
• Rl SC processors 1n a 
massively parallel 
database machine 

Qiang Li, Naphtali Rishe and Doron Tal examine t.h~ app.lication of RISC, 
in the form of transputers, to a system combmmg h1gh-power 

processing and highly parallel 1/0 

The paper presents an application of RISC processors in a 
massively parallel database machine (LSDM). Depending 
on the configuration, the database machine can contain a 
few thousand processors, each of which is equipped with a 
disc drive. The database model used is the semantic binary 
model. The combination of the database model and the 
architecture of LSDM provides an environment where 
both massively parallel computation and massively parallel 
1/0 are possible. This paper analyses the characteristics of 
LSDM and argues that RISC processors are the best choice 
for the database machine. This machine is presented as 
further evidence of the potential of RISC architecture. 
Performance evaluation and simulation results based on 
the characteristics of lnmos transputers are also presented. 

microsystems database machines transputers 
interprocessor communication 

RISC architecture1
- 3 is a dramatic change from the 

traditional trend of improving processors by enriching 
their instruction sets. Many RISC machines have been 
builtH' and evaluated7

- 9 and, although still controversial, 
the advantages of RISC architectures have become 
evident in many applications. The smaller instruction set 
characterizing a RISC processor yields fast execution 
speed for the hardware instructions implemented, less 
hardware complexity and high reliability. Since RISC pro
cessors eliminate the microprogramming level, compiler 
designers are given more freedom to optimize the 
programming code. With the rapid development of 
parallel processing, where more and more simple pro
cessors are needed by the system, the advantage of RISC 
processors becomes more evident. 
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Since RISC processors in general have primitive 1/0 
capacities, their application to database machines has not 
been well studied. This paper discusses the application of 
RISC processors to a large-scale parallel database machine, 
namely the ' linear-throughput binary semantic database 
machine' (LSDM1D). Below we discuss the basic structure 
of LSDM and the basic philosophy behind its design. The 
interprocessor communication network and some per
formance evaluation data are presented. The principal 
reasons for choosing RISC are outlined and the per
formance of the system is evaluated. 

DATABASE MACHINE LSDM 

Hardware structure 

To meet the high demand on processing speed and 
throughput required by database machines, many hard
ware architectures have been built or proposed for 
database machines 11-1

8. As parallel processing and 
architectures make important impacts on the develop
ment of computer systems, the concept is being intro
duced into database machines. In most cases, a multi
processor database machine has a number of processors 
and a few large, high performance discs. The emphasis has 
been on the interprocessor networks. However, in 
practice, as the size of database systems and their 
functional complexity increase, system throughput is 
severely limited by the poor performance of the discs and 
1/0 channels. Very high computation power is achievable 
without great difficulty using current technology, but 
there has not been a major breakthrough in secondary 
storage for a long time. As systems employ more and more 
processors, the 1/0 bottleneck becomes more severe. 

To alleviate the problem, alterations were made to the 
processors-channels-d iscs formation of LSDM, and highly 
parallel I/O channels and secondary storage access power 
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were introduced. In addition, the 1/0 interfaces were 
made as simple as possible so that a large number of RISC 
processors could be utilized. 

The design of LSDM is based on the following 
observations 

• A database transaction can be partitioned into several 
subtasks, each showing a certain locality in terms of 
secondary storage access. 

• Data retrieved by a group of related secondary storage 
accesses needs substantial processor time to process. 

• In a system with a large number of simultaneous users, 
different queries tend to access different secondary 
storage areas. Although it is generally agreed that 80% 
of queries reference 20% of the data, heavily referenced 
data can still be distributed over different secondary 
storage areas. 

The basic structure of LSDM (see Figure 1) was based on 
these observations. It consists of many (a few hundred to 
a few thousand) fairly powerful processors, each equipped 
with local memory and a small capacity (e.g. 50 Mbyte) 
disc drive. The implication of the structure is that a large 
number of disc drives are used, which is a unique feature 
of this system. Since each processor is fairly powerful, it is 
able to process data retrieved by a sequence of secondary 
storage accesses, so the interprocessor communication 
load is a small percentage of the total I/O traffic. Massively 
parallel 1/0 operation by a large number of users is 
possible if the database model and its implementational 
data structures are properly chosen. 

Semantic binary database model 

The semantic binary database model19- 25 is, in the logical 
aspects of the representation of the application world, a 
variation of Abrial's binary model26.1t represents information 
about an application's world as a collection of elementary 
facts of two types: unary facts categorizing objects of the 
real world and binary facts establishing relationships of 
various kinds between pairs of objects. The purpose of 
the model is to provide a simple, natural, data-independent, 
flexible, and non-redundant specification of information. 

In this implementation, the entire database, including 
all indexing information, is represented by one logical 
coherent file partitioned into sufficiently small segments 
to allow storage on small discs. The number of processor
disc formations is sufficient to accommodate all segments. 
An important property of the implementation is that, for 
most queries, the necessary data is stored in a sequence 
of consecutive records. In most cases this localizes each 
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Figure 1. Structure of LSDM 
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simple query to a particular processor-disc unit. This helps 
to reduce significantly the traffic on the interprocessor 
communication network and also provides latitude for 
compiler optimization of register storage or local fast 
memory (on-chip) at the local processor level. 

INTERPROCESSOR COMMUNICATION 
NETWORK 

Since a large number of processors are employed, inter
processor communication is an important part of the 
database machine. By the nature of LSDM, both short 
messages (a few to a few hundred bytes) and large data 
sets (many kbytes) must pass through the interprocessor 
network. The small messages are mostly the control 
messages or the results of small queries and appear 
frequently. Thus rapid and steady delivery time is 
desirable. For the large data sets, communication band
width is a more important issue. A higher bandwidth 
means a higher delivery speed for large data sets. 

The hardware basis for the design of the network is the 
lnmos transpute~7 . Two types of interprocessor communi
cation networks can be based on the available hardware 
components' characteristics : a circuit-switching network 
and a packet-switching network. These have been 
studied extensively and a collection of research results is 
surveyed in Reference 28. 

Greater bandwidths can be achieved in a circuit
switching network, since a dedicated circuit is established 
between two processors whenever they need to communi
cate. However, circuit setup time becomes a disadvantage 
when frequent short messages are sent. Thus, circuit
switching networks are in general only suitable for use 
with the large data sets, where the data transmission time 
is much longer than the setup time. 

Packet-switching networks, which normally have a 
static hardware connection, offer faster responses. Data is 
transferred as packages with destination addresses. 
Packages are normally sent from one node to another 
until they reach their destination. A packet-switching 
network has the advantage of quick response time and 
flexibility, i.e. it can send messages to any node in the 
system at any time. The drawback of this type of network 
is the low effective bandwidth when large data sets are 
sent, making it suitable only for small and frequent 
messages. 

Since neither type of network could fully satisfy our 
requirements, a hybrid packet-switching and circuit
switching network was designed. The hybrid network, 
called Connect, is described here briefly; further details 
can be found in Reference 29. 

Figure 2 shows the structure of the network. Logically, 
the network has two main parts: the packet-switching 
network and the circuit-switching network. The packet
switching network also serves as the control network of 
the circuit-switching network. The solid circles in the 
figure are the processors which do the data processing 
work, and are called data processors. 

The packet-switching network consists of a number of 
communication processors connected in a tree-shaped 
topology. The top of the tree is not a single node; it is 
actually a hypercube network. Thus, the network can be 
viewed as a hypercube on the top with a subtree hanging 
out from each of the hypercube nodes. The operation of 
the network is straightforward. When a data processor 

Microprocessors and Microsystems 



Circuits' 
Control 
Processo~ 
(hnodes) 

Jnput 
c-links 

Input 
s-links 

Figure 2. 

r ----------------------- -- --- , 
Hypercube Networic 

Structure of the network Connect 

needs to send a short message to another data processor, 
it sends it with the destination address (the node number 
in the network). The messages will be sent through the 
network in a store-and-forward fashion. 

The circuit-switching network is a three-stage Clos 
network30

. When properly configured, for any given 
partition of the nodes into pairs, all the pairs can communi
cate simultaneously. When a data processor needs to 
send a large data set to another data processor, it first 
sends a circuit setup request to the hypercube network 
on top of the packet-switching network. The hypercube 
network is actually the control network of the circuit
switching network. The processor in the hypercube 
network will determine the best connection route for the 
requested connection and will send hardware signals to 
establish the connection. After the connection is set up, 
an acknowledgement message is sent to the data 
processor which made the request. The data processor 
can then communicate with its partner through the 
dedicated circuit. 

The hybrid network inherits the advantage of both 
types of networks while avoiding their disadvantages. A 
performance evaluation of the network is given below. 

USING RISC 

As mentioned above, Connect is a building block-based 
architecture. There are two types of building blocks in 
Connect: data processors and communication processors. 
The structure has made the functions of each processor 
more specific. The relative advantages and disadvantages 
of RISC and CISC processors are discussed below. 

Do we need CISC? 

CISC machines have been designed mainly to close the 
semantic gap between operations supported by high
level languages (H Lls) and those supported at the 
machine level. Using this approach, computer architects 
hoped to reduce compiler complexity, reduce memory 
size, and improve execution efficiency. Unfortunately, 
studies show31 that code generated by compilers is 
typically composed primarily of a few simple instructions. 
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This applies strongly to the LSDM. Neither the communi
cation processors nor the data processors in the LSDM 
need a large number of complex instructions. Thus, the 
potential advantage of supporting H LL is not compelling. 

The basic function of a communication processor is to 
receive data packets through its input channels and 
forward them to appropriate output channels. The 
receiving operations are done by DMA engines. Each 
processor moves the messages from buffer to buffer in its 
local memory, and calculates the proper output channel 
numbers. Therefore, the hardware instructions needed 
are mostly assignments (memory copy) and simple 
integer comparisons. These operations are always available 
on RISC processors. 

Owing to the implementation of the semantic binary 
model, the data stored in a disc drive appears to the 
related processor as a linear segment of sequential data. 
The logical operations are mainly table search and 
manipulation, and sorting and searching of non-floating
point data. In terms of machine language, the main 
operations are integer operations (e.g. comparison). 
Integer operations are well supported by most RISC 
processors. 

One logical operation which appears frequently in data
base operations is the character string comparison or 
search. The operation will typically be translated by the 
compiler into a stream of data fetching and comparison 
operations. Owing to the highly pipelined nature of RISC 
processors, character string operations can be done much 
more efficiently by a RISC processor than by a CISC 
processor. 

Why RISC? 

Various types of RISC implementation have been suggested; 
most incorporate certain characteristic features: 

• a small number of fairly simple instructions, most 
involving register-to-register operations, and a few 
load-store memory access operations 

• a relatively small on-chip control area 
• a large register set and single cycle execution of 

instructions 

A discussion follows of the way in which these features 
enhance the performance of the LSDM. 

On-chip area saved by RISC 

Since RISC processors have a small number of instructions 
and no microprogramming level, the control circuitry is 
much simpler than CISC processors (e.g. the RISC I chip 
devotes only about 6% of its chip area to the control 
unie). This makes available a greater area on the 
processor chip. Thus, other speed critical attributes can 
be accommodated on the chip to support the following: 

• lnterprocessor communication support. To support 
efficient interprocessor communication, on-chip com
munication channel DMA engines are needed. In 
general, the more independent channels a processor 
has, the smaller the diameter of the network and, thus, 
the higher the communication capacity. In addition, a 
built-in hardware router can increase the performance 
of the system significantly. RISC architecture provides 
area for building these supporting circuits. 
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• High speed cache memory. The most time-consuming 
database operations in memory are sorting and 
searching. The size of the code for these operations is 
normally small, so the code access normally shows a 
high locality. Moreover, the structure of implemen
tation of the semantic binary data model in the LSDM 
brings with it a very high locality factor (e.g. related data 
segments reside in physical proximity). Therefore, a 
high speed cache memory is highly desirable. With 
RISC architecture, a large amount of local or cache 
memory can be accommodated on the processor chip, 
with access speed close to that of the CPU registers. 
Using this approach, the LSDM processors may view 
their local or cache memory as a cache front-end of the 
local discs, and may perform read, write-through and 
local (temporary) write functions. All local read/write 
operations can be performed rapidly enough to keep 
pace with execution in the local processor, and 
efficient algorithms should capitalize on this feature. 
(In fact, the transputer has a fairly large on-chip cache 
memory.) 

• Large register set. The LSDM model of computation 
involves multiprogramming support. Each processor 
handles a fairly large number of tasks (data processors 
deal with transactions and queries simultaneously, 
while communication processors must respond to 
communication requests). This implies a need for fast 
and efficient context switching. The large set of 
registers typically available in RISC architectures is one 
way of meeting this demand. (It is interesting to note 
that the RISC-MIRIS has 2048 CPU general registers 
available to the user32

.) 

Small instruction set and simple instructions 

The fact that a RISC processor has a small set of simple 
instructions implies fewer bytes per instruction and no 
need for microprogramming technology, which leads to a 
higher execution speed (the instructions can be hardwired.) 

Avoiding disadvantages of RISC 

One fact working against RISC is its lack of support for 
floating-point operations. However, this is not the case in 
LSDM. A very small percentage of operations in typical 
databases involve floating-point operations. Had floating
point hardware support been built into the LSDM 
processors, it would remain largely idle. 

Another criticism of RISC is its longer program code 
(though on average the code is less than 30% longer than 
on CISC machines). On the LSDM, the local memory 
attached to each processor is designed mainly for storing 
data, i.e. the ratio between the memory for code and 
memory for data is very small. Thus, small variations in 
code size are not significant. 

Usually RISC processors can handle only primitive 1/0 
operations, which discourages its application in database 
machines. However, this is not the case with LSDM. Since 
the entire database is mapped into a sequential file and 
each processing unit holds one contiguous segment, the 
1/0 operations that each processor has to deal with are no 
longer complicated full scale 1/0 operations. Each 
processor deals with an exclusive disc drive on a request
and-answer basis. The basic 1/0 operation becomes 
simple read and write to a linear secondary storage space. 
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Other aspects 

Although conclusions cannot be reached until an imple
mentation or an extensive simulation is done, it does not 
seem to make sense to use CISC processors in LSDM. The 
utilization of the hardware used to support CISC archi
tecture would be very low. A final and somewhat less 
significant point is that the large number of processors 
comprising the LSDM further rai ses the significance of 
having fairly simple and small processors, in order to 
reduce overall cost. Thus, a RISC processor as a substitute 
for CISC can reduce the cost of the system greatly without 
performance degradation. In addition, since fewer 
electronic components are used, the system packaging, 
power supply and heat dissipation are much easier. 

PROTOTYPING AND SIMULATION 

A prototype of the communication network consisting of 
30 lnmos transputers and 6 disc drives has been built to 
prove the design concept and accuracy of the algorithms. 
The construction of a prototype of LSDM is underway. 

Unfortunately, the small-scale prototype does not 
provide much information on performance of the real
scale system and simulation must be used to estimate the 
performance. There are two performance issues: perfor
mance of the overall database machine and performance 
of the network. A reliable performance evaluation of the 
former cannot be obtained until a large-scale prototype or 
the real system is built. However, the latter can be 
approximated by simulation. The result of a simu lation of 
the network Connect appears below. 

The simulated system uses a modified transputer as 
the hardware model. The system consists of 960 data 
processors and 256 communication processors. It is 
assumed that the data processors have four communi
cation links and the communication processors have 
eight. All the communication links are serial links with an 
effective bandwidth of 0.8 Mbyte/s. The circuit-switching 
network is a three-stage Clos network, N(32,32,32), 
consisting of 96 lnmos C004 dynamic reconfigurable 
switches (32 X 32). The fo llowing assumptions are made 
for the data flow patterns: 

• The interval time between two messages initiated by a 
data processor is a random variable with an exponential 
distribution. 

• The message length follows a distribution with the 
density function 

f(x) = 0.6 1 e-1/2(1nx/a-J1/a)2 + 0.4,\e-).x (1) 
ax j 2TT 

which is a combination of a log-normal distribution and 
an exponential distribution. With the distribution, 60% 
of the messages are less than 100 byte long and have a 
near log-normal distribution with an average message 
length of 50 byte; messages which are more than 100 
byte long have a near exponential distribution with an 
average length of about 3000 byte. 

• The destinations of the messages from a data processor 
are uniformly distributed. 

Table 1 gives the performance data of the system under a 
total communication load of 120.1 Mbyte/s, and Figure 3 
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Table 1. Simulation results of Connect 

Attributes Long Short Total 
messages messages 

Message rate 39023 56544 95567 
(messages/s) 

Average message 3003 51 1256 
length (bytes) 

Throughput 117.2 2.9 120.1 
(Mbyte/s) 

Average delivery 6072 917 3022 
time (j.ls) 

Average circuit-setup 2101 
time (j.ls) 

F-test value 1553.2 1999.1 1 176.4 

shows the relationship between the system throughput 
and the message delivery time. 

To translate the Mbyte/s throughput into 'queries per 
second', a rough model for the system is used. In this 
implementation of the semantic binary model33, the 
entire database is stored as a logical sequential file. Each 
domain in a database schema is implicitly implemented 
as an 'index key'. For every key, there is a consecutive 
segment in the logical file where the data is stored in a 
sorted order of that key. It has been proven that each 
elementary query needs, on average, approximately one 
disc access. This translates into the worst case of one 
communication access to a processor-disc unit per 
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Figure 3. Throughput (delivery time). a, long messages; 
b, short messages 
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elementary query. The best case is that a simple query 
consisting of several elementary queries accesses only 
one processor-disc unit, in which case the communication 
access is much less than one per elementary query. 

For lack of a real implementation and its details, the 
following assumptions were made: on average, a simple 
query requires access to four different processor-disc 
units (i.e. the simple query consists of at least four 
elementary queries); also, each access to a processor-disc 
unit results in a data transfer between processors of, on 
average, 3 Kbyte, which is large enough for data such as a 
personnel record, an insurance policy, a personal credit 
record, etc. The number of short messages depends on 
the sequence in which the processor-disc units are 
accessed. Since additional short messages other than the 
query requests are sent (e.g. synchronization messages) 
there should be more short messages than large data sets. 
Assuming 1.5 short messages per processor-disc access, 
there are six short messages per simple query. Note that 
the assumptions are pessimistic, since a simple query 
requires, on average, two elementary queries. 

Under the system load of 120 Mbyte/s, if a simple 
query takes 10 interprocessor messages to solve, as 
assumed above, six short messages with an average length 
of 50 byte and four long messages with an average length 
of 3000 byte, the interprocessor communication network 
is able to transfer data for 9500 simple queries per second. 
If all the communication relating to a query is done 
serially, which is the worst case, the average additional 
delay for each query caused by using the parallel system is 
about 30 ms. This satisfies the design goal of about 5000 
simple queries per second with capacity to spare. Notice 
that 9500 queries per second is not the limit of the system: 
with a 40 ms per query delay, the system can transfer data 
for 13 700 simple queries per second. 

The above evaluation is based on a uniform random 
distribution of the messages. There are other cases that 
can be considered. When the communication patterns 
are patterns planned by the high-level applications 
instead of random patterns, the performance of the 
system will be improved in terms of delivery time and 
throughput. However, when the communication pattern 
is a nonuniform random distribution, the system perform
ance can degrade significantly. Further study is needed to 
evaluate the system under different degrees of biased 
distribution and to find mechanisms that can alleviate the 
potential bottleneck according to the characteristics of 
different types of applications. 

CONCLUSION 

The work described represents a promising application of 
RISC processors to a large-scale parallel database machine. 
The use of RISC processors makes it possible to combine 
high computing power and highly parallel 1/0 efficiently 
and cost effectively. 
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