze the spatial data, and to

efficiently share their own data and analysis results to others. First, typical geographic

visualization tools are complicated and fussy with a lot of low-level details, thus they are

34

difficult to use for spatial data analysis. Second, the analysis of large amount spatial data

is very resource-consuming. Third, current spatial data visualization tools are not well

integrated for map developers and it is difficult for end users to create the map applications

on their own spatial datasets.

To address the above challenges, this paper presents TerraFly GeoCloud, an online

spatial data analysis and visualization system, which allows end users to easily visualize

and share various types of spatial data. First, TerraFly GeoCloud can accurately visualize

and manipulate point and polygon spatial data with just a few clicks. Second, TerraFly

GeoCloud employs an analysis engine to support the online analysis of spatial data, and

the visualization of the analysis results. Many different spatial analysis functionalities are

provided by the analysis engine. Third, based on the TerraFly map API, TerraFly

GeoCloud offers a MapQL language with SQL-like statements to execute spatial queries,

and render maps to visualize the customized query results.

Our TerraFly GeoCloud online spatial data analysis and visualization system is

built upon the TerraFly system using TerraFly Maps API and JavaScript TerraFly API add-

ons in a high performance cloud Environment. The function modules in the analysis engine

are implemented using C and R language and python scripts. Comparing with current GIS

applications, our system is more user-friendly and offers better usability in the analysis and

visualization of spatial data. The system is available at http://terrafly.fiu.edu/GeoCloud/.

http://terrafly.fiu.edu/GeoCloud/

35

4.2 Background

4.2.1 TerraFly geospatial database

TerraFly is a system for querying and visualizing of geospatial data developed by

High Performance Database Research Center (HPDRC) lab in Florida International

University (FIU). This TerraFly system serves worldwide web map requests over 125

countries and regions, providing users with customized aerial photography, satellite

imagery and various overlays, such as street names, roads, restaurants, services and

demographic data [1].

TerraFly Application Programming Interface (API) allows rapid deployment of

interactive Web applications and has been used to produce systems for disaster mitigation,

ecology, real estate, tourism, and municipalities. TerraFly's Web-based client interface is

accessible from anywhere via any standard Web browser, with no client software to install.

TerraFly allows users to virtually ‘fly’ over enormous geographic information

simply via a web browser with a bunch of advanced functionalities and features such as

user-friendly geospatial querying interface, map display with user-specific granularity,

real-time data suppliers, demographic analysis, annotation, route dissemination via

autopilots and application programming interface (API) for web sites, etc. [1-7][10].

TerraFly's server farm ingests geo-locates, cleanses, mosaics, and cross-references

40TB of base map data and user-specific data streams. The 40TB TerraFly data collection

includes, among others, 1-meter aerial photography of almost the entire United States and

3-inch to 1-foot full-color recent imagery of major urban areas. TerraFly vector collection

includes 400 million geo-located objects, 50 billion data fields, 40 million polylines, 120

36

million polygons, including: all US and Canada roads, the US Census demographic and

socioeconomic datasets, 110 million parcels with property lines and ownership data, 15

million records of businesses with company stats and management roles and contacts, 2

million physicians with expertise detail, various public place databases (including the

USGS GNIS and NGA GNS), Wikipedia, extensive global environmental data (including

daily feeds from NASA and NOAA satellites and the USGS water gauges), and hundreds

of other datasets [66][82].

4.2.2 Visualizing spatial data

Information visualization (or data visualization) techniques are able to present the

data and patterns in a visual form that is intuitive and easily comprehendible, allow users

to derive insights from the data, and support user interactions [83].

Figure 4.1 Population Total (height) vs. Density (color) of US

For example, Figure 4.1 shows the map of Native American population statistics

which has the geographic spatial dimensions and several data dimensions. The figure

displays both the total population and the population density on a map, and users can easily

gain some insights on the data by a glance [5]. In addition, visualizing spatial data can also

37

help end users interpret and understand spatial data mining results. They can get a better

understanding on the discovered patterns.

Visualizing the objects in geo-spatial data is as important as the data itself. The

visualization task becomes more challenging as both the data dimensionality and richness

in the object representation increase. In TerraFly GeoCloud, we have devoted lots of effort

to address the visualization challenge including the visualization of multi-dimensional data

and the flexible user interaction.

TerraFly GeoCloud integrates spatial data mining and data visualization. The

integration of spatial data mining and information visualization has been widely to discover

hidden patterns. For spatial data mining to be effective, it is important to include the

visualization techniques in the mining process and to generate the discovered patterns for

a more comprehensive visual view [68].

4.2.3 Map Rendering

The process of rendering a map generally means taking raw geospatial data and

making a visual map from it. Often it applies more specifically to the production of a raster

image, or a set of raster tiles, but it can refer to the production of map outputs in vector-

based formats. "3D rendering" is also possible when taking the map data as an input. The

ability of rendering maps in new and interesting styles, or highlighting features of special

interest, is one of the most exciting aspects in spatial data analysis and visualization.

TerraFly map render engine is a toolkit for rendering maps and is used to render

the main map layers. It supports a variety of geospatial data formats and provides flexible

38

styling options for designing many different kinds of maps, and the render speed is fast

[85][86].

TerraFly map render engine is written in C++ and can be used as a web service. It

uses the AGG library and offers anti-aliasing rendering with pixel accuracy. It can read

different kind of file like PostGIS, TIFF rasters, .osm files, and other shape files. Packages

are available for both Window and Linux [86].

4.3 TerraFly GeoCloud

Figure 4.2 The Architecture of TerraFly GeoCloud

Figure 4.2 shows the system architecture of TerraFly GeoCloud. Based on the

current TerraFly system including the Map API and all sorts of TerraFly data, we

developed the TerraFly GeoCloud system to perform online spatial data analysis and

visualization. In TerraFly GeoCloud, users can import and visualize various types of spatial

data (data with geo-location information) on the TerraFly map, edit the data, perform

spatial data analysis, and visualize and share the analysis results to others. Available spatial

data sources in TerraFly GeoCloud include but not limited to demographic census, real

39

estate, disaster, hydrology, retail, crime, and disease. In addition, the system supports

MapQL, which is a technology to customize map visualization using SQL-like statements.

The spatial data analysis functions provided by TerraFly GeoCloud include spatial

data visualization (visualizing the spatial data), spatial dependency and autocorrelation

(checking for spatial dependencies), spatial clustering (grouping similar spatial objects),

and Kriging (geo-statistical estimator for unobserved locations).

Figure 4.3 The Workflow of TerraFly GeoCloud Analysis

Figure 4.3 shows the data analysis workflow of the TerraFly GeoCloud system.

Users first upload datasets to the system, or view the available datasets in the system. They

can then visualize the data sets with customized appearances. By Manipulate dataset, users

can edit the dataset and perform pre-processing (e.g., adding more columns). Followed by

pre-processing, users can choose proper spatial analysis functions and perform the analysis.

After the analysis, they can visualize the results and are also able to share them with others.

40

Figure 4.4 Interface of TerraFly GeoCloud

Figure 4.4 showed the interface of the TerraFly GeoCloud system. The top bar is

the menu of all functions, including Data, analysis, Graph, Share, and MapQL. The left

side shows the available datasets, including both the uploaded datasets from the user and

the existing datasets in the system. The right map is the main map from TerraFly. This map

is composed by TerraFly API, and it includes a detailed base map and diverse overlays

which can present different kinds of geographical data [87].

TerraFly GeoCloud also provides MapQL spatial query and render tools. MapQL

supports SQL-like statements to realize the spatial query, and after that, render the map

according to users’ inputs. MapQL tools can help users visualize their own data using a

simple statement [88]. This provides users with a better mechanism to easily visualize

geographical data and analysis results.

List of
uploaded
Datasets

Menu bar TerraFly Map

Layer
controls

41

4.4 Visualization in TerraFly GeoCloud

4.4.1 Spatial Data Visualization

Figure 4.5 Spatial Data Visualization: Point Data

For spatial data visualization, the system supports both point data and polygon data

and users can choose color or color range of data for displaying. As shown in Figures, the

point data is displayed in Figure 4.5, and the polygen data is displayed in Figure 4.6.

The data labels are shown on the base map as extra layers for point data, and the

data polygons are shown on the base map for polygon data. Many different visualization

choices are supported for both point data and polygon data. For point data, user can

customize the icon style, icon color or color range, label value and so on. For polygon data,

user can customize the fill color or color range, fill alpha, line color, line width, line alpha,

label value and so on.

42

Figure 4.6 Spatial Data Visualization: Polygon Data

4.4.2 Spatial Data Mining Results Visualization

TerraFly GeoCloud integrates spatial data mining and data visualization. The

spatial data mining results can be easily visualized. In addition, visualization can often be

incorporated into the spatial mining process.

a) Spatial dependency and Auto-Correlation

Spatial dependency is the co-variation of properties within geographic space:

characteristics at proximal locations that appear to be correlated, either positively or

negatively. Spatial dependency leads to the spatial autocorrelation problem in statistics [89].

Spatial autocorrelation is more complex than one-dimensional autocorrelation

because spatial correlation is multi-dimensional (i.e. 2 or 3 dimensions of space) and multi-

directional. The TerraFly GeoCloud system provides auto-correlation analysis tools to

43

discover spatial dependencies in a geographic space, including global and local clusters

analysis where Moran's I measure is used [90].

Formally, Moran’s I, the slope of the line, estimates the overall global degree of

spatial autocorrelation as follows:

𝐼 =
𝑛

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗

𝑛
𝑖

×
∑ ∑ 𝑤𝑖𝑗(𝑦𝑖 − �̅�)(𝑦𝑗 − �̅�)𝑛

𝑗
𝑛
𝑖

∑ (𝑦𝑗 − �̅�)2𝑛
𝑖

where wij is the weight, wij=1 if locations i and j are adjacent and zero otherwise

wii=0 (a region is not adjacent to itself).yi and �̅� are the variable in the ith location and the

mean of the variable, respectively. n is the total number of observations. Moran’s I is used

to test hypotheses concerning the correlation, ranging between –1.0 and +1.0.

Moran’s I measures can be displayed as a checkerboard where a positive Moran’s

I measure indicates the clustering of similar values and a negative Moran’s I measure

indicate dissimilar values. TerraFly GeoCloud system provides auto-correlation analysis

tools to check for spatial dependencies in a geographic space, including global and local

clusters analysis [91].

Local Moran’s I is a local spatial autocorrelation statistic based on the Moran’s I

statistic. It was developed by Anselin as a local indicator of spatial association or LISA

statistic [92]. The fact that Moran's I is a summation of individual cross products is

exploited by the "Local indicators of spatial association" (LISA) to evaluate the clustering

in those individual units by calculating Local Moran's I for each spatial unit and evaluating

the statistical significance for each Ii. From the previous equation we then obtain:

𝐼𝑖 = 𝑧𝑖 ∑ 𝑤𝑖𝑗𝑧𝑗

𝑛

𝑗

44

where zi are the deviations from the mean of yi, and the weights are row standardized.

Figure 4.7 Average properties price by zip code in Miami

Figure 4.7 shows an example of spatial auto-correlation analysis on the average

properties price by zip code data in Miami (polygon data). Each dot here in the scatterplot

corresponds to one zip code. The first and third quadrants of the plot represent positive

associations (high-high and low-low), while the second and fourth quadrants represent

associations (low-high, high-low). For example, the green circle area is in the low-high

quadrants. The density of the quadrants represents the dominating local spatial process.

The properties in Miami Beach are more expensive, and are in the high-high area.

45

Figure 4.8 Properties value in Miami

Figure 4.8 presents the auto-correlation analysis results on the individual properties

price in Miami (point data). Each dot here in the scatterplot corresponds to one property.

As the figure shows, the properties near the big lake are cheaper, while the properties along

the west are more expensive.

b) Spatial Data Clustering

The TerraFly GeoCloud system supports the DBSCAN (for density-based spatial

clustering of applications with noise) data clustering algorithm [93]. It is a density-based

clustering algorithm because it finds a number of clusters starting from the estimated

density distribution of corresponding nodes.

DBSCAN requires two parameters as the input: eps and the minimum number of

points required to form a cluster minPts. It starts with an arbitrary starting point that has

not been visited so far. This point's neighborhood is retrieved, and if it contains sufficiently

many points, a cluster is started. Otherwise, the point is labeled as a noise point [93]. If a

point is found to be a dense part of a cluster, its neighborhood is also part of that cluster.

46

Hence, all points that are found within the neighborhood are added. This process continues

until the density-connected cluster is completely identified. Then, a new unvisited point is

retrieved and processed, leading to the discovery of a further cluster or noise points [94].

Figure 4.9 DBSCAN clustering on the crime data in Miami

Figure 4.9 shows an example of DBSCAN clustering on the crime data in Miami.

As shown in Figure 6, each point is an individual crime record marked on the place where

the crime happened, and the number displayed in the label is the crime ID. By using the

clustering algorithm, the crime records are grouped, and different clusters are represented

by different colors on the map.

c) Kriging

Kriging is a geo-statistical estimator that infers the value of a random field at an

unobserved location (e.g. elevation as a function of geographic coordinates) from samples

(see spatial analysis) [95].

47

Figure 4.10 Kriging data of the water level in Florida

Figure 4.10 shows an example of Kriging. The data set is the water level from water

stations in central Florida. Note that not all the water surfaces are measured by water

stations. The Kriging results are estimates of the water levels and are shown by the yellow

layer.

4.4.3 Customized Map Visualization (Supported by MapQL)

TerraFly GeoCloud also provides MapQL spatial query and render tools, which

supports SQL-like statements to facilitate the spatial query and more importantly, render

the map according users’ requests. This is a better interface than API to facilitate developer

and end user to use the TerraFly map as their wish. By using MapQL tools, users can easily

create their own maps.

48

a) Implementation

The implementation of MapQL is shown in Figure 4.11. The input of the whole

procedure is MapQL statements, and the output is map visualization rendered by the

MapQL engine.

Figure 4.11 MapQL implementation

Shown in Figure 4.11, the first step is syntax check of the statements. Syntax check

guarantees that the syntax conforms to the standard, such as the spelling-check of the

reserved words. Semantic check ensures that the data source name and metadata which

MapQL statements want to visit are correct. After the above two checks, system will parse

the statements and store the parse results including the style information into a spatial

database. The style information includes where to render and what to render. After all the

style information is stored, system will create style configuration objects for render. The

last step is for each object, load the style information form spatial database and render to

the map according to the style information.

syntax check semantic check
Successfully

Parsed

MapQL Statements

Create style

configuration

object

Y

Return Error

Information

N

Load style info

for a object and

render to map

Finished
render for all

objects

Successfully

Done
Y

N

Parse statement

and store style

Info into DB

49

We implemented the MapQL tools using C++. For the last step which is rendering

the objects to the map visualization, we employed the TerraFly map render engine [8].

For example, if we want to query the house prices near Florida International

University, we use MapQL statements like this:

SELECT

 '/var/www/cgi-bin/house.png' AS T_ICON_PATH,

r.price AS T_LABEL,

 '15' AS T_LABEL_SIZE,

r.geo AS GEO

FROM

realtor_20121116 r

WHERE

ST_Distance(r.geo, GeomFromText('POINT(-80.376283 25.757228)')) < 0.03;

There are four reseverd words in the statements, T_ICON_PATH , T_LABEL,

T_LABEL_SIZE , and GEO. We use T_ICON_PATH to store the customized icon. Here

we choose a local png file as icon. T_LABEL denotes that icon label that will be shown

on the map, . T_LABEL_SIZE is the pixel size of the label; and GEO is the spatial search

geometry.

The statement goes through the syntax check first. If there is incorrect usage of

reserved words or wrong spelling of the syntax, it will be corrected or Error information

will be sent to users. For example, if the spelling of “select” is not correct, Error

information will be sent to user. Semantic check makes sure that the data source name

realtor_20121116 and metadata r. price and r.geo are exist and available.

After the checks, the system parsed the statements. The SQL part will return

corresponding results including the locations and names of nearby objects, the MapQL

part will collect the style information like icon path and icon label style. Both of them are

50

stored into a spatial database. The system then created style configuration objects for

query results. The last step is rendering all the objects on the map visualizations. The

style information needed includes icon picture and label size, and the data information

includes label value and location (Lat, Long).

Figure 4.12 Query data near the point

Figure 4.12 shows the result of this query. Please be noticed that the unit of the

distance function in all the demos is Lat-Long.

b) More Samples

Figure 4.13 shows all the hotels along a certain street within a certain distance and

also displays the different stars of the hotels. The MapQL statement for this query is listed

below:

SELECT

 CASE

 WHEN star >= 1 and star < 2 THEN '/var/www/cgi-bin/hotel_1star.png'

 WHEN star >= 2 and star < 3 THEN '/var/www/cgi-bin/hotel_2stars.png'

 WHEN star >= 3 and star < 4 THEN '/var/www/cgi-bin/hotel_3stars.png'

51

 WHEN star >= 4 and star < 5 THEN '/var/www/cgi-bin/hotel_4stars.png'

 WHEN star >= 5 THEN '/var/www/cgi-bin/hotel_2stars.png'

 ELSE '/var/www/cgi-bin/hotel_0star.png'

 END AS T_ICON_PATH,

h.geo AS GEO

FROM

osm_fl o

LEFT JOIN

hotel_all h

ON

ST_Distance(o.geo, h.geo) < 0.05

WHERE

 o.name = 'Florida Turnpike';

Figure 4.13 Query data along the line

Figure 4.14 shows the traffic of Santiago where the colder the color is, the faster

the traffic is, the warmer the color is, and the worse the traffic is. The MapQL statement is

listed below:

SELECT

 CASE

 WHEN speed >= 50 THEN 'color(155, 188, 255)'

 WHEN speed >= 40 and speed < 50 THEN 'color(233, 236, 255)'

 WHEN speed >= 30 and speed < 40 THEN 'color(255, 225, 198)'

52

 WHEN speed >= 20 and speed < 30 THEN 'color(255, 189, 111)'

 WHEN speed >= 10 and speed < 20 THEN 'color(255, 146, 29)'

 WHEN speed >= 5 and speed < 10 THEN 'color(255, 69, 0)'

 WHEN speed >= 0 and speed < 5 THEN 'color("red")'

else 'color("grey")'

 END AS T_FILLED_COLOR,

 '3' AS T_THICKNESS,

GEO

FROM santiago_traffic;

Figure 4.14 Traffic of Santiago

Figure 4.15 shows the different average incomes with in different zip codes. In this

demo, users can customize the color and style of the map layers, different color stand for

different average incomes. And the MapQL statement is listed below:

SELECT

u.geo AS GEO,

u.zip AS T_LABEL,

 '0.7' AS T_OPACITY,

 '15' AS T_LABEL_SIZE,

'color("blue")' AS T_BORDER_COLOR,

 CASE

 WHEN avg(i.income) < 30000 THEN 'color(155, 188, 255)'

 WHEN avg(i.income) >= 30000 and avg(i.income) < 50000 THEN 'color(233, 236, 255)'

 WHEN avg(i.income) >= 50000 and avg(i.income) < 70000 THEN 'color(255, 225, 198)'

53

 WHEN avg(i.income) >= 70000 and avg(i.income) < 90000 THEN 'color(255, 189, 111)'

 WHEN avg(i.income) >= 90000 and avg(i.income) < 110000 THEN 'color(255, 146, 29)'

 WHEN avg(i.income) >= 110000 and avg(i.income) < 130000 THEN 'color(255, 69, 0)'

 WHEN avg(i.income) >= 130000 THEN 'color("red")'

else 'color("grey")'

 END AS T_FILLED_COLOR

FROM

us_zip u left join income i

ON

ST_Within(i.geo, u.geo)='t'

GROUP BY

u.geo, u.zip;

Figure 4.15 Income at New York

All these examples demonstrate that in TerraFly GeoCloud, users can easily create

different map applications using simple SQL-like statements.

4.5 Case Study

This section is the cases studies of the proposed GeoCloud service.

54

4.5.1 Setup

As a typical web application, GeoCloud provides a variety of web services via

Internet Information Services (IIS) to serve online web requests. The test bed is set up on

a Dell PowerEdge servers, each with XEON Intel E5520 2.27 GHz, 16GB (4x4GB) ECC

-- DDR3 1066MHz, and one 1TB 7.2 RPM SAS disk. Windows server 2008 and SQL

Server 2008 are installed to provide the environment for GeoCloud.

4.5.2 Case Study for realtor data analysis

In this section, we present a case study on using TerraFly GeoCloud for spatial data

analysis and visualization. As discussed in 3.4.2, we know the results of auto correlation

can be shown in a scatter diagram, where the first and third quadrants of the plot represent

positive associations, while the second and fourth quadrants represent negative

associations. The second quadrant stands for low-high which means the value of the object

is low and the values of surrounding objects are high.

A lay user whose name is Erik who has some knowledge about the database and

data analysis wanted to invest a house property in Miami with a good appreciation potential.

By using TerraFly GeoCloud, he may obtain some ideas about where to buy. He believes

that if a property itself has low price and the surrounding properties have higher values,

then the property may have good appreciation potential, and is a good choice for investment.

He wants to first identify such properties and then do a field trip with his friends and the

realtor agent.

55

Figure 4.16 Data Set Upload and Visualization

To perform the task, first, Erik checked the average property prices by zip code in

Miami which is shown in Figure 4.7. He found the green circled area in the low-high

quadrants, which means that the average price of properties of this area is lower than the

surrounding areas. Then, Erik wanted to obtain more insights on the property price in this

area. He uploaded a detailed spatial data set named as south_florida_house_price into the

TerraFly GeoCloud system as shown in Figure 4.16. He customized the label color range

as the properties price changes. And then, he chose different areas in the green circled area

in Figure 4.7 to perform the auto-correlation analysis.

56

Figure 4.17 Properties in Miami

Finally, he found an area shown in Figure 4.17, where there are some good

properties in the low-high quadrants (in yellow circles) with good locations. And one

interesting observation is, lots of properties along the road Gratigny Pkwy has lower prices.

He was then very excited and wanted to do a query to find all the cheap properties with

good appreciation potential along the Gratigny Pkwy. Erik composed the MapQL

statements like:

SELECT

 CASE

 WHEN h.pvalue >= 400000 THEN '/var/www/cgi-bin/redhouse.png'

 WHEN h.pvalue >= 200000 and h.pvalue < 400000 THEN '/var/www/cgi-bin/bluehouse.png'

 WHEN h.pvalue >= 100000 and h.pvalue < 200000 THEN '/var/www/cgi-bin/greenhouse.png'

 ELSE '/var/www/cgi-bin/darkhouse.png'

 END AS T_ICON_PATH,

h.geo AS GEO

FROM

osm_fl o

LEFT JOIN

south_florida_house_price h

ON

ST_Distance(o.geo, h.geo) < 0.05

WHERE

o.name = 'Gratigny Pkwy' AND

57

h.std_pvalue<0 AND

h.std_sl_pvalue>0;

Figure 4.18 MapQL results

The Figure 4.18 presents the final results of the MapQL statements. Finally, Erik

sent the URL of the map visualization out by email, waiting for the response of his friends

and the realtor agent.

Figure 4.19 The flow path of Erik case

Figure 4.19 illustrates the whole workflow of the case study. In summary, Erik first

viewed the system build-in datasets, conducted the data analysis, and then he identified

properties of interest. He then composed MapQL statements to create his own map

visualization to share with his friends. The case study demonstrates that TerraFly

Choose build-in

datasets

Upload own

datasets

Analysis
Create refined

result by MapQL

Share with

others

Satisfied with
the results

Y

N

N

58

GeoCloud supports the integration of spatial data analysis and visualization and also offers

user-friendly mechanisms for customized map visualization.

4.5.3 A case study for Epidemiological Data Analysis

In this section we provide an example of how our geospatial epidemiology system

can be employed in epidemiologic research [96][97]. Assume a researcher studies lung

cancer in Florida. She can upload and choose the mor_price_income dataset to TerraFly

GeoCloud - shown in Figure 20.

Figure 4.20 Datasets in TerraFly GeoCloud

She can then choose the disease analysis button to draw a disease map. In this

function, she can choose a legend group number; a disease map is displayed then, as shown

in Figure 21.

59

Figure 4.21 Lung cancer disease map

From Figure 21 we see how this map, with legend at the top left corner, gives a

direct summary of the disease data [98-110]. For lung cancer in Florida, the mortality in

the central region is higher and in the south is lower. However, the researcher cannot have

an accurate analysis just from this one map. She can further choose the cluster and outliner

function, which uses Local Moran’s I to perform further analysis. This function provides

three maps: local Moran’s I map, z-value map, and p-value map. Figure 9 shows the p-

value map, from which the researcher can know which counties form a statistically

significant cluster and which counties are statistically significant outliners.

60

Figure 4.22 P-value map of Local Moran I

Now the researcher may want to know what kind of relationship there is between

lung cancer mortality and the median income of each county. For this purpose, she can use

the median income dataset provided by the GeoCloud system, and apply to it the spatial

auto-regression tool [111-117]. Figure 10 shows the result of this model. From the result,

we learn that when the mortality of surrounding areas increase by 1, the mortality of this

county will increase of 0.233, and when the median income in the surrounding area

increases by $10000, the mortality of this county will decrease of 0.09.

61

Figure 4.23 Spatial auto-regression of lung cancer mortality and median income

4.6 Related Work and Products

In the geospatial discipline, web-based GIS services can significantly reduce the

data volume and required computing resources at the end-user side [33][34]. To the best of

our knowledge, TerraFly GeoCloud is one of the first systems to study the integration of

online visualization of spatial data, data analysis modules and visualization customization

language.

Various GIS analysis tools are developed and visualization customization

languages have been studied in the literature. ArcGIS is a complete, cloud-based,

collaborative content management system for working with geographic information. But

systems like ArcGIS and Geoda focus on the content management and share, not online

analysis[36][37]. Azavea has many functions such as optimal Location find, Crime analysis,

data aggregation and visualization. It is good at visualization, but has very limited analysis

functions [38].

62

Various types of solutions have been studied in the literature to address the problem

of visualization of spatial analysis [37]. However, on one hand, good analysis visualization

tools like Geoda and ArcGIS do not have online functions. To use them, users have to

download and install the software tools, and download the datasets. On the other hand,

good online GIS systems like Azavea, SKE, and GISCloud have limited analysis functions.

Furthermore, none of above products provides a simple and convenient way like MapQL

to let user create their own map visualization [39][40]. The related products are

summarized in Table 1. Our work is complementary to the existing works and our system

also integrates the data mining and visualization.

63

Table 1: GIS Visualization Products

Name Website
Product features

description
Comments

ArcGIS
Online

http://www.arcgis.co
m

http://www.arcgis.com
ArcGIS Online is a
complete, cloud-based,
collaborative content
management system for
working with geographic
information.

No online Analysis,
focus on the content
management and
share.

Azavea
http://www.azavea.c

om/products/

optimal Location
find, Crime analsis, data
aggregated and visualized

Good visualization.
Very limited Analysis
functions

SKE
http://www.skeinc.c
om/GeoPortal.html

Spatial data Viewer
Focus on the spatial
data viewer.

GISCloud
http://www.giscloud.

com

with few analysis (Buffer ,
Range , Area ,
Comparison , Hotspot ,
Coverage , Spatial
Selection)

Very limited simple
analysis.

GeoIQ

http://www.geoiq.co
m/

http://geocommons.
com/

filtering, buffers, spatial
aggregation and predictive

Focus on GIS, very
good Visualization and
interactive operation.
Very limited and simple
analysis: currently
provide
predictive(Pearsons
Correlation).

http://www.arcgis.com/
http://www.arcgis.com/
http://www.azavea.com/products/
http://www.azavea.com/products/
http://www.skeinc.com/GeoPortal.html
http://www.skeinc.com/GeoPortal.html
http://www.giscloud.com/
http://www.giscloud.com/
http://www.geoiq.com/
http://www.geoiq.com/
http://geocommons.com/
http://geocommons.com/

64

CHAPTER 5

5 v-TerraFly: Autonomic Resource Management for Virtualized Web Map

v-TerraFly: Autonomic Resource Management for Virtualized Web Map Service

System is another very important part of modern map system. With the fast growing use

of web-based map services, the resource management of such services are becoming

increasing important to deliver user desired Quality of Service. Map systems often serve

dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it

challenging to meet the response time targets of map requests while using the resources

efficiently. This paper proposes a virtualized web map service system, v-TerraFly, and its

autonomic resource management in order to address this challenge. Virtualization

facilitates the deployment of web map services and improves their resource utilization

through encapsulation and consolidation. Autonomic resource management allows

resources to be automatically provisioned to a map service and its internal tiers on demand.

Specifically, this paper proposes new techniques to predict the demand of map workloads

online and optimize resource allocations considering both response time and data freshness

as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production

web map service, and evaluated using real TerraFly workloads. The results show that v-

TerraFly can accurately predict the workload demands: 18.91% more accurate; and

efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and

saves re-source usages by 20.83% compared to traditional peak-load-based resource

allocation.

65

5.1 Introduction

With the exponential growth of the World Wide Web, there are more domains open

to Geographic Information System (GIS) applications. Internet can provide information to

a multitude of users, making GIS available to a wider range of public users than ever before.

Web-based map services are the most important application of modern GIS systems. For

example, Google Maps has more than 350 million users. There are also a rapidly growing

number of geo-enabled applications which consume web map services on traditional

computing platforms as well as the emerging mobile devices.

Virtual machines (VM) are powerful platforms for hosting web map service sys-

tems. VMs support flexible resource allocation to both meet web map services system

demands and share resources with other applications. Virtualization is also enabling

technology for the emerging cloud computing paradigm, which further allows highly

scalable and cost-effective web map services hosting leveraging its elastic resource

availability and pay-as-you-go economic model [54].

However, due to the highly complex and dynamic nature of web map service

systems, it is challenging to efficiently host them using virtualized resources. First, typical

web map services have to serve dynamically changing workloads, which makes it difficult

to host map services on shared resources without compromising performance or wasting

resources. Second, a web map service often consists of several tiers which have different

intensive resource needs and result in dynamic internal resource contention. Third, for a

typical web map service, both response time for requests and the freshness of the returned

data are critical factors of the Quality of Service (QoS) required by users.

66

To address the above challenges, this paper presents v-TerraFly, an autonomic

resource management approach for virtualized map service systems, which can

automatically optimize the QoS (considering both response time and data freshness) while

minimizing the resource cost [118][119]. First, v-TerraFly can accurately predict the

workload demands of a web map service online based on a novel two-way forecasting

algorithm that considers both historical hourly patterns and daily patterns. Second, based

on the predicted workload, v-TerraFly can automatically estimate the resource demands of

its various tiers based on performance profiles created using machine learning techniques.

Third, v-TerraFly employs a new QoS model that captures the balance between response

time and data freshness and uses this model to automatically optimize the resource

allocation of a web map service system [120].

This proposed v-TerraFly system is realized on Hyper-V virtual machine

environments and evaluated by experiments using real workloads collected from the

production TerraFly system. The results show that the proposed two-level workload

prediction method is outperforms traditional exponential smoothing prediction by 18.91%,

and the system improves the QoS by 26.19% compared to traditional statically node

allocation. In the meantime, it saves resource usages by 20.83% compared to traditional

peak-load-based resource allocation.

In summary, this paper’s main contributions are: 1) created a VMbased map service

system, v-TerraFly, which virtualizes all tiers of a typical web map service and supports

dynamic resource allocations to the different tiers; 2) proposed a novel autonomic resource

management approach for virtualized map services, which automatically allocate resources

to different tiers of the service and optimize the allocations based on the performance and

67

data freshness tradeoff; 3) evaluated v-TerraFly using real workloads collected from

production web map service system which shows substantial improvement on QoS and

resource efficiency.

5.2 Background

Figure 5.1 Web enabled Map Service

As a promising new trend in GIS, web map service exhibits its excellence in serving

online map requests responsively and delivering geographical information precisely over

the Internet [121]. A typical online satellite-based web map service, such as Google maps,

Bing maps, and Yahoo maps [122], are usually built upon several major tiers (Figure 5.1).

A Preprocessor preloads images and geographic features from raw data repository and

splits them into grid format, known as image tiles, to facilitates the Processor quickly

locate and fetch data. Then a tile Processor retrieves and integrates all tiles needed in a

68

customer query. As its upper tier, a generic map interface access this imagery by geo-

location, and a client app (or browser) to show the map to end users.

In this paper, we use TerraFly as a case study of the web map system [1]. TerraFly

serves worldwide web map requests over 125 countries and regions, providing users with

customized aerial photography, satellite imagery and various overlays, such as street names,

roads, restaurants, services and demographic data. Following the typical architecture

described above, TerraFly contains two major tiers (Figure 5.1): an Image Loader Tier

preprocesses the raw imagery data from repository; an Image Reader Tier processes image

tiles and retrieves queried images [123]. More details about these tiers are described in

Next Section.

Traditionally, web map services are hosted on dedicated physical servers with

sufficient hardware resources to satisfy their expected peak workloads in order to provide

responsive web services to the users. However, this becomes inefficient for real-world

situations where the workloads are intrinsically dynamic in terms of their busty arrival

patterns and ever changing unit processing costs [124]. Consequently, peak-load based

resource provision often leads to underutilization of resources for normal state workloads

and causes substantial overhead.

69

Imagery Loader Tier

Imagery Reader Tier

Raw Imagery Data

Organized Imagery
Data

VMVM

VM VM VM VM VM VM

Clients

VM
Controller

Figure 5.2 v-TerraFly system

Using VMs to host multi-tier web map services can effectively address this

limitation because virtualized resources, including CPU, memory, and I/O, are decoupled

from their physical infrastructures and can be flexibly allocated to different tiers of the web

map system [125]. This approach allows the resource capacity of each tier to elastically

grow and shrink to serve its dynamic. In this way, different tiers transparently share the

consolidated resources with each other and/or other applications with strong isolation. Such

benefits are important to the efficiency of web map service hosting in both typical data

centers and emerging cloud systems. On one hand, users need to pay for only the resources

their services actually consume. On the other hand, resource providers only need to allocate

resources as required by the services while saving valuable resources for hosting other

applications [126].

Virtualization also offers a new paradigm for web map service deployments.

Modern web map services are sophisticated systems, where their installation and

70

configuration require substantial domain knowledge and experience as well as considerable

efforts from the administrators. VM-based web map service hosting allows carefully

installed software to be distributed as simply as copying the data that represents the VMs.

In addition, this approach allows web map services to be quickly replicated and distributed

for performance and reliability improvements.

5.3 v-TerraFly

5.3.1 Architecture

To enable the autonomic resource management in TerraFly, we leverage VM

techniques to virtualize this multi-tier system, denoted as v-TerraFly. The two critical

resource intensive tiers of TerraFly, the image Loader and Reader Tiers, are deployed on

the VMs instead of physical servers.

Figure 5.2 shows the architecture of this v-TerraFly. The users interact with the

application tier which handles most of the business logic and provides advanced

application services, such as universal mapping, realtor mapping and water management,

by sending the mapping queries including position and resolution requirements to the tiers

below. Then the image Reader Tier is invoked to compute and locate associated map tiles

from indexed imagery database according to the requests from the application. To maintain

the data freshness, the organized imagery database is updated by the Loader Tier

periodically at the same time. Loader contiguously extracts the incoming raw map data

from the raw imagery repository, preprocesses and organizes the raw data to destination

projection, and then convert them destination file type, finally update them into organized

imagery database.

71

Due to the internal nature of mapping service system, these two tiers of v-TerraFly

exhibit distinct resource usage behaviors in the production environment. On one hand, the

Reader Tier may experience different number of concurrent users during different periods

of a day, which results in highly dynamic workloads with varying intensity against the

Loader. On the other hand, the Leader does not have stringent performance requirement as

the Roader does but still needs reserved resource to guarantee the data freshness. Therefore,

it is beneficial to host these two tiers together on virtualized cluster nodes to multiplex the

common computing resources so that the total resource capacity can be better utilized

among different tiers. For example, more VMs are allocated to the Roader Tier during

daytime when peak-load of user requests is expected to happen but the loading process is

less active; but shifting more VMs to the Leader over night to allow data updates

accumulated in daytime.

Virtualization in TerraFly also improves the flexibility in terms of the system

reliability and scalability. VM is the computing resource in both Loader and Reader Tiers.

With the load balance in both tier, the work load of each VM is the same, therefore, the

VMs in the same tier are considered identical. Since the computing resources can be

partitioned through VM nodes, the network bandwidth which is always a bottleneck in the

original system can be now well balanced among VMs. Furthermore, by pairing every two

VMs as complementary Reader nodes, it is able to provide more reliable service under

unexpected system failure by simply replacing the failure VM with its corresponding

backupped VM [127].

72

5.3.2 Virtual Load balance cluster

Network Load Balancing can provide high availability and reliability, as well as

high scalability. Web applications are stateless applications, and every client request to a

stateless application is a separate transaction, so it is possible to distribute the requests

among multiple servers to balance the load. One attractive feature of Network Load

Balancing is that all servers in a cluster monitor each other with a heartbeat signal, so there

is no single point of failure.

Use of a virtual machine will facilitate the build of load balancing clusters. Two

host servers build pairs of VMs, and then the pairs construct different load balance clusters

(Figure 3). For application layers, each server will have a paired server, to respond to

requests together. This is an implementation of dual-server auto fail-over, offering better

reliability.

5.3.3 Motivating Examples

In this section, we demonstrate both the necessity and benefits of resource

consolidation in a map service system.

Figure 5.3 TerraFly System Workload Hourly Distribution

577 594 575

478

387

279

185
133 115 102 117

169

265

424

551

635 650 669
703

734
710

632

574
534

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

W
o

rk
lo

a
d

Hours

73

Figure 5.4 Performance and Resource cost comparison using different deployment schemes

For web map services, the performance of Reader Tier and Loader Tier are both

important. Better Reader Tier performance provides shorter page response time; better

Loader Tier performance provides faster loading of new map data. But both tiers are

resource intensive and they will compete with each other on resource allocation. The goal

is balance the both tier to achieve best quality of service when we have limited resource.

The workloads of web map service can be highly dynamic over time. Based on the

analysis on the web service logs of TerraFly, it is observed that there were millions of web

requests received on the Reader server over the year of 2012, i.e., more than 450 visits per

second on average. However, this workload varies significantly on hourly basis. Figure 5.3

shows a typical one-day TerraFly workload trace. It shows that the request rate drops to

150 (visits per second) in the morning (around 9:00am) while rising quickly up to 900

(visits per second) in the afternoon. It would be more efficiently for us to turn off some

Reader VM.

Assuming the variation in workload which follows such a time-related pattern is

predictable, by virtualizing the Reader Tier of TerraFly we can easily save resources when

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20

Pa
ge

 R
es

po
ns

e
Ti

m
e

(S
ec

on
de

s)

Hours

2 nodes (48 node-hour)

4 nodes (96 node-hour)

6 nodes (144 node-hour)

8 nodes (192 node-hour)

10 nodes (240 node-hour)

Target

optimal (148 node-hour)

74

the workload intensity is low by simply turning off some Reader VMs, and as the workload

intensity increases, we can bring back them online to process the additional requests.

To further quantify the resource savings, we replay this one-day trace using two

deployment schemes for the Reader Tier: the static scheme deploy the Read tier on the

fixed number of computing nodes throughout the entire experiment (2, 4, 6, 8 and 10 nodes

respectively); the dynamic schema only assigns sufficient nodes needed by the workload

in every hour. The response time is used as the performance metric and the desired QoS

target is set to (0.7s). Fig. 4 compares the average response time in every hour using

different schemes. We use node-hour as the cost unit in terms of computing resource. By

measuring the number Ni of active nodes used in the ith hour, the total amount of the

resource during certain time period T (hours) can be computed as ∑ 𝑁𝑖
𝑇
𝑖 .

Fig. 4 compared the measured response times in every hour using different

deployments as well as the total resource costs needed in one day. As we can see among

the static deployment configurations, only the 10-node configuration can always meet the

desired target, however at the cost of the highest total resource amount (240 node-hour);

others suffer different levels of QoS violation as the workload changes dynamically.

In contrast, the dynamic deployment scheme is able to track the QoS target all the

time with only 148 node-hour, saving about 23% of the resources compared to the static

8-node configuration which cannot satisfy the QoS target, and saving 38 % of the resources

compared to the static 10-node configuration which can satisfy the QoS target. Its resource

utilization is as efficient as the 6-node configuration but delivers much better performance.

The above example shows strong evidence of the importance of map service

virtualization and its online resource management. Currently, our traditional TerraFly

75

system is deployed on the 8 physical Reader Tier nodes and 2 Loader Tier nodes. It works

well for supporting up to 800 concurrent users, and about 6GB fresh data can be load each

hour by the 2 Loader nodes (Refer to 4.3 Resource Model); but the system scalability is

limited due to its fixed physical capacity. It cannot shift resources between Reader and

Loader Tiers even when one tier has idle resource and another has insufficient resources.

The inability of shifting resources between tiers results the waste of resources.

However, there are several challenges to dynamic resource management of a

virtualized web map service. First, the dynamics in the realistic workload causes the

demand of CPU consumption change over time; second, resources also need to be

dynamically allocated between the Reader Tier to optimize response time and the Loader

Tier to keep the data fresh.

These challenges can be well addressed by an autonomic VM-based resource

management solution which can flexibly partition shared resources and allocate resource

on-demand for dynamic workload in order to guarantee performance and improve resource

utilization.

Workload
Prediction

Resource
Allocator

Reader &
Loader
prefiling
Models

w(t+1)

Reader
VM

Loader
VM

Fresh Data

rR(t+1) rL(t+1)Workload Sensor

w(t)

w(t)

Figure 5.5 Autonomic resource management system for v-TerraFly

76

5.4 Autonomic Resource Management in v-TerraFly

5.4.1 General Approach

Figure 5.5 illustrates the framework of our proposed autonomic resource

management system for v-TerraFly, which consists of three key modules. In this paper, we

focus on the resource management for both Reader and Loader Tiers，since they are the

most resource intensive tiers in v-TerraFly.

Table. 1. Parameter Description

Parameter Description

w(t) Workload at time t

rR(t) Reader VM CPU resource need at time t

rL(t) Loader VM CPU resource need at time t

𝒘𝒉
𝑫𝒆𝒔 Horizontal double exponential smoothing prediction

𝒘𝒅
𝑫𝒆𝒔 Vertical double exponential smoothing prediction

𝒘′ Two-level double exponential smoothing

As a workload executes on the VMs, the Workload Sensor monitors the actual

workload at current time step, noted as w(t). The Workload Predictor then forecasts the

future workload w(t+1) for the next time step based on a prediction model. Based on the

predicted workload, the Reader profile and Loader profile which are trained offline are

used to estimate their resource demands for time t+1, denoted by rR(t+1) and rL(t+1)

respectively. The estimated resource demands are then used by the Resource Allocator to

make the actual allocations by assigning appropriate number of VMs to the Reader Tier

77

and Loader Tier. Together, these modules form a closed-loop which runs continuously

(e.g., every hour,) for v-TerraFly’s resource control and optimization. In the rest of this

section, we describe the key components of this autonomic system in details.

5.4.2 Workload Prediction

In order to accurately and timely predict the workload on v-TerraFly, we propose

new forecasting techniques to discover and exploit patterns in user visiting behaviors such

as those observed in Figure 5.3. Specifically, we propose a new two-level time series

prediction approach to build a prediction model based on the historical workload

measurements, i.e., the request rate observed from the Reader Tier of v-TerraFly. Based

on such a model, the workload predictor in v-TerraFly is able to estimate the workload

intensity for the next time period.

Time series analysis techniques are widely applied in economic data analysis to

provide statistical prediction and therefore guide business decisions. A variety of time

series prediction methods are available such as the Moving Averages, Linear Regression

and Exponential Smoothing [129][130][131]. In this paper, the TerraFly workload

prediction based on the double exponential smoothing (DES) method [132] which is

suitable for discrete data sequence with repeated changing patterns.

DES is a smoothing-based forecasting method that can be applied to time series

data, a sequence of observations with equally spaced intervals, expressed as {Y(0), Y(1),..,

Y(t)}. Then in DES, the estimate for the t+1 time intervals can be computed as:

𝑌𝐷𝑒𝑠(𝑡 + 1) = 2𝑆′(𝑡) − 𝑆′′(𝑡) + (
𝛼

1 − 𝛼
) (𝑆′(𝑡) − 𝑆′′(𝑡))

𝑆′(𝑡) = 𝛼𝑌(𝑡) + (1 − 𝛼)𝑆′(𝑡 − 1)

78

𝑆′′(𝑡) = 𝛼𝑆′(𝑡) + (1 − 𝛼)𝑆′′(𝑡 − 1)

The equation shows a linear combination of smoothing based statistics associated

with a smoothing weight 𝛼. The first two components reflect the variation of mean of the

overall data while the third tracks the trend of the data. S’ is denoted as the singly-smoothed

series which smoothed the next measure by assigning a exponentially decreased smoothing

weight to the data of the series and computing the weighted average of the observed series.

More intuitively, the most recent data is of more importance to the current estimates, i.e.,

the weight assigned to the data k periods old is(1 − 𝛼)𝑘, therefore the closer to 1 of the

value of 𝛼, less smoothing effect but greater weight to the recent changes. S’’ is denoted

as the doubly-smoothed series computed by recursively applying the same exponential

smoothing operation to the singly-smoothed series S’ using the same smoothing weight.

In order to perform the time-series-based forecast in v-TerraFly, the workload can

be represented as a sequence of intensity measurements that come from a continuing time

series at time intervals T, denoted as { … w(t-2T), w(t-T), w(t)}. More specifically, the

workload measurement can be either the average request rate or the number of concurrent

client sessions observed in every hour; the time interval T can be either one hour or one

day (24 hour).

We propose a new two-level double exponential smoothing forecasting model to

capture both the daily pattern and hourly pattern of v-TerraFly workload as follows.

Eq. 1: 𝑤′(𝑡 + 1) = 𝜇ℎ𝑤ℎ
𝐷𝑒𝑠(𝑡 + 1) + 𝜇𝑑𝑤𝑑

𝐷𝑒𝑠(𝑡 + 1)

where 𝑤ℎ
𝐷𝑒𝑠 is the horizontal double exponential smoothing prediction based on the hourly

pattern in the workload, and 𝑤𝑑
𝐷𝑒𝑠 is the vertical double exponential smoothing prediction

based on the daily pattern of the workload.

79

Eq. 2: 𝑤ℎ
𝐷𝑒𝑠(𝑡) = 2𝑆′(𝑡 − 1) − 𝑆′′(𝑡 − 1) + (

𝛼ℎ

1−𝛼ℎ
) (𝑆′(𝑡 − 1) − 𝑆′′(𝑡 − 1))

Eq. 3: 𝑤𝑑
𝐷𝑒𝑠(𝑡) = 2𝑆′(𝑡 − 24) − 𝑆′′(𝑡 − 24) + (

𝛼𝑑

1−𝛼𝑑
) (𝑆′(𝑡 − 24) − 𝑆′′(𝑡 − 24))

More specifically, 𝑤ℎ
𝐷𝑒𝑠(𝑡) , called horizontal prediction, is predicted based on

{ 𝑤(𝑡 − 3), 𝑤(𝑡 − 2), 𝑤(𝑡 − 1)} from a hourly series; while 𝑤𝑑
𝐷𝑒𝑠(𝑡), vertical prediction,

is based on the observation series { 𝑤(𝑡 − 48), 𝑤(𝑡 − 24), 𝑤(𝑡) } that are extracted

vertically at the same hours but from continuing days, i.e., a 24-hour vertical time span.

The associated 𝜇 factors which are set between 0 to 1 are used to balance the importance

between three components.

Since each level of DES operation is associated with a smoothing weights, we

denote the weights in horizontal and vertical predictions as 𝛼ℎ and 𝛼𝑑 respectively. Then

the proposed two-level DES model can be considered as a function of 𝛼ℎ and 𝛼𝑑, given

observed workload series. Therefore the workload model is trained continuously online as

soon as the new measurement is observed by optimizing both 𝛼ℎ and 𝛼𝑑 to minimize the

weighted sum of squared errors between the prediction and the actual observation. Once

the model is updated, it applies to the system immediately for the next prediction.

80

5.4.3 Performance Profiling

Figure 5.6 Reader tier profiling

Performance profiles relate the workload of the Reader and Loader Tiers to their

resource demands according to the desired performance. Taking the predicted workload

w(t+1) as the input, these profiles are used by the Resource Allocator to allocate resources

to the Reader and Loader Tiers dynamically in order to achieve the desired QoS.

For the Reader Tier, since the workload consists of online web requests, the

intensity of the workload is specified by request rate w(t) as discussed in Section 4.2. The

relevant performance metric is the average response time RT(t) of the requests completed

during each control period (e.g., one hour). It can be considered as a function of the

workload and the number of VM nodes rR(t) allocated to Reader Tier. Thus,

Eq. 4: 𝑅𝑇(𝑡) = ∅(𝑤(𝑡), 𝑟𝑅(𝑡))

The strategy to build this mapping is offline profiling. Given a specific workload

w, we map the number of nodes n allocated to the Reader Tier to the performance RT by

iterating over the allocation space and collecting corresponding performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

40 60 80 100 120 140 160 180 200 220 240

P
ag

e
R

es
p

o
n

se
 T

im
e

(s
ec

o
n

d
s)

Workload (concurrent user)

2 nodes

4 nodes

6 nodes

8 nodes

10 nodes

81

measurements under each allocation candidate. Then we repeat the above step under

different workloads by varying the number of the concurrent users in v-TerraFly. Figure

5.6 illustrates the mapping results by using two to ten Reader nodes to serve a workload

with 40 to 240 concurrent users. Such a mapping provides the least number of VM nodes

needed for a given workload to meet a specific QoS target. For example, if desired response

time is set to 0.7 second, then the minimal number of VMs needed is two for a workload

with about 40 users and 10 when there are more than 230 concurrent users.

Figure 5.7 Reader tier profiling

In order to reduce the time required for performance profiling, we collected only a

subset of the Reader configurations under a subset of the workload intensities, and use

linear regression to build the Reader Tier entire performance profile. As shown in Figure

5.7, we got the profile mode and the R square is 0.9131.

We profiled both the CPU and I/O resource usages of the Reader Tier, as shown in

Figure 5.7. The results show that both the CPU and I/O demands follow the exact same

y = 2.4631x + 154.06
0

2

4

6

8

10

12

0

100

200

300

400

500

600

700

800

20 60 100 140 180 220 260

I/
O

 C
o

st
 (

M
B

/S
)

C
P

U
 C

o
st

(%

)

Workload (concurrent user)

CPU

I/O

Linear (CPU)

Linear (I/O)

R² = 0.9131

82

pattern as the workload varies, which validates the use of identical VM nodes as the

resource allocation unit of the Reader Tier.

Figure 5.8 Loader tier CPU usage profiling

For the Loader Tier, since the workload mainly consists of batch jobs which loads

raw data into organized repository, the workload intensity is given by the concurrency level,

i.e., the average throughput achieved every control period. Allocating more VMs to the

Loader Tier allows it to obtain higher throughout and finish the loading process sooner.

We use offline profiling to create a model for Loader that represents the relationship

between the throughput (I/O) and the number of VM nodes for the Loader Tier. We use

different amount of map Loader nodes to load a given imagery dataset and monitor the

throughput. We then use linear regression to learn the entire model based on the training

data. As shown in Figure 5.8, the throughput of Loader Tier is almost linear with respect

to the number of Loader VMs. Using linear regression, the R square is only 0.9996.

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

Th
o

u
rg

h
p

u
t

 (
G

B
/H

o
u

r)

CPU Cost (%)

Thourghput

Linear Model

y = 0.0389x + 0.94 R² = 0.9996

83

5.4.4 QoS Model

In this section, we propose a novel QoS model to consider both the responsiveness

in serving user mapping requests and the quality of returning geographic information. In a

virtualized web mapping system, both Reader and Loader VMs are usually co-hosted in a

cluster/data center and compete for the common physical resources, while the former

guarantees acceptable response time and the latter keeps the imagery data up to date. Since

the performances from both tiers are critical, we need to well balance the importance

between them especially when the total resource capacity is constrained. Therefore, a new

QoS model is defined to represent the overall system performance at measuring time period

t.

Eq. 5: 𝑄𝑜𝑆(𝑡) = 𝑟(𝑡) × 𝑓(𝑡)

where r(t) and f(t) are the performance metrics for the Reader and Loader Tier respectively.

The former QoS component r(t) is called the normalized response time, which

measures the quality of web mapping services at time t and can be calculated as following:

Eq. 6: 𝑟(𝑡) =
𝑅𝑇𝑟𝑒𝑓

𝑅𝑇(𝑡)⁄

where RTref is the desired average response time at Reader Tier and RT(t) is the actual

performance measurement at time t. The higher of the value, the quicker the user requests

served at Reader Tier.

The latter QoS component f(t) is called the cumulative data freshness which

measures the quality of data-loading process at Loader Tier at time t. It is calculated

recursively based on the previous data freshness value and the current data incremental rate,

expressed as following:

84

Eq. 7: 𝑓(𝑡) = (1 − 𝜌) × 𝑓(𝑡 − 1) + ∆𝐷(𝑡)/𝐷𝑟𝑒𝑓

where 𝜌 is the decaying factor (predefined in the range of 0 to 1) indicating the data

quality loss in terms of freshness during the past time period; Dref is the desired amount of

fresh data per time period, ∆𝐷(𝑡) is the actual amount of data loaded during time period t.

Initially phase 𝑡 = 0, 𝑓(0) = ∆𝐷(0)/𝐷𝑟𝑒𝑓.

For instance, assuming we need to maintain 𝐷𝑟𝑒𝑓 = 300𝐺𝐵 amount of fresh data

in repository every control period and the data freshness value at previous time period was

𝑓(𝑡 − 1) = 0.9 𝑤ill be reduced to 0.864 at current time t given a decaying factor of 4.0%.

If there is 15GB data loaded during current time period, then the incremental rate is 0.05

and therefore the freshness value 𝑓(𝑡) = 0.864 + 0.05 = 0.914. Intuitively, we can say

the current data quality is 91.4% fresh. Note that it is evident that the data freshness can be

adjusted by controlling data incremental rate via resource management at Loader Tier.

By maximizing the QoS as computed above, the v-TerraFly resource management

system automatically optimize the response time and data freshness simultaneously, which

are both important to the map service received by users.

5.5 Evaluation

5.5.1 Setup

This section evaluates the proposed virtual web map service system and its

autonomic resource management using the v-TerraFly prototype and real traces collected

from the TerraFly production system. As a typical web application, TerraFly usually

provides a variety of web services via IIS (Internet Information Services) to serve online

web requests. The test bed is set up on two Dell PowerEdge 2970 servers, each with two

85

six-core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and one 1TB 7.2 RPM SAS disk.

Windows Server 2008 and Hyper-V are installed to provide the virtualization environment

for v-TerraFly. The resource management system for v-TerraFly is hosted on the

hypervisor’s management VM. All guest VMs including both Reader and Loader Tier of

TerraFly are installed Windows Server 2008 Data Center as the OS. Each Reader and

Loader VM is configured with one core CPU, 2G memory, and 64 GB disk. The resource

allocation is done by starting or stopping VMs via Hyper-V PowerShell Script.

5.5.2 Workload Prediction

We first evaluate the accuracy of our proposed two-level DES workload prediction

algorithm by comparing it to two one-level DES approaches based on hourly pattern only

(Horizontal) and daily pattern only (Vertical) respectively, as well as history average

statistics (History Average). The evaluation is performed using a real one-month workload

trace of the November 2012 extracted from the production TerraFly system’s logs. To

conduct the experiment more efficiently, the real trace is replayed with a 60-fold speedup,

i.e., using one minute in the experiment to simulate one hour in real world. The prediction

and updates of the workload models (smoothing weights 𝛼ℎ and 𝛼𝑑, refer to Eq. 2 and Eq.

3) are performed every minute to adapt to the dynamics.

86

Figure 5.9 Error and Standard deviation of different workload prediction approaches

Figure 5.9 compares the online prediction errors of different approaches. Our

proposed two-level prediction method delivers significantly better accuracy in predicting

the request rate of one month workload. Overall, the 90 percentile average error rate of our

two-level method is 10.01% with the lowest standard deviation of 145.3, both much lower

than the other three prediction approaches which are 45.67% (Horizontal), 28.92%

(Vertical), and 25.14% (History Average) respectively. These results demonstrate that our

proposed method can effectively exploit both the hourly pattern and daily pattern in the

workload and achieve accurate workload prediction.

5.5.3 Resource Management of Reader Tier

As discussed in Section 4.3, based on the predicted workload, the v-TerraFly

resource management system automatically allocates resources to the Reader and Loader

Tiers in order to optimize the QoS. This section evaluates the resource management for the

Reader Tier alone and demonstrates whether it can achieve the Reader Tier’s response time

target with the least amount of resources.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30

Er
ro

r
R

at
e

 (
1

0
0

%
)

Day

Horizontal (Error 45.67%, Std Dev 325.5)

Vertical (Error 28.92%, Std Dev 239.3)

History Avg (Error 25.14%, Std Dev 211.4)

Proposed Two-Level (Error 10.01%, Std Dev 145.3)

87

In the experiment, a real daily workload trace of October 4th 2012 is replayed

against v-TerraFly with a 60-fold speedup. The resource allocator adjusts resources

allocation every 1 minute. The QoS target is set to 0.7s in response time. Based on the

profiling, the performance model of Reader Tier is R(t) = 2.4631 W(t) + 154.06, (as shown

in Fig.7).

Figure 5.10 Result: Response time

Figure 5.11 Result: VM nodes cost by hours and total VM nodes Cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 5 10 15 20

P
ag

e
R

es
p

o
n

se
 T

im
e

(S
ec

o
n

d
s)

Hours

Dynamic
6 nodes
8 nodes
9 nodes
10 nodes
Target

0

2

4

6

8

10

12

0 5 10 15 20

V
M

 n
o

d
e

s
C

o
st

Hours

Dynamic (152 node-hour)
Static 6 nodes (144 node-hour)
Static 8 nodes (192 node-hour)
Static 9 nodes (216 node-hour)
Static 10 nodes (240 node-hour)

88

Figure 5.10 and Figure 5.11 compare the response time and allocations of our

dynamic approach to static 6, 8, 9 and 10-node deployment plans respectively. From the

results, we can see that the online dynamic approach is able to achieve the response time

target all the time throughout the entire experiment. Compared to the 6-node static plan

which achieves 0.634 second in average page response time, the online dynamic plan

improves the performance by 32.18%, i.e., 0.430 second in average response time, but at

the cost of only 5.6% more resource allocation, i.e., 8 additional node-hour. There are 13

data points where its response time exceeds 0.7 second in the 6-node static plan, which

causes as much as 54.17% QoS violation; in contrast, no QoS violation occurs in the

dynamic plan.

Compared to the 8-node static plan, the dynamic plan saves as much as 20.83% of

total resources, i.e., 40 node-hour. Although the static 8-node plan allocates substantially

more with surplus resources, it still causes three QoS violations during the experiment. The

9-node static plan meets the QoS target all the time except the 19th hour, and it costs 29.63%

more total resources than the dynamic plan. The 10-node static plan is the only static plan

that meets the QoS target all the time, but it costs 36.67% more total resources than the

dynamic plan.

Overall, it is evident that the online dynamic deployment plan can efficiently

allocate resources to the Reader Tier while at the same time meet the response time target

by flexibly adjusting its VM assignments in an online manner.

89

5.5.4 Resource Management of both Reader and Loader Tiers

This section evaluates the proposed autonomic resource management approach for

both Reader and Loader Tiers. Based on the QoS model defined in Section 4.4, the

importance of both tiers needs to be balanced in order to optimize an overall QoS value

which not only guarantees the responsiveness of map service but also maintains the data

freshness of returned maps.

In the experiment, we use the same workload trace described in Section 5.3, and

compare our proposed approach to the traditional static deployment plan. The traditional

method allocates a fixed number of nodes to Reader Tier to satisfy average response time

by past experience and gives rest nodes to Loader Tier. Specifically, it assigns 7 nodes to

the Read Tier and 3 nodes to the Loader Tier in order to achieve an average response time

of 0.9 second and 303.3GB fresh data per day (average f(t) = 0.809, refer to Eq. 7).

Figure 5.12 Result: response time improvement

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

Pa
ge

 R
es

p
o

n
se

 T
im

e
 (

Se
co

n
d

s)

Time (day)

Static

Dynamic

90

Figure 5.13 Result: Throughput improvement

Figure 5.12 and Figure 5.13compare the performance of the proposed dynamic plan

to the traditional static plan in both response time of the Reader Tier and throughput of the

Loader Tier. The static plan achieves an average response time of 0.897 seconds, while the

dynamic plan shows slightly better 0.873 seconds. The latter also achieves higher average

throughput (194.6 thousands requests per day) than the static one (185.1 thousands requests

per day).

Figure 5.14 Node Allocation per Hour

140

150

160

170

180

190

200

210

220

0 5 10 15 20 25 30

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

s)

Time (day)

Static

Dynamic

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20 22

N
o

d
e

A
lll

o
ca

ti
o

n
 (
N
o
d
e-
H
o
u
r)

Time (Hour)

Static Reader Allocation (Total 5040 Node-Hour)
Static Load Allocation (Total 2160 Node-Hour)
Dynamic Read Allocation (Total 4544 Node-Hour)
Dynamic Load Allocation (Total 2656 Node-Hour)

91

Figure 5.15 Result: QoS value improvement

Although the performance improvement on the Reader Tier is not significant,

Figure 5.15 shows that the proposed dynamic plan achieves much better overall QoS (26.19%

improvement). The reason behind this substantial improvement is because the dynamic

plan saves resources from the Reader Tier and allocates them to the Loader Tier, thereby

making data loading faster without sacrificing Reader performance. Resources are

dynamically balanced between these two tiers as the workload changes, where the

autonomic resource management allocates only the necessary number of VM nodes to the

Reader Tier to satisfy current workload, and reserve the rest to Loader Tier to load new

data.

For example, as showed in Figure 5.14, from Hour 7 to 10, since the workload on

Reader Tier is less intense, the dynamic plan allocates more resource to the Loader Tier to

allow the new data to be loaded as fast as possible. As a result, the dynamic plan loads

much more new data (473.3GB Per day) at a varying loading rate than the traditional plan

(303.3GB Per day), which loads data at a fixed rate. And the QoS value of the dynamic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Q
oS

 V
al

u
e

Time (day)

Static (Avg 0.855)

Dynamic (Avg 1.079)

92

plan (Avg QoS=1.079, refer to Eq. 5) is 26.20% higher the traditional plan (Avg QoS=0.855,

refer to Eq. 5).

In summary, our proposed autonomic resource management approach is able to

automatically optimize the tradeoff between service responsiveness and data freshness by

balancing the resource allocations between the Reader and Loader Tiers.

93

CHAPTER 6

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, we have improved a distributed disk-resident hybrid index for

efficiently answering k-NN queries with Boolean constraints on textual content with

MapReduce in sksOpen project. With this algorithm, we have implemented efficient online

indexing, querying, and visualization system for Big Geospatial data, to allow online users

to index their own spatial data, and offer query visualization. Our experimental study

showed an improved performance and scalability on large spatial datasets over alternate

methods, and a better interactive user interface.

Web map services become increasingly widely used for various commercial and

personal purposes. GIS application needs to be able to easily analyze and visualize spatial

data and satisfy the increasing demand of information sharing. TerraFly GeoCloud is an

online spatial data analysis and visualization system, to address the challenges. TerraFly

GeoCloud is built upon the TerraFly Geo spatial database, to offer a convenient way to

analyze geo spatial data, visualize the results, and share the result by a unique URL. Our

system also allows users to customize their own spatial data visualization using a SQL-like

MapQL language rather than writing codes with Map API.

Virtualization can greatly facilitate the deployment of web map service systems and

substantially improve their resource utilization. To fulfill this potential, the resource

management of a virtualized web map system needs to be able to handle the dynamic

workloads that the system typically serves and satisfy the often competing demands of the

94

various tiers of the system. v-TerraFly is presented to address these challenges. v-TerraFly

is created by virtualizing the various tiers of a typical map service system and allowing

resources to be dynamically allocated across the tiers. The resource management is done

by predicting the workload intensity based on historical data and estimating the resource

needs of the map service’s Reader and Loader Tiers based on their performance models. A

unique QoS metric is then defined to capture the tradeoff between the service

responsiveness and data freshness, and it is used to optimize the resource allocation to the

Reader and Loader VMs.

Experiments based on real TerraFly workload show that our system can accurately

predict the workload’s resource demands online and automatically allocate the resources

accordingly to meet the performance target and save substantial resource cost compared to

peak-load-based resource allocation. It can also automatically optimize the tradeoff

between responsiveness and data freshness by dynamically balancing the shared resources

between the Reader and Loader VMs.

6.2 Future Work

In our future work, we will research and develop an extra layer between end users

who have limit knowledge in writing SQL statements and the MapQL, a query composing

interfaces for the MapQL statements, to facilitate lay users to create their own map

visualizations. Also, we will improve the scale of TerraFly GeoCloud, conduct large-scale

experiments and employ distributed computing as additional mechanisms for optimizing

the system. In addition, we will explore how to apply the principle of MapQL to other

applications that share similar characteristics with web GIS services.

95

Also, we will improve the scale of v-TerraFly, conducting larger experiments and

employing live VM migration as an additional mechanism for optimizing resource

management. We will also explore how to apply the principle of v-TerraFly to other

applications that have similar dynamic and multi-tier characteristics as a web map service.

96

LIST OF REFERENCES

[1] Rishe, N., Chen, S. C., Prabakar, N., Weiss, M. A., Sun, W., Selivonenko, A., & Davis-

Chu, D. (2001, April). TerraFly: A high-performance web-based digital library system

for spatial data access. In The 17th IEEE International Conference on Data Engineering

(ICDE), Heidelberg, Germany (pp. 17-19).

[2] N. Rishe, M. Gutierrez, J. Janvier. “A View from Above Without Leaving the Ground.”

NASA Spinoff 2004, pp 72-73.

[3] Bo Xu, Ouri Wolfson, Sam Chamberlain, Naphtali Rishe “Cost Based Data

Dissemination in Satellite Networks” Mobile Networks & Applications, Vol. 7 (2002),

No. 1, pp 49-66.

[4] Jaime Ballesteros, Mahmudur Rahman, Bogdan Carbunar, Naphtali Rishe. “Safe Cities.

A Participatory Sensing Approach”. 37th IEEE Conference on Local Computer

Networks (LCN), October 22-25, 2012. pp. 626-634.

[5] Piotr Szczurek, Bo Xu, Ouri Wolfson, Jie Lin, Naphtali Rishe. “Learning the relevance

of parking information in VANETs”. Proceedings of the seventh ACM international

workshop on VehiculAr InterNETworking. Chicago, Illinois. September 24, 2010.

ISBN:978-1-4503-0145-9. pp 81-82, September 2010.

[6] Piotr Szczurek, Bo Xu, Ouri Wolfson, Jie Lin, Naphtali Rishe. “Prioritizing Travel

Time Reports in Peer-to-Peer Traffic Dissemination”. Proceedings of the IEEE

International Symposium on Communication Systems, Networks and Digital Signal

Processing (7th CSNDSP). Newcastle, U.K. July 21-23, 2010. pp 454-458.

[7] Daniel Ayala, Jie Lin, Ouri Wolfson, Naphtali Rishe, Masaaki Tanizaki.

“Communication Reduction for Floating Car Data-based Traffic Information Systems”.

Second International Conference on Advanced Geographic Information Systems,

Applications, and Services, pp 44-51, February 10-16, 2010. Best Paper Award.

[8] N. Rishe. Database Design: The Semantic Modeling Approach. McGraw-Hill, 1992,

528 pp.

[9] N. Rishe. Database Design Fundamentals: A Structured Introduction to Databases and

a Structured Database Design Methodology. Prentice-Hall, Englewood Cliffs, NJ, 1988.

436 pp. (Also printed as International Edition. Prentice-Hall International, Inc., 1988.

432 pp. ISBN 0-13-197476-9.)

[10] Lu, Y., Zhang, M., Tao Li, Y. G., & Rishe, N. (2013). Online Spatial Data Analysis

and Visualization System. ACM KDD IDEA 2013, pp.73-79

[11] Anick Jesdanun, AP (2008-01-18). "GPS adds dimension to online photos". Retrieved

2008-01-19.

97

[12] Wiki Project on Geotagging. http://en.wikipedia.org/wiki/Geotagging#cite_note-2

[13] P. Martin, S. Elnaffar and T. Wasserman, “Workload Models for Autonomic Database

Management Systems”, ICAS, 2006.

[14] P. Padala, K. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal and A. Merchant,

“Automated Control of Multiple Virtualized Resources”, SIGOPS/EuroSys, 2009

[15] Hariharan, R., Hore, B., Li, C., & Mehrotra, S. (2007, July). Processing spatial-

keyword (SK) queries in geographic information retrieval (GIR) systems. In Scientific

and Statistical Database Management, 2007. SSBDM'07. 19th International

Conference on (pp. 16-16). IEEE.

[16] Hjaltason, G., Samet, H.: Distance browsing in spatial databases. ACM Trans.Database

Syst. 24 (2), 265–318, 1999.

[17] Guttman, A.: R-trees: A dynamic index structure for spatial searching. In SIGMOD,

pp. 47–57. ACM, New York, 1984.

[18] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An efficient and

robust access method for points and rectangles. In SIGMOD, pp. 322–331, 1990.

[19] Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dynamic index for multi-

dimensional objects. In VLDB, pp. 507–518, 1987.

[20] Kamel, I., Faloutsos, C.: Hilbert R-tree: An improved R-tree using fractals. In VLDB,

pp. 500–509, 1994.

[21] Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38 (2),

2006.

[22] Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files for text

indexing. ACM Trans. Database Syst. 23 (4), 453–490, 1998.

[23] R.R. Larson. Geographic Information Retrieval and Spatial Browsing. In GIS and

Libraries: Patrons, Maps and Spatial Information, pages 81-125, 1996.

[24] C.B. Jones, A.I. Abdelmoty, D. Finch, G. Fu, and S. Vaid. The Spirit Spatial Search

Engine.: Architecture, Ontologies and Spatial Indexing. In Proc. of GIScience, pages

125-139, October 2004.

[25] A. Markowetz, Y. Chen, T. Suel, X. Long, and B. Seeger. Design and Implementation

of a Geographic Search Engine. In Proc. of WebDB, June 2005.

[26] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Ma. Hybrid Index Structures for Location-

Based Web Search. In Proc. Of CIKM, pages 155-162, November 2005

98

[27] Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (SK) queries

in geographic information retrieval (GIR) systems. In SSDBM, p. 16, 2007.

[28] Park, D.J., Kim, H.J.: An enhanced technique for k-nearest neighbor queries with non-

spatial selection predicates. Multimedia Tools and Apps., 79–103, 2004.

[29] Chang, W.W., Schek, H.J.: A signature access method for the Starburst database system.

In VLDB, pp. 145–153, 1989.

[30] De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In ICDE,

pp. 656–665, IEEE Computer Society, 2008.

[31] Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial

web objects. Proc. VLDB Endow. 2 (1), 337–348, 2009.

[32] Cary, A., Wolfson, O., & Rishe, N. (2010, January). Efficient and scalable method for

processing top-k spatial boolean queries. In Scientific and Statistical Database

Management (pp. 87-95). Springer Berlin Heidelberg.

[33] Xiaoyan Li, Sharing geoscience algorithms in a Web service-oriented environment,

Computers & Geosciences Volume 36, Issue 8, August 2010

[34] Fotheringham, S., & Rogerson, P. (Eds.). (2004). Spatial analysis and GIS. CRC Press.

[35] Anselin, L. (1999). Interactive techniques and exploratory spatial data analysis.

Geographical Information Systems: principles, techniques, management and

applications, 1, 251-264.

[36] Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS

geostatistical analyst (Vol. 380). Redlands: Esri.

[37] Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An introduction to spatial data

analysis. Geographical analysis, 38(1), 5-22.

[38] Boyer, D., Cheetham, R., & Johnson, M. L. (2011). Using GIS to Manage

Philadelphia's Archival Photographs. American Archivist, 74(2), 652-663.

[39] Hearnshaw, H. M., & Unwin, D. J. (1994). Visualization in geographical information

systems. John Wiley & Sons Ltd.

[40] Boyer, D. (2010). From internet to iPhone: providing mobile geographic access to

Philadelphia's historic photographs and other special collections. The Reference

Librarian, 52(1-2), 47-56.

[41] Forecasting with Exponential Smoothing: The State Space Approach, Hyndman, R.,

Koehler, A.B., Ord, J.K., Snyder, R.D. 2008, XIII, 362 p

99

[42] A state space framework for automatic forecasting using exponential smoothing

methods International Journal of Forecasting, 18 (2002), pp. 439–454

[43] The fundamental theorem of exponential smoothing, RG Brown, RF Meyer -

Operations Research, 1961 or.journal.informs.org

[44] Exponential smoothing: The state of the art, ES Gardner Jr - International Journal of

Forecasting, 1985 - Elsevier

[45] Xiaoyan Li, Sharing geoscience algorithms in a Web service-oriented environment,

Computers & Geosciences Volume 36, Issue 8, August 2010

[46] Peng Yue, Semantics-based automatic composition of geospatial Web service chains,

Computers & Geosciences Volume 33, Issue 5, May 2007

[47] Huebscher, M. C., & McCann, J. A. (2008). A survey of autonomic computing—

degrees, models, and applications. ACM Computing Surveys (CSUR), 40(3), 7.

[48] Horn, P. (2001). Autonomic computing: IBM\'s Perspective on the State of Information

Technology.

[49] Muscettola, N., Morris, P., & Tsamardinos, I. (1998). Reformulating temporal plans

for efficient execution. In In Principles of Knowledge Representation and Reasoning.

[50] Morato, Daniel, et al. "On linear prediction of Internet traffic for packet and burst

switching networks." Computer Communications and Networks, 2001. Proceedings.

Tenth International Conference on. IEEE, 2001.

[51] Dinda, Peter, et al. "The case for prediction-based best-effort real-time systems."

Parallel and Distributed Processing 1999

[52] J. Wildstrom, P. Stone and E. Witchel, “CARVE: A Cognitive Agent for Resource

Value Estimation”, ICAC, 2008.

[53] J. Rao, X. Bu, C. Xu, L. Wang and G. Yin, “VCONF: A Reinforcement Learning

Approach to Virtual Machines Auto-configuration”, ICAC, 2009.

[54] L. Wang, J. Xu, M. Zhao, Y. Tu and J. A.B. Fortes, “Fuzzy Modeling Based Resource

Management for Virtualized Database Systems”, MASCOTS. 2011

[55] J. Xu, M. Zhao and J. Fortes, “Autonomic Resource Management in Virtualized Data

Centers Using Fuzzy-logic-based Control”, Cluster Computing, 2008.

[56] P. Padala, K. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal and A. Merchant,

“Automated Control of Multiple Virtualized Resources”, SIGOPS/EuroSys, 2009.

100

[57] X. Liu, X. Zhu, P. Padala, Z. Wang and S. Singhal,“Optimal Multivariate Control for

Differentiated Services on a Shared Hosting Platform”, CDC, 2007.

[58] P. Lama and X. Zhou, “PERFUME: Power and Performance Guarantee with Fuzzy

MIMO Control in Virtualized Servers”, IWQoS, 2011.

[59] L. Wang, et al., “Adaptive Virtual Resource Management with Fuzzy Model Predictive

Control” FeBID, 2011.

[60] Lester Melendez, Ouri Wolfson, Malek Adjouadi, Naphtali Rishe. “Qualitative

Analysis of Commercial Social Network Profiles”. Handbook of Social Network

Technologies and Applications. Borko Furht, editor. Springer Verlag, 2010. pp 95-114.

[61] N. Rishe, M. Gutierrez, A. Selivonenko, S. Graham. “TerraFly: A Tool for Visualizing

and Dispensing Geospatial Data.” Imaging Notes, Summer 2005, Vol. 20, No. 2. pp

22-23.

[62] Rishe, N., Sun, Y., Chekmasov, M., Selivonenko, A., & Graham, S. (2004, December).

System architecture for 3D terrafly online GIS. In Multimedia Software Engineering,

2004. Proceedings. IEEE Sixth International Symposium on (pp. 273-276). IEEE.

[63] Naphtali Rishe. U.S. Patent 6,795,825 “A Database Querying System and Method”

issued 2004.09.21.

[64] Naphtali Rishe. U.S. Patent 6,339,773 “Data extractor” issued 2002.01.15.

[65] Naphtali Rishe, Borko Furht, Malek Adjouadi, Armando Barreto, Evgenia Cheremisina,

Debra Davis, Ouri Wolfson, Nabil Adam, Yelena Yesha, Yaacov Yesha. “Geospatial

Data Management With TerraFly.” Handbook of Data Intensive Computing. Furht and

Escalante, eds. Springer Verlag, 2011. pp.637-665.

[66] Rishe, N., Gutierrez, M., Selivonenko, A., & Graham, S. (2005). TerraFly: A tool for

visualizing and dispensing geospatial data. Imaging Notes, 20(2), 22-23.

[67] Naphtali Rishe. TerraAtlas: Central Washington, DC. The McDonald & Woodward

Publishing Company, Blacksburg, Virginia, 2006. ISBN 0-939923-99-8.

[68] Yi Zhang and Tao Li. DClusterE: A Framework for Evaluating and Understanding

Document Clustering Using Visualization. ACM Transactions on Intelligent Systems

and Technology, 3(2):24, 2012.

[69] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), 107-113.

[70] Wikipedia, Apache Hadoop

http://en.wikipedia.org/wiki/Apache_Hadoop

101

[71] IBM What is MapReduce. http://www-

01.ibm.com/software/data/infosphere/hadoop/mapreduce/

[72] Wikipedia, k-nearest neighbor algorithm. http://en.wikipedia.org/wiki/K-

nearest_neighbor_algorithm

[73] Bremner, D., Demaine, E., Erickson, J., Iacono, J., Langerman, S., Morin, P., &

Toussaint, G. (2005). Output-sensitive algorithms for computing nearest-neighbour

decision boundaries. Discrete & Computational Geometry, 33(4), 593-604.

[74] Shu-Ching Chen, Xinran Wang, Naphtali Rishe, and Mark Allen Weiss. “A Web-Based

Spatial Data Access System Using Semantic R-trees.” Information Sciences: An

International Journal. vol. 167, no. 1-4, pp 44-61, December 2004.

[75] Cary, A., Wolfson, O., & Rishe, N. (2010, January). Efficient and scalable method for

processing top-k spatial boolean queries. In Scientific and Statistical Database

Management (pp. 87-95). Springer Berlin Heidelberg.

[76] N. Rishe, A. Shaposhnikov. U.S. Patent 5,920,857 “Efficient Optimistic Concurrency

Control and Lazy Queries for Databases and B-Trees” issued 1999.07.06.

[77] C. Yu, K.L. Liu, W. Meng, Z. Wu, N. Rishe. “A Methodology to Retrieve Text

Documents from Multiple Databases”. IEEE Transactions on Knowledge and Data

Engineering. Vol. 14 (2002) nbr 6 pp 1347-1361.

[78] W. Meng, K. Liu, C. Yu, W. Wu, and N. Rishe. “A Statistical Method for Estimating

the Usefulness of Text Databases.” IEEE Transactions on Knowledge and Data

Engineering. Vol. 14 (2002) nbr 6 pp 1422-1437.

[79] Morton, G. M. (1966), A computer Oriented Geodetic Data Base; and a New Technique

in File Sequencing, Technical Report, Ottawa, Canada: IBM Ltd.

[80] Naphtali Rishe, Borko Furht, Malek Adjouadi, Armando Barreto, Debra Davis, Ouri

Wolfson, Yelena Yesha, Yaacov Yesha. “Semantic Wrapper: Concise Semantic

Querying of Legacy Relational Databases.” Handbook of Data Intensive Computing.

Furht and Escalante, eds. Springer Verlag, 2011. pp.415-444.

[81] Bern, M.; Eppstein, D.; Teng, S.-H. (1999), "Parallel construction of quadtrees and

quality triangulations", Int. J. Comp. Geom. & Appl. 9 (6): 517–532

[82] Jaime Ballesteros, Mahmudur Rahman, Bogdan Carbunar, Naphtali Rishe. “Safe Cities.

A Participatory Sensing Approach”. 37th IEEE Conference on Local Computer

Networks (LCN), October 22-25, 2012. pp. 626-634.

[83] Spence, R., & Press, A. (2000). Information visualization.

102

[84] Wang, H. (2011). A Large-scale Dynamic Vector and Raster Data Visualization

Geographic Information System Based on Parallel Map Tiling.

[85] Teng, W., Rishe, N., & Rui, H. (2006, May). Enhancing access and use of NASA

satellite data via TerraFly. In Proceedings of the ASPRS 2006 Annual Conference.

[86] Wang, H. (2011). A Large-scale Dynamic Vector and Raster Data Visualization

Geographic Information System Based on Parallel Map Tiling.

[87] N. Rishe and B. Wongsaroj. “Infrastructure for Research and Training in Database

Management for Web-based Geospatial Data Visualization with Applications to

Aviation.” Infrastructure 2003: NSF CISE/EIA RI and MII PI's Workshop. Arlington,

VA, August 17-19, 2003. pp. 48-52.

[88] Bogdan Carbunar, Mahmudur Rahman, Jaime Ballesteros, Naphtali Rishe. “Private

Location Centric Profiles for Online Social Networks.” Proceedings of the 20th

International Conference on Advances in Geographic Information Systems (GIS 2012)

November 6-9 2012. Redondo Beach, California, pp. 458-461.

[89] De Knegt, H. J., Van Langevelde, F., Coughenour, M. B., Skidmore, A. K., De Boer,

W. F., Heitkönig, I. M. A., ... &Prins, H. H. T. (2010). Spatial autocorrelation and the

scaling of species-environment relationships. Ecology, 91(8), 2455-2465.

[90] Li,Hongfei; Calder, Catherine A, "Beyond Moran's I: Testing for Spatial Dependence

Based on the Spatial Autoregressive Model". Geographical AnalysisCressie, Noel

(2007).

[91] Naphtali Rishe, Maxim Chekmasov, Marina Chekmasova, Scott Graham, Ian De Felipe.

“On-demand Geo-referenced TerraFly Data Miner.” International Conference on

Intelligent User Interfaces, Miami, FL January 12-15, 2003. pp. 277-279.

[92] Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical

analysis, 27(2), 93-115.

[93] Ester, M., Kriegel, H. P., Sander, J., &Xu, X. (1996, August). A density-based

algorithm for discovering clusters in large spatial databases with noise. ACM SIGKDD.

[94] Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (1998). Density-based clustering in

spatial databases: The algorithm gdbscan and its applications. Data Mining and

Knowledge Discovery, 2(2), 169-194.

[95] Stein, M. L. (1999). Interpolation of spatial data: some theory for kriging. Springer

Verlag.

[96] Naphtali Rishe, Carlos Espinal, Tajana Lucic, Yelena Yesha, Yaacov Yesha Kalai

Mathee, Aileen Marty. “Geospatial Data for Intelligent Solutions in Public Health”. e-

Proceedings of Vaccinology 2012, Rio de Janeiro, September 3-7, 2012.

103

[97] Reza Amini, Christine Lisetti, Ugan Yasavur, Naphtali Rishe.”On-Demand Virtual

Health Counselor for Delivering Behavior-Change Health Interventions”. 2013 IEEE

International Conference on Healthcare Informatics (ICHI'13), 2013. Philadelphia, PA,

USA, September 9-11, 2013.

[98] Naphtali, et al. "System architecture for 3D terrafly online GIS." Multimedia Software

Engineering, 2004. Proceedings. IEEE Sixth International Symposium on. IEEE, 2004.

[99] Lai, Alvin CK, Tracy L. Thatcher, and William W. Nazaroff. "Inhalation transfer

factors for air pollution health risk assessment." Journal of the Air & Waste

Management Association 50.9 (2000): 1688-1699.

[100] Wakefield, Jon, and Paul Elliott. "Issues in the statistical analysis of small area health

data." Statistics in Medicine 18.17‐18 (1999): 2377-2399.

[101] Kulldorff M. A spatial scan statistic. Communications in Statistics-Theory and methods.

1997;26:1481–96.

[102] Besag, Julian, and James Newell. "The detection of clusters in rare diseases."Journal

of the Royal Statistical Society. Series A (Statistics in Society) (1991): 143-155.

[103] Kulldorff M, Nagarwalla N: Spatial disease clusters: detection and inference. Statistics

in Medicine 1995, 14:799-810.

[104] Mantel, Nathan. "The detection of disease clustering and a generalized regression

approach." Cancer research 27.2 Part 1 (1967): 209-220.

[105] Openshaw, Stan, et al. "A mark 1 geographical analysis machine for the automated

analysis of point data sets." International Journal of Geographical Information System

1.4 (1987): 335-358.

[106] Getis, Arthur, and J. Keith Ord. "The analysis of spatial association by use of distance

statistics." Geographical analysis 24.3 (1992): 189-206.

[107] Dubin, Robin, R. Kelley Pace, and Thomas G. Thibodeau. "Spatial autoregression

techniques for real estate data." Journal of Real Estate Literature 7.1 (1999): 79-96.

[108] Kelejian, Harry H., and Ingmar R. Prucha. "A generalized spatial two-stage least

squares procedure for estimating a spatial autoregressive model with autoregressive

disturbances." The Journal of Real Estate Finance and Economics 17.1 (1998): 99-121.

[109] Moran, Patrick AP. "Notes on continuous stochastic phenomena." Biometrika 37.1/2

(1950): 17-23.

[110] Sagit Zolotov, Dafna Ben Yosef, Naphtali Rishe, Yelena Yesha, Eddy Karnieli.

"Metabolic profiling in personalized medicine: bridging the gap between knowledge

104

and clinical practice in Type 2 diabetes" Personalized Medicine, Vol. 8, No. 4, July

2011, pp. 445-456.

[111] Naphtali Rishe, Carlos Espinal, Tajana Lucic, Yelena Yesha, Yaacov Yesha Kalai

Mathee, Aileen Marty. "Geospatial Data for Intelligent Solutions in Public Health." e-

Proceedings of Vaccinology 2012, Rio de Janeiro, September 3-7, 2012.

[112] Naphtali Rishe, Yelena Yesha, Yaacov Yesha, Tajana Lucic. "Intelligent solutions in

public health: models and opportunities." Proceedings of the Second Annual

International Conference on Tropical Medicine: Intelligent Solutions for Emerging

Diseases. February 23-24, 2012, Miami, Florida.

[113] Naphtali Rishe, Yelena Yesha, Tajana Lucic. "Data Mining and Querying in Electronic

Health Records." Proceedings of Up Close and Personalized, International Congress

on Personalized Medicine (UPCP 2012), Florence, Italy, February 2-5, 2012.

[114] Yelena Yesha, Naphtali Rishe, Tajana Lucic. "Clinical-Genomic Analysis using

Machine Learning Techniques to Predict Risk of Disease." Proceedings of Up Close

and Personalized, International Congress on Personalized Medicine (UPCP 2012),

Florence, Italy, February 2-5, 2012.

[115] Aniket Bochare, Aryya Gangopadhyay, Yelena Yesha, Anupam Joshi, Yaacov Yesha,

Michael A. Grasso, Mary Brady, Naphtali Rishe. "Integrating Domain Knowledge in

Supervised Machine Learning to Assess the Risk of Breast Cancer". International J of

Medical Engineering and Informatics, 2013

[116] Rohit Kugaonkar, Aryya Gangopadhyay, Yelena Yesha, Anupam Joshi, Yaacov Yesha,

Michael Grasso, Mary Brady and Naphtali Rishe. "Finding associations among SNPs

for prostate cancer using collaborative filtering". DTMBIO-12: Proceedings of the

ACM sixth international workshop on Data and text mining in biomedical informatics.

Hawaii, USA. October 29, 2012. ACM New York, NY.

[117] Ron Ribitzky, Yelena Yesha, Eddy Karnieli, Naphtali Rishe. "Knowledge Mining &

Bio-informatics Techniques to Advance Personalized Diagnostics & Therapeutics".

Report to the U.S. National Science Foundation (NSF) on the Outcomes and Consensus

Recommendations of the NSF-sponsored International Workshop, February 2012, in

Florence, Italy, http://CAKE.fiu.edu/HIT-

papers/Book_post_NSF_Workshop_Knowledge_Mining_and_Bioinformatics_Techni

ques_to_Advance_Personalized_Diagnostics_and_Therapeutics.pdf

[118] P. Martin, S. Elnaffar and T. Wasserman, “Workload Models for Autonomic Database

Management Systems”, ICAS, 2006.

[119] P. Padala, K. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal and A. Merchant,

“Automated Control of Multiple Virtualized Resources”, SIGOPS/EuroSys, 2009

105

[120] Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., & Jiang, G. (2009). Power

and performance management of virtualized computing environments via lookahead

control. Cluster Computing, 12(1), 1–15. Special Issue on Autonomic Computing.

[121] "Web Mapping." Wikipedia. Wikimedia Foundation, 28 Feb. 2013. Web. 01 Mar. 2013.

[122] Brian Craig. "Online Satellite and Aerial Images: Issues and Analysis" North Dakota

Law Review 85 (2007): 547

[123] William Teng, Enhancing Access and Use of Nasa Satellite Data via Terrafly reno2006

[124] Robust Database Structures with Dynamic Query Patterns”, EJOR, 2006.

[125] T. E. Anderson, L. L. Peterson, S. Shenker, and J. S. Turner, "Overcoming the internet

impasse through visualization." IEEE Computer, vol. 38, no. 4, pp. 34-41, 2005.

[126] Bennani, M. N., & Menasce, D. A. (2005, June). Resource allocation for autonomic

data centers using analytic performance models. In Autonomic Computing, 2005.

ICAC 2005. Proceedings. Second International Conference on (pp. 229-240). IEEE.

[127] Network reconfiguration in distribution systems for loss reduction and load balancing,

ME Baran, FF Wu - Power Delivery, IEEE Transactions on, 1989 - ieeexplore.ieee.org

[128] T. Wood, L. Cherkasova, K. Ozonat and P. Shenoy, “Profiling and Modeling Resource

Usage of Virtualized Applications”, Middleware, 2008.

[129] Forecasting with Exponential Smoothing: The State Space Approach, Hyndman, R.,

Koehler, A.B., Ord, J.K., Snyder, R.D. 2008, XIII, 362 p

[130] A state space framework for automatic forecasting using exponential smoothing

methods International Journal of Forecasting, 18 (2002), pp. 439–454

[131] The fundamental theorem of exponential smoothing, RG Brown, RF Meyer -

Operations Research, 1961 or.journal.informs.org

[132] Exponential smoothing: The state of the art, ES Gardner Jr - International Journal of

Forecasting, 1985 – Elsevier

106

VITA

YUN LU

2006 B. E., Software Engineering

 Beihang University

 Beijing, China

2006-2009 Dean assistant, Software Engineering

 School of Software

Beihang University

 Beijing, China

2009 M. S., Software Engineering

 Beihang University

 Beijing, China

2010-2013 Graduate Research Assistant

 Florida International University

 Miami, FL, USA

2013 Ph. D., Computer Science

 Florida International University

 Miami, FL, USA

PUBLICATIONS AND PRESENTATIONS

CONFERENCES

Yun Lu, Mingjin Zhang, Tao Li, Yudong Guang and Naphtali Rishe. (2013 Aug). Online

Spatial Data Analysis and Visualization System. In ACM SIGKDD Conference on

Knowledge Discovery and Data Mining Workshop on Interactive Data Exploration and

Analytics on (pp.73-79), Chicago, IL. ACM.

Yun Lu, Mingjin Zhang, Tao Li, Chang Liu, Erik Edrosa, Naphtali Rishe. (2013 Oct).

TerraFly GeoCloud: Online Spatial Data Analysis System. In ACM International

Conference on Information and Knowledge Management demo paper on (pp. 2457-2461),

San Francisco, CA. ACM.

Yun Lu, Ming Zhao, Guangqiang Zhao, Lixi Wang, Naphtali Rishe. (2013 Dec). Massive

GIS Database System with Autonomic Resource Management. In International Conference

on Machine Learning and Applications BigData Workshop, ACCEPTED, Miami, FL.

107

Yun Lu, Mingjin Zhang, Shonda Witherspoon, Yelena Yesha, Yaacov Yesha, Naphtali

Rishe. (2013 Dec). sksOpen: Efficient Indexing, Querying, and Visualization of Geo-

spatial Big Data. In International Conference on Machine Learning and Applications

BigData Workshop short paper, ACCEPTED, Miami, FL.

Huibo Wang, Yun Lu, Yudong Guang, Erik Edrosa, Mingjin Zhang, Raul Camarca, Yelena

Yesha, Tajana Lucic, Naphtali Rishe. Epidemiological Data Analysis in TerraFly Geo-

Spatial Cloud. In International Conference on Machine Learning and Applications BigData

Workshop, ACCEPTED, Miami, FL.

JOURNALS

Yun Lu, Ming Zhao, Lixi Wang, Naphtali Rishe. v-TerraFly: Large Scale Distributed

Spatial Data Visualization with Autonomic Resource Management. In Journal Of Big Data,

SUBMITTED.

Lixi Wang, Yun Lu, Jing Xu, Ming Zhao. Cross-layer Optimization for Virtual Machine

Resource Management. In IEEE Transactions on Parallel and Distributed Systems.

SUBMITTED.

