

sksOpen: Efficient Indexing, Querying, and
Visualization of Geo-spatial Big Data

Yun Lu1, Mingjin Zhang1, Shonda Witherspoon1, Yelena Yesha2, Yaacov Yesha2, Naphtali Rishe1

NSF Industry-University Cooperative Research Centers and
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199

1{yun,zhangm,swith004,rishen}@cs.fiu.edu
2{yeyesha,yayesha}@umbc.edu

Abstract. With the fast growing use of web-based map services,
the performance of indexing and querying of location-based data is
becoming a critical quality of service aspect. Spatial indexing is
typically time-consuming and is not available to end-users. To
address this challenge, we have developed and open-sourced an
Online Indexing and Querying System for Big Geospatial Data,
sksOpen. Integrated with the TerraFly Geospatial database [1],
TerraFly sksOpen is an efficient indexing and query engine for
processing Top-k Spatial Boolean Queries. Further, we provide
ergonomic visualization of query results on interactive maps to
facilitate the user’s data analysis.

Keywords: spatial databases, spatial index, data visualization

I. INTRODUCTION

With the exponential growth of Internet applications, there
are many domains open to Geographic Information System
(GIS) applications. Massive amounts of spatial information
become available to a wide range of public uses [2]. More and
more people employ Web applications to update their
geographical information via the process known as Geotagging.
For example, Google Maps currently has more than 350
million users. There are also a rapidly growing number of geo-
enabled applications, which utilize web map services on
traditional computing platforms as well as on emerging mobile
devices.

Geotagging can help users find a wide variety of location-
specific information. For example, one can find images taken
near a given location by entering latitude and longitude
coordinates into a suitable image search engine. Geotagging-
enabled information services can also potentially be used to
find location-based news, websites, and other resources.
Geotagging can tell users the location of the content of a given
picture or other media, and conversely on some media
platforms, show media relevant to a given location [3] [4].

However, due to the highly complex and dynamic nature of
GIS systems, it is quite challenging for users to manipulate
spatial data. On one hand, typical geographic visualization
tools do not offer spatial data index functions or application
programming interfaces (API) to the public. On the other hand,
even if users have access to spatial data index services, it is
very difficult to get the visualization of query results of their
own spatial data.

To address the above challenges, we have developed
TerraFly sksOpen, an efficient online indexing, querying, and
visualization system for Big Geospatial Data, which allows
users to easily create indices of spatial objects and to query and
visualize the results and share them via unique URLs.

The TerraFly sksOpen Online Spatial Object Index and
Visualization System is built using TerraFly Maps API, and
JavaScript TerraFly API add-ons in a high performance cloud
environment.

The remainder of this article is organized as follows:
Section 2 presents the background and motivation for the
system; Section 3 describes the architecture of the sksOpen
system; Section 4 describes the visualization solutions in the
sksOpen system; Section 5 presents a case study on the online
spatial object index and search; Section 6 discusses our related
work; Section 7 concludes the paper.

II. BACKGROUND

A. TerraFly

TerraFly is a system for querying and visualizing geospatial
data developed by the High Performance Database Research
Center (HPDRC) lab at Florida International University (FIU)
[1, 5-12]. The TerraFly system serves worldwide web map
requests to over 125 countries and regions, providing users
with customized aerial photography, satellite imagery, and
various overlays, such as street names, roads, restaurants,
services and demographic data [13] [14].

The TerraFly API allows rapid deployment of interactive
web applications, and has been used to produce systems for
disaster mitigation, ecology, real estate, tourism, and
municipalities. TerraFly's web-based client interface is
accessible from anywhere, via any standard web browser, with
no client software to install [15] [16].

TerraFly allows users to virtually ‘fly’ over enormous
geographic information simply via a web browser with several
advanced functionalities and features, such as user-friendly
geospatial querying interfaces, map display with user-specific
granularity, real-time data suppliers, demographic analysis,
annotation, route dissemination via autopilots, API for web
sites, etc [17] [18].

TerraFly's server farm ingests geo-locates, cleanses,
mosaics, and cross-references 40TB of base map data and user-
specific data streams. The 40TB TerraFly data collection
includes, among others, 1-meter aerial photography of almost
the entire United States, and 3-inch to 1-foot full-color recent
imagery of major urban areas. TerraFly’s vector collection
includes 400 million geo-located objects, 50 billion data fields,
40 million polylines, 120 million polygons, including: all US
and Canada roads, US Census demographic and socioeconomic
datasets, 110 million parcels with property lines and ownership
data, 15 million records of businesses with company stats and
management roles and contacts, 2 million physicians with
expertise detail, various public place databases (including the
USGS GNIS and NGA GNS), Wikipedia, extensive global
environmental data (including daily feeds from NASA and
NOAA satellites and the USGS water gauges), and hundreds of
other datasets [19] [20].

B. Spatial data visualization

Information visualization (or data visualization) techniques
are able to present the data and patterns in a visual form that is
intuitive and easily comprehensible, allowing users to derive
insights from the data, and support user interactions [2].

Visualizing the objects in geo-spatial data is as important as
the data itself. The visualization task becomes more
challenging as both the data dimensionality and richness in the
object representation increases. In TerraFly data querying we
have addressed the visualization challenge, including the
interactive map visualization spatial data and interactive list
visualization [21].

C. MapReduce

MapReduce is a programming model and an associated
implementation for processing and generating large data sets.
Users specify a map function that processes a key/value pair to
generate a set of intermediate key/value pairs, and a reduce
function that merges all intermediate values associated with the
same intermediate key [22].

Programs written in this functional style are automatically
parallelized and executed on a large cluster of commodity
machines. The run-time system takes care of the details of
partitioning the input data, scheduling the program's execution
across a set of machines, handling machine failures, and
managing the required inter-machine communication. This
allows programmers without much experience with parallel
and distributed systems to easily utilize the resources of a large
distributed system [23] [24].

Hadoop, a version of MapReduce, is an open-source
software framework that supports data-intensive distributed
applications. It is this programming paradigm that allows for
massive scalability across hundreds or thousands of servers in a
Hadoop cluster. The MapReduce concept is fairly simple to
understand for those who are familiar with clustered scale-out
data processing solutions [25] [26].

The term MapReduce denotes the two main tasks that
Hadoop programs perform. The first task, Map, takes a set of
data and converts it into another set of data, where individual
elements are broken down into tuples (key/value pairs). The

Reduce task takes the output from a Map as input and
combines those data tuples into a smaller set of tuples.

D. K-NN

In pattern recognition, the k-nearest neighbor algorithm (k-
NN) is a non-parametric method for classifying objects based
on closest training examples in the feature space. k-NN is a
type of instance-based learning, or lazy learning, where the
function is only approximated locally and all computation is
deferred until classification [27]. The k-nearest neighbor
algorithm is amongst the simplest of all machine learning
algorithms: an object is classified by a majority vote of its
neighbors, with the object being assigned to the class most
common amongst its k nearest neighbors (k is a positive
integer, typically small). If k = 1, then the object is simply
assigned to the class of that single nearest neighbor. It also
mentions that includes the following result: The error rate of
K-NN as the number of training examples tends to infinity
tends to a value that does not exceed twice the Bayes error
rate [28].

Nearest neighbor rules in effect implicitly compute the
decision boundary. It is also possible to compute the decision
boundary explicitly, and to do so efficiently, so that the
computational complexity is a function of the boundary
complexity.

III. ARCHITECTURE OF SKSOPEN

TerraFly sksOpen is implemented in Java, and is a web
service easily accessible from anywhere. In this section, we
will introduce the algorithm and software structure of sksOpen.

A. The index algorithm of sksOpen

We improved the spatial object index algorithm developed
by Cary, Rishe et al in 2010 [29]. The algorithm creates spatial
object indices as a hybrid index; it includes both an R-Tree
spatial index and an inverted text file index. We have added a
new “map” algorithm to split the data set in order to speed up
the index to fit large-scale spatial data index [30].

By employing this hybrid index, we attained fast retrieval,
even when matching objects were located far away from one
another, efficiently filtering-out of objects not satisfying the
query Boolean constraints on keywords, and maintained low
storage requirements while keeping high query performance.

The challenge is reducing the computations to eliminate as
many non-candidate objects as possible. In particular, NOT-
semantics constraints may substantially shrink the output size
and lead to unnecessary scans.

The indexing approach leverages the strengths of R-trees in
spatial search, and modifies an inverted file for efficient
processing of Boolean constraints. The combination of
indexing techniques yields the hybrid data structure: Spatial-
Keyword Index (SKI) [29].

Next, we define the principal terminology in SKI [29]:

Figure 1: An super-node and leaf nodes

R-tree Index (R): A modified R-tree built with spatial
attributes. Entries in R’s inner nodes are augmented with index
ranges [a, b], where Sa and Sb are the left-most and right-most,
respectively, super nodes contained in the sub tree rooted at
node entry. Ranges in leaf-node entries contain a single value,
the index of the super node containing the leaf node. See
Figure 1 and [29].

Spatial Inverted File (SIF): A modified inverted file
constructed on a vocabulary V. The Lexicon contains terms in
V and their document frequencies (df). Posting lists are
modified to include spatial information from R. Specifically,
the posting list of a term t contains all its term bitmaps sorted
by the super node index as follows:

Posting(t) = [I(t, s1), I(t, s2), ...] where Si Belongs to S(R)

Figure 2: Hybrid Spatial-Keyword Index

We organized posting elements in a B+tree to allow fast
random and range retrieval. Figure 2 shows the structure of the
hybird index [29] [31].

However, this algorithm is indexing the tuples in a
particular sequence, which is not feasible in a large-scale index
enviorment. To address this challege, we add a new componet
of the algorithm, named split, and merge modules to split the
input data set quickly into different parts, and finally merge all
indices, to facilate multi-core or multi-machine index loading,
to significantly increase the performance of the
algorithm [32] [33].

We employed a Z-order value to quickly set the split points.
In mathematical analysis, Z-order, Morton order, or Morton
code, is a function that maps multidimensional data to one
dimension, while preserving locality of the data points. It was
introduced in 1966 by G. M. Morton [34]. The Z-value of a
point in a multidimensional space is calculated by interleaving

the binary representations of its coordinate values. Once the
data is sorted into this ordering, any one-dimensional data
structure can be used such, as binary search trees, B-trees, skip
lists, or hash tables. The resulting ordering can equivalently be
described as the order one would get from a depth-first
traversal of a quadtree; because of its close connection with
quadtrees, the Z-ordering can be used to efficiently construct
quadtrees and related higher dimensional data structures [35].

The Split Algorithm works as follows:

1. Get the Z-order Value of a tuple of coordinate to
get the Split points

2. Create a Split point array

3. For each entry, perform a binary search in the
Split point array to find out the partition index

4. Write the entry into corresponding partition file

5. Send the partitioned files to a thread or a loading
machine to start index loading

The Index Merge Algorithm works as follows:

1. Save Split point array and load it when querying

2. For each search point, perform a binary search in
Split point array to find the partition index

3. Perform the query procedure in the corresponding
spatial keywords index

4. Find the eligible entry and return a list of the
results

With this improvement, we have added a Quadtree at the
top of the R-Tree index to improve the performance of multi-
task loading [35]. Because the partitions of the data file are
easy to control, the depth of the Quadtree is usually short, wich
means the binarySearch in Split point runs quickly and takes
O(log(m)).

B. The Structure of sksOpen

With the improvement of methods for processing top-k
spatial Boolean queries by introducing the Split and Merge
modules, we can utilize the MapReduce model to create the
sksOpen indices for Big Data. The performance of the loading
of indices is significantly improved.

Spatial
Data

Map
Loading
process

Loading
process

Reduce
Final data
index

Loading
process

Start
Query
Engine

TerraFly
Visualization

Engine
Query

Final results
Visualization

Figure 3: MapReduce design of sksOpen

As shown in Figure 3, the Map module splits the spatial
data into partitions depending on how many hardware
resources will be used for index loading. After each loading
process is finished, the Reduce module will automatically
merge the indices of the data partitions to produce the final
data index. After that, the database can be efficiently
queried [36]. When a query comes, the Query Engine will
examine the final data index, and then produce the query
results list. With the results list, the TerraFly visualization
engine will offer visualization with a unique URL, which can
be shared with other users.

Figure 4: Loading Process

The loading process of sksOpen is one of the key modules.
Figure 4 shows details of the loading process.

IV. VISUALIZATION OF SKSOPEN

For spatial object visualization, the system supports both
map object visualization and data list object visualization. T
visualization is dynamic and interactive.

Integrated with TerraFly map API and JavaScript, the
query results of spatial object can be shown on a much better
interface, including both map and object lists.

Figure 5: Visualization of a Hotels’ query results

Figure 5 shows visualization of a query of hotel
information in Miami. When users query, for example, search
for hotels of 4 stars or above and less than $200 per night near

downtown Miami, the visualization of results will be shown as
in Figure 5. The map on the top shows the location of the hotel
results. When the mouse hovers over a hotel location, a popup
appears with more detailed information. Below the map
visualization, there is a table of results hyperlinked to further
querying.

Figure 6: Interactive list Visualization

As shown in Figure 6, if the mouse hovers over any object,
more data appear as a layer over the page.

V. A CASE STUDY

In this section, we present a case study on using TerraFly
sksOpen for spatial data indexing, query, and visualization.

Figure 7: Visualization of Block-group Median Income query

John wants to analyze the relationship between median
income in locales and property values. John enters a TerraFly
page presenting visualization of median income data of U.S.
Census Block Groups, as shown in Figure 7. John notices a
place near Miami (zip code 33140) that has a lower median
average income than areas nearby. Then John wants to
examine the property values of this location.

Although he has access to a data set of all Florida
properties, it is too large to use directly. There are 10 million
records in the data set, and each record has 173 fields. He
decides to index the file by sksOpen, in order to search the
property information near the place.

read tuple
dump tuple into

object
put objects into

nodes

Sort object
nodes

create spatial
inverted file

Join object node
with inverted

file

finallize the
spatial inverted

file

Move the index
files and clean
the tmp files

Figure 8: Query result of properties data in an unfriendly database

By triggering a URL to put the dataset into the sksOpen
server, the loading process begins. With the help of
MapReduce, sksOpen finishes loading in a couple of minutes.
Then, John enters search conditions to finalize the query:
properties near 33140 with pricing lower than 1M. Instead of
the result shown in Figure 8, as most open index and query
tools offer, John got a map visualization shown in Figure 9.
John can change the query conditions to explore the data set as
he desires. All the 173 fields of the data set can be queried.

Figure 9: TerraFly Visualization of Query results

VI. RELATED WORK

Spatial object index, query, and visualization services, can
significantly improve the data analysis efficiently. TerraFly
sksOpen is one of the first systems open online that allows
users to index their own data, and provide both interactive map
and list visualization.

For the algorithm of processing Top-k Spatial Boolean
queries, the R-tree traversal method in our work is inspired by
Hjaltason and Samet’s incremental top-k nearest neighbor
algorithm using R-trees [37]. Performance improvements on
the original R-tree work have been proposed, e.g. R*-tree, R+-
tree, and Hilbert R-tree. Any of these variants can replace the
R-tree index used in the proposed hybrid spatial keyword index
without modifying our search algorithms. In information
retrieval, inverted files are arguably the most efficient index
structures for free-text search [38]. Our approach combines

modified versions of R-trees and inverted files to achieve
effective pruning of the search space [29], with an extra quad-
tree index to implement MapReduce.

VII. CONCLUSION

We have improved a distributed disk-resident hybrid index
for efficiently answering k-NN queries with Boolean
constraints on textual content with MapReduce. With this
algorithm, we have implemented efficient online indexing,
querying, and visualization system for Big Geospatial data, to
allow online users to index their own spatial data, and offer
query visualization. Our experimental study showed an
improved performance and scalability on large spatial datasets
over alternate methods, and a better interactive user interface.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
National Science Foundation under Grant Nos. MRI CNS-
0821345, MRI CNS-1126619, CREST HRD-0833093,
I/UCRC IIP-1338922, I/UCRC IIP-0829576, RAPID CNS-
1057661, RAPID IIS-1052625, MRI CNS-0959985, AIR IIP-
1237818, SBIR IIP-1330943, FRP IIP-1230661, III-Large IIS-
1213026, SBIR IIP-1058428, SBIR IIP-1026265, SBIR IIP-
1058606, SBIR IIP-1127251, SBIR IIP-1127412, SBIR IIP-
1118610, SBIR IIP-1230265, SBIR IIP-1256641, PIRE OISE-
0730065, HECURA CCF-0938045, CAREER CNS-1253944,
CAREER CNS-0747038, CSR CNS-1018262, HECURA
CCF-0937964, I/UCRC IIP-0934364. Includes material
licensed by TerraFly (http://terrafly.com) and the NSF CAKE
Center (http://cake.fiu.edu).

REFERENCES
[1] Rishe, N., Chen, S. C., Prabakar, N., Weiss, M. A., Sun, W.,

Selivonenko, A., & Davis-Chu, D. (2001, April). TerraFly: A high-
performance web-based digital library system for spatial data access. In
The 17th IEEE International Conference on Data Engineering (ICDE),
Heidelberg, Germany (pp. 17-19).

[2] Lu, Y., Zhang, M., Tao Li, Y. G., & Rishe, N. (2013). Online Spatial
Data Analysis and Visualization System. ACM KDD IDEA 2013,
pp.73-79

[3] Anick Jesdanun, AP (2008-01-18). "GPS adds dimension to online
photos". Retrieved 2008-01-19.

[4] Bogdan Carbunar, Mahmudur Rahman, Jaime Ballesteros, Naphtali
Rishe. “Private Location Centric Profiles for Online Social Networks.”
Proceedings of the 20th International Conference on Advances in
Geographic Information Systems (GIS 2012) November 6-9 2012.
Redondo Beach, California, pp. 458-461.

[5] N. Rishe, M. Gutierrez, J. Janvier. “A View from Above Without
Leaving the Ground.” NASA Spinoff 2004, pp 72-73.

[6] Bo Xu, Ouri Wolfson, Sam Chamberlain, Naphtali Rishe “Cost Based
Data Dissemination in Satellite Networks” Mobile Networks &
Applications, Vol. 7 (2002), No. 1, pp 49-66.

[7] Jaime Ballesteros, Mahmudur Rahman, Bogdan Carbunar, Naphtali
Rishe. “Safe Cities. A Participatory Sensing Approach”. 37th IEEE
Conference on Local Computer Networks (LCN), October 22-25, 2012.
pp. 626-634.

[8] Piotr Szczurek, Bo Xu, Ouri Wolfson, Jie Lin, Naphtali Rishe.
“Learning the relevance of parking information in VANETs”.
Proceedings of the seventh ACM international workshop on VehiculAr
InterNETworking. Chicago, Illinois. September 24, 2010. ISBN:978-1-
4503-0145-9. pp 81-82, September 2010.

[9] Piotr Szczurek, Bo Xu, Ouri Wolfson, Jie Lin, Naphtali Rishe.
“Prioritizing Travel Time Reports in Peer-to-Peer Traffic
Dissemination”. Proceedings of the IEEE International Symposium on

Communication Systems, Networks and Digital Signal Processing (7th
CSNDSP). Newcastle, U.K. July 21-23, 2010. pp 454-458.

[10] Daniel Ayala, Jie Lin, Ouri Wolfson, Naphtali Rishe, Masaaki Tanizaki.
“Communication Reduction for Floating Car Data-based Traffic
Information Systems”. Second International Conference on Advanced
Geographic Information Systems, Applications, and Services, pp 44-51,
February 10-16, 2010. Best Paper Award.

[11] N. Rishe. Database Design: The Semantic Modeling Approach.
McGraw-Hill, 1992, 528 pp.

[12] N. Rishe. Database Design Fundamentals: A Structured Introduction to
Databases and a Structured Database Design Methodology. Prentice-
Hall, Englewood Cliffs, NJ, 1988. 436 pp. (Also printed as International
Edition. Prentice-Hall International, Inc., 1988. 432 pp. ISBN 0-13-
197476-9.)

[13] Lester Melendez, Ouri Wolfson, Malek Adjouadi, Naphtali Rishe.
“Qualitative Analysis of Commercial Social Network Profiles”.
Handbook of Social Network Technologies and Applications. Borko
Furht, editor. Springer Verlag, 2010. pp 95-114.

[14] N. Rishe, M. Gutierrez, A. Selivonenko, S. Graham. “TerraFly: A Tool
for Visualizing and Dispensing Geospatial Data.” Imaging Notes,
Summer 2005, Vol. 20, No. 2. pp 22-23.

[15] Rishe, N., Sun, Y., Chekmasov, M., Selivonenko, A., & Graham, S.
(2004, December). System architecture for 3D terrafly online GIS. In
Multimedia Software Engineering, 2004. Proceedings. IEEE Sixth
International Symposium on (pp. 273-276). IEEE.

[16] Naphtali Rishe. U.S. Patent 6,795,825 “A Database Querying System
and Method” issued 2004.09.21.

[17] Naphtali Rishe. U.S. Patent 6,339,773 “Data extractor” issued
2002.01.15.

[18] Naphtali Rishe, Borko Furht, Malek Adjouadi, Armando Barreto,
Evgenia Cheremisina, Debra Davis, Ouri Wolfson, Nabil Adam, Yelena
Yesha, Yaacov Yesha. “Geospatial Data Management With TerraFly.”
Handbook of Data Intensive Computing. Furht and Escalante, eds.
Springer Verlag, 2011. pp.637-665.

[19] Naphtali Rishe. TerraAtlas: Central Washington, DC. The McDonald &
Woodward Publishing Company, Blacksburg, Virginia, 2006. ISBN 0-
939923-99-8.

[20] Rishe, N., Gutierrez, M., Selivonenko, A., & Graham, S. (2005).
TerraFly: A tool for visualizing and dispensing geospatial data. Imaging
Notes, 20(2), 22-23.

[21] Yi Zhang and Tao Li. DClusterE: A Framework for Evaluating and
Understanding Document Clustering Using Visualization. ACM
Transactions on Intelligent Systems and Technology, 3(2):24, 2012.

[22] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data
processing on large clusters. Communications of the ACM, 51(1), 107-
113.

[23] Zhengguo Sun, Tao Li, and Naphtali Rishe. “Large-Scale Matrix
Factorization using MapReduce.” Proceedings of the 2010 IEEE
International Conference on Data Mining Workshops. Sydney,
Australia. December 13, 2010. ISBN: 978-0-7695-4257-7. pp 1242-
1248.

[24] Jaime Ballesteros, Ariel Cary, Naphtali Rishe. “SpSJoin: Parallel Spatial
Similarity Joins.” Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information

Systems (ACM SIGSPATIAL GIS 2011). Chicago, Illinois, November
1-4, 2011. pp.87-95.

[25] Ariel Cary, Yaacov Yesha, Malek Adjouadi, Naphtali Rishe.
“Leveraging Cloud Computing in Geodatabase Management”.
Proceedings of the 2010 IEEE Conference on Granular Computing GrC-
2010. Silicon Valley, August 14-16, 2010. pp 73-78

[26] Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe.
“Experiences on Processing Spatial Data with MapReduce.” in Springer
Lecture Notes in Computer Science, Volume 5566/2009: Scientific and
Statistical Database Management. (Proceedings of the 21st International
Conference on Scientific and Statistical Database Management. New
Orleans, Louisiana, USA. June 1-5, 2009.) pp 302-319.

[27] Cover TM, Hart PE (1967). "Nearest neighbor pattern classification".
IEEE Transactions on Information Theory 13 (1): 21–27

[28] A. Prasad Sistla, Ouri Wolfson, Bo Xu, Naphtali Rishe. “Answer-Pairs
and Processing of Continuous Nearest-Neighbor Queries”. Proceedings
of the 7th ACM SIGACT/SIGMOBILE International Workshop on
Foundations of Mobile Computing (FOMC 2011). San Jose, California,
Jun 9, 2011. ACM, New York, NY. pp.16-24

[29] Cary, A., Wolfson, O., & Rishe, N. (2010, January). Efficient and
scalable method for processing top-k spatial boolean queries. In
Scientific and Statistical Database Management (pp. 87-95). Springer
Berlin Heidelberg.

[30] Shu-Ching Chen, Xinran Wang, Naphtali Rishe, and Mark Allen Weiss.
“A Web-Based Spatial Data Access System Using Semantic R-trees.”
Information Sciences: An International Journal. vol. 167, no. 1-4, pp 44-
61, December 2004.

[31] N. Rishe, A. Shaposhnikov. U.S. Patent 5,920,857 “Efficient Optimistic
Concurrency Control and Lazy Queries for Databases and B-Trees”
issued 1999.07.06.

[32] C. Yu, K.L. Liu, W. Meng, Z. Wu, N. Rishe. “A Methodology to
Retrieve Text Documents from Multiple Databases”. IEEE Transactions
on Knowledge and Data Engineering. Vol. 14 (2002) nbr 6 pp 1347-
1361.

[33] W. Meng, K. Liu, C. Yu, W. Wu, and N. Rishe. “A Statistical Method
for Estimating the Usefulness of Text Databases.” IEEE Transactions on
Knowledge and Data Engineering. Vol. 14 (2002) nbr 6 pp 1422-1437.

[34] Morton, G. M. (1966), A computer Oriented Geodetic Data Base; and a
New Technique in File Sequencing, Technical Report, Ottawa, Canada:
IBM Ltd.

[35] Bern, M.; Eppstein, D.; Teng, S.-H. (1999), "Parallel construction of
quadtrees and quality triangulations", Int. J. Comp. Geom. & Appl. 9
(6): 517–532

[36] Naphtali Rishe, Borko Furht, Malek Adjouadi, Armando Barreto, Debra
Davis, Ouri Wolfson, Yelena Yesha, Yaacov Yesha. “Semantic
Wrapper: Concise Semantic Querying of Legacy Relational Databases.”
Handbook of Data Intensive Computing. Furht and Escalante, eds.
Springer Verlag, 2011. pp.415-444.

[37] Guttman, A.: R-trees: A dynamic index structure for spatial searching.
In SIGMOD, pp. 47–57. ACM, New York, 1984.

[38] Zobel, J., Moffat, A.: Inverted files for text search engines. ACM
Comput. Surv. 38 (2), 2006.

