
CONNECT - an architecture
for a highly parallel system
based on building blocks

Qiang Li and Naphtali Rishe* describe an approach to highly parallel
architectures using 'self-sufficient' building blocks with limited communication

power to build efficient large-scale parallel systems

Parallel processing and parallel architectures have become
a promising solution to the ever-increasing demands for
computational power. This paper describes an approach
which uses 'self-sufficient' building blocks with limited
communication power to build efficient large-scale parallel
systems. The architecture, ca lled CONNECT, provides a
medium granularity parallel processing environment with
the following properties: the parallelism is fairly high, the
interprocessor communication pattern is random with
both small messages and large data sets being sent
between processors, and a substantial amount of com­
putation is done by individual processors.

architectures parallel systems hybrid networks

Parallel processing and parallel architectures have become
a promising solution to the ever-increasing demands for
computational power. Numerous parallel architectures
have been built or proposed. Each of these architectures
is based on the philosophies, technologies and charac­
teristics of the intended applications. Some of the
architectures have made an important impact on the
research field at different points in time, e.g.,
the Connection Machine 1, TRAC2

•
3

, CEDAR4
, Ultra­

compute,S, MPP6, PASM7
, Hyperswitch8· 9, Cosmic

Cube10, CHiP1\ Non-Von12
, IBM RP313

, STARAN 1 4 etc.
Various architectural frameworks have been studied and
reportedJ, 15,16-18.

Many issues are involved in designing parallel archi ­
tectures. Those raised most often are performance- cost
relations, scales of parallelism, small versus large granularity,

School of Engineering, Department of Computer Engineering, Santa Clara
University, Santa Clara, CA 95053, USA
*School of Computer Science, Florida International University, Miami,
FL 33199, USA
Paper received: 6 july 1991

shared versus distributed memory, packet-switching
versus circuit-switching, bus-oriented versus point-to­
point connections, reliability and fault tolerance etc. Most
of the issues boil down to the conflict between the inter­
processor communication capacity of a system, the
limitations imposed by the level of technology and the
cost. Excellent analyses of these issues can be found in
References 3 and 19.

This paper describes an approach which uses 'self­
sufficient' building blocks with limited communication
power to build efficient large-scale parallel systems. By
'self-sufficient' we mean that each building block is a
complete computing unit. Each of the building blocks
that we use has a fairly powerful processor, a local
memory module and a limited number of point-to-point
communication links. The data routing between links of a
processor requires CPU intervention. The lnmos trans­
puter18 is a real-world model of these building blocks. As
implied by the nature of the building blocks, the
architecture is a distributed memory system.

It is generally agreed that parallel architectures are very
application dependent and that it is difficult to have a true
general-purpose parallel architecture. The parallel archi­
tectures based on building blocks have the advantage of
being relatively easy to tailor to suit particular applications
without involving VLSI chip design and processing. When
properly designed, this type of architecture can be cost
effective since the building blocks are often relatively
cheap to produce. On the other hand, such building
blocks have thei r limitations due to the fact that their
design must be based on a set of assumptions and trade­
offs so that they can be used in a wide range of
applications.

Theoretically, it is easy to build a large-scale system
with this type of building block since there is no direct
contention for memory or communication links and no
capacitive penalty as more processors are added to the
network. However, such systems tend to have large

0141 - 9331/92/020067-13 © 1992 Butterworth-Heinemann Ltd

Vol1 6 No 2 7992 67

communication radii due to the limited connectivity of
the individual processors. Further, since the communication
related tasks and the non-communication related tasks
share processors, they tend to interfere with each other.
These impose a severe limit on the effective parallelism
that can be built into a system. The problem becomes
especially significant when the system works in an
environment where the communication pattern is random
and both small messages as well as large data sets are to
be sent between processors.

The architecture described in this paper, called
CONNECT, challenges the limitations imposed by the
nature of the building blocks. The environment which
CONNECT is intended to provide is a medium granularity
parallel processing environment with the following
properties: the parallelism is fairly high (in the range of a
thousand); the interprocessor communication pattern is
random, with both small messages and large data sets
being sent between processors; and a substantial amount
of computation is to be done by individual processors.
The potential systems of such environments are parallel
database machines, parallel control systems with many
in lets and outlets, and interactive large-scale simulation
systems. In addition to the building blocks described
above, dynamically configurable passive switching
components which are compatible with the point-to­
point communication links are assumed to be available.

Like most large-scale multiprocessor systems, the heart
of CONNECT is its interprocessorcommunication network.
The goal of the network is to provide short and steady
delivery times for short messages and high effective
bandwidth for large data sets. The argument is that the
short messages are often control messages such as
synchronization signals, data locking and unlocking
signals, acknowledgements etc. A short and steady
delivery time for the control messages will have a direct
impact on the overall system performance. We emphasize
the steadiness of delivery time because a predictable
response to the control messages will facilitate an
efficient higher level design. On the other hand, a higher
effective bandwidth implies a faster delivery time for the
large data sets.

STRUCTURE OF THE INTERPROCESSOR
NETWORK

lnterprocessor networks are a sub-area of a more general
area, namely, interconnection networks. Interconnection
networks have been well studied and there is a rich
collection of literature on the subject. Reference 20
is a collection of many important works. Chapter 5
of Reference 3 gives analysis of, and comparison
between, many interconnection networks. A taxonomy
of interconnection networks and graphs is also given in
Reference 3.

Roughly speaking, interconnection networks can be
divided into two categories: the statically connected
packet-switching network and the dynamically con­
figurable circuit-switching network, each with its own pros
and cons.

The packet-switching network has the advantage of
fast response time to the sending processors and the
flexibility of being able to send messages to any node at
any time asynchronously. It is suitable for short and
frequent messages between processors. The main dis-

68

advantage of the packet-switching network is that when
a large amount of data is sent, the packaging and
depackaging time and the store-and-forward delay can be
very long. In addition, interference between the large data
package and the small messages makes the behaviour of
the small messages unpredictable.

On the other hand, the circuit-switching network has
the advantage of sending a large amount of data directly
to the destination at the hardware speed without
disturbing other nodes in the system. However, when the
switching components are passive, i.e. the switching is
done by external control signals instead of the messages
themselves, which is a common case in the hardware
environment that we assume, the circuit-switching
networks suffer from the circuit set-up time delay,
especially when short messages are sent.

To achieve our goal of satisfactory performance for
both the short messages and the large data sets without
excessive hardware cost, we have developed a hybrid of
the packet-switching network and the circuit-switching
network. Figure 1 shows the block structure of the
interprocessor network, which consists of a packet­
switching network, a circuit-switching network and a
network of circu it control processors. A cost analysis of
the network is given in a later section.

The basic idea is that when a short message is sent, it is
delivered through the packet-switching network, which
provides a quick delivery time; when a large data set is
sent, a circuit setup request is sent to the circuit
controllers through the packet-switching network, the
controllers set up a dedicated circuit between the
originator and the destination and the large data set can
be sent directly to the destination. Furthermore, since the
packet-switching network can have the luxury of sending
only very small messages, the requirements of the design
of the network and its components become less rigid , and
packet-switching network behaviour related to the short
messages becomes steady and predictable.

We now describe some details of different parts of the
network. To clarify the discussion, we call the processors
that do the actual data processing the 'data processors'
and the processors dedicated to communication tasks (in
the packet-switching network) the 'communication
processors'.

The packet-switching network

The packet-switching network is a 'tree-shaped' network
with the data processors as the leaves, as shown in Figure
2. To avoid a bottleneck, the 'root' of the tree is a small
hypercube network instead of a single node. In other
words, one can imagine a small hypercube with a subtree
hanging from each of its nodes with the data processors at
the bottom of the subtrees. The word 'subtree' is used in a
loose sense, since the whole structure is not really a tree.
As we will discuss later, the hypercube network is also the
control network of the circuit-switching network. The size
of the hypercube and the degree of the subtrees depend
on the size of the entire system and the characteristics of
the hardware components. The reason for selecting the
tree-shaped network is threefold: a tree network has a
reasonab le communication radius; it is natural for the
subtrees to concentrate the circuit setup requests from
the data processors to the circuit control processors at the
top of the subtrees; and the requirements of the
connectivity of a tree node are flexible.

Microprocessors and Microsystems

Circuits
Control
Signals

p-links

Network of control processors

Packet-Switching
Network

Circuit -Switching
Network

Figure 1. Block structure of CONNECT

The circuit-switching network

Data
Processors

The circuit-switching network is a three-stage Clos
network21 as shown in Figure 3. Each box in the figure is an
n x m crossbar switching component. There are three
columns of switches: the input switches, the output
switches and the intermediary switches. The links between
the switches are uni-directional. The leftmost column is
the output side of the data processors; the rightmost
column is the input side of the data processors. For
convenience, we call the links between the data processors
and the switches, and between the different columns of
switches, the ' input c-links', the 'output c-links', the 'input
s-links' and the 'output s-links', respectively, as marked in
Figure 3. A Clos network is denoted by N(m, n, r) if its
input, output and intermediary switches are n X m, m X n
and r X r, respectively.

The three-stage Clos network has been selected
because it can simultaneously connect many processors
without too many layers of switching components, which
could result in a long propagation time. Although the Clos
network is known not to have a routing algorithm local to
the switch components, it does not concern us since the
routing is done by the external control in our case, due to
the hardware constraints assumed.

r-------------------------------1
1 Hypercube Network 1
I I

-- ------ I
I

\
Data processors

Figure 2. The tree-shaped packet-switching network

Vo / 16 No 2 1992

Output side of
data processors

input
c-links

oxm

Input
switches

input
s-links

rxr

Intermediary
switches

output
s-links

Input side of
data processors

mxo

output
switches

output
c-link

Figure 3. The three-stage Clos network

Two important properties of an N(m, n, r) network are
given below, and the detailed proofs can be found in
References 21 and 22.

• If m > n, then for every partitioning of the set of all
processors into pairs, there exist connection configur­
ations where all the pairs talk simultaneously.

• When m > 2n - 1, the network is non-blocking, that is,
there is always a path available between any idle input
c-link and any idle output c-link, independent of the
connection history.

The network of the control processors

The circuit controller of the circuit-switching network is
responsible for selecting an available path for setting the
ci rcuit up, sending the hardware signals that actually set
the circuit up, keeping track of the current status of the
network, maintaining a queue of the connection requests
that are unable to be satisfied for the time being, etc.

There are two problems which can prevent the control
processors from achieving short circuit setup time and
high circuit setup rate. First, the large amount of requests
coming from the data processors have to converge to the
controller, which presents a communication bottleneck.
Second, the processing speed of the controllers must be
high enough to handle the flow of requests. To alleviate
this problem, a group of control processors is employed
for the task, applying the parallel processing concept to
the parallel architecture control itself. The circuit setup
requests will arrive at one of the control processors
depending on where the request is originated. A control
processor receiving a request wi ll process the request with
the cooperation of the other control processors. In this
way, the requests arrive through many independent
channels and are processed in parallel by many processors.
Thus the controller bottleneck can be significantly
relaxed.

As mentioned above, the control processors are linked
into a hypercube network which is also used as part of th_e
packet-switching network. Each node of the hypercube 1s
called an hnode. Figure 4 shows the relationship between
the hnodes and the other components of the network.

The data processors at the bottom of the subtrees have
not been drawn explicitly. Each switch is connected to a

69

Circuits'
Control
Processors
(hnodes)

lnput
c-lmlcs

Inpur
s-lmlcs

Output
s-bnks

r-- -------------- --- --- -- - - --,
Hypercube Nerwort 1

Figure 4. The connections between the hnodes and
other parts of the network

set of data processors. We say that a switch is connected
to a tree if the switch is connected to data processors in
the tree. Each hnode controls the switches connected to
its t ree and one or more intermediary switches. For
convenience, an intermediary switch was drawn together
with each pair of input and output switches. In practice,
the number of input and output switch pairs and the
number of intermediary switches are often not the
same.

ROUTING IN THE PACKET-SWITCHING
NETWORK

Routing in the packet-switching network is quite straight­
forward. There is a system-wide numbering for the data
processors. Each processor has a unique number and the
leaves of any tree have consecutive numbers. The hnodes
in the hypercube are numbered from 0 to 2M - 1, where
M is the dimension of the hypercube. Since each hnode is
the root of a tree, the trees are numbered accordingly.
There is a static map between each tree-number and the
range of data processor numbers in that tree. Each hnode
has a copy of that map. The communication processors in
the trees are called the tnodes. Each tnode controls d sub­
trees, where d is the degree of the tree. The sub-trees are
numbered from 1 to d.

There are two classes of messages travell ing in the
packet-switching network: data messages and control
messages. Data messages are the messages passed
between the data processors; all other messages are
considered control messages. Both types of messages
have the same header containing message-type, desti­
nation address and originator address, followed by the
content of the message. Data messages are simply
forwarded by the communication processors while the
control messages are interpreted by the control processors.

The routing algorithm has two parts, one for the
subtrees and another for the hypercube on top of the
subtrees. The routing in the subtrees is straightforward.
When a tnode receives a message, it will determine which
way to forward the message by checking the destination
address against a table and send the message accordingly.
A message with a negative address number (in the case of

70

a control message) is always sent to the parent. This
process involves searching a table of a few entries, which
can be done very quickly.

When an hnode receives a data message, it will send
the message to the destination subtree according to its
map. An hnode receiving a control message will process
the message, as we will discuss in later sections.

The routing algorithm used in the hypercube is the
'fixed routing algorithm'. When the messages are short
and the communication pattern is random, which is our
case, the fixed routing algorithm is very efficient. In
addition, a properly implemented fixed routing algorithm
is deadlock free; a description of the deadlock-free
implementation and a formal proof can be found in
References 23 and 24. Furthermore, the tree network is
inherently deadlock free. Therefore, the entire packet­
switching network is deadlock free.

High performance of the packet-switching network is
expected for the following reasons. First, only short
messages are sent through the packet-switching network.
Giving a bandwidth of the communication channels, the
messages have less chance to run into each other and
compete for a channel. Second, the network consists of
dedicated communication processors, so the messages
are processed promptly. Third, the packet-switching
network is inherently deadlock free, so there is no
deadlock prevention overhead.

In the following sections, we describe the control
mechanism of the circuit-switching network, which is a
more challenging problem: the parallel control of a Clos
network.

PARALLEL CONTROL OF THE THREE-STAGE
CLOS NETWORK

The status data and its representations

In this section, we describe the data structures and the
information held in each hypercube node for the purpose
of communication control. To clarify the discussion, a
data processor is sometimes called a 'leaf' since it is a leaf
of the subtree connected to the control node in question.
Also, when we say 'to allocate a data processor', it means
to allocate the link between the data processor and the
Clos network.

Two logically independent types of information are
kept by each control node: the status of the switch
components of the Clos network which is under the
control of the control node in question and the status of
each data processor (leaf) under the control of the control
node in question.

Status of the switching components

Each hnode keeps the following information about every
switch under its control :

• lnputVector: A bit vector representing the status of the
input s-links. The bit positions in the vector correspond
to the s-link numbers and a bit value of 1 indicates the
correspond ing input s-link is occupied .

• OutputVector: Similar to lnputVector except that it
represents the status of the output s-links.

Microprocessors and M icrosystems

• Relay Table: A table indicating the current connections
between the input s-links and the output s-links on the
intermediary switch.

An available path between an input switch and an
output switch can be found using the lnputVectors and
the OutputVectors. Suppose the vectors are 8 bits long
and a path is to be found between the input switch
controlled by h1 and the output switch controlled by h2 .

lnputVectorh, is 01001100, indicating that its links to the
intermediary switches 2, 3 and 6 are occupied, and
OutputVectorh

2
is 11001010, indicating that its links to the

intermediary switches 1, 3, 6 and 7 are occupied. Let

V = lnputVectorh, OR OutputVectorh
2

= 11001110

Then the O-bit positions of V are the intermediary switch
numbers that are available. In this case, they are 0, 4
and 5.

Status of each of the data processors

An hnode keeps track of the status of each of its leaves.
When considering the control algorithm, it should be
clear that a leaf of an hnode is a logical entity represented
by a set of data structures on the hnode. The following
describes some ofthe data structures and the information
that they represent. More details can be found in
Reference 25.

• Status: Status of the leaf in terms of its connection to
the Clos network. The status can be 'idle' or 'busy'.
Their meanings are indicated by their names.

• WaitingQueue: Holds the Connection Requests at the
hnode for the leaf in question. The requests can come
from other data processors in the system or be initiated
by the leaf itself.

The circuit control algorithm

We now describe the process of setting up a circuit. To
simplify our discussion, let us assume the circuit-switching
network is a non-blocking network, i.e., as long as the two
processors to be connected are not currently connected
to something else, there is a path available between them.
We will discuss other cases later.

Suppose the circuit-setup request is originated by a
data processor, orig, and the destination data processor is
dest. Let h0 be the root of the tree that contains orig, and
hd be the root of the tree that contains dest. Note that
orig, h0 , hd and dest are all defined in terms of a particular
circuit setup request. Figure 5 shows a flow diagram of the
process of setting-up a circuit. The messages that flow
between the hnodes for the purpose of setting-up a
circuit have the general form:

I MT I DA I OA 1 ... Other information I

where MT, DA and OA stand for message-type, destination
address and originator address, respectively. Additional
information is contained in the message depending on
the message-type, which will be described individually.

For convenience, the leaves of an hnode are not
addressed by their processor numbers, instead they are
addressed by their leaf numbers. The leaf numbers are a
sequence of unique numbers local to an hnode starting

Vo/16 No 2 1992

Circuit
Serup
Request
(1)

Input
c-link

Input
switches

Connection
Request
(2)

Intermediary c:J
switches

Output CJ
switches

ACK
(4)

D

Coooectioo
Order (3)

Figure 5. A process of setting-up a circuit

from 0. The leaf number of a leaf (data processor) under a
particular hnode can be easily calculated from its
processor number under a given system configuration.
Therefore, the addresses of a leaf contained in the
messages flowing in the control hypercube normally
consist two parts: the number of the hypercube node
which controls the leaf called cube number and the leaf
number.

To make it easier to understand, we shall describe a
process of setting up one connection circu it. Figure 5 will
serve as a graphical aid for the discussion.

The process is described by the following numbered
steps and the numbers are consistent with the numbers
marked in Figure 5.

(1) Starting from the leaf orig, a circuit-setup request
message (CSR) will be sent up the tree to the control
hypercube node h0 •

(2) Upon receiving the CSR, a 'connection request' (CR)
message will be constructed; if the status of the
originator leaf is busy, the connecting process will
be suspended by putting the CR message into the
WaitingQueue and h 0 will continue to handle other
messages. The suspended process will resume
when the CR is taken out of the queue. If the status
of the leaf is idle, h0 will set it to busy, and determine
the position of hd in the hypercube, and send the
CR to hd . The connection request has the following
format:

(This means that the message type MT is 'CR', the
destination address field DA contains the pair
(hd, /d), and so on.)

(3) Upon receiving the CR, if the status of the desti­
nation leaf is busy, the process will be suspended by
putting the CR message into WaitingQueue of the
leaf and the control node hd is released to handle
other messages. The process resumes from this
point when the CR is eventually taken out of
WaitingQueue.

71

If the status of the destination leaf is idle, hd will
set it to busy and check the lnputVector of h0

against its own OutputVectorto find an intermed_iary
switch which has free links to connect the sw1tch
controlled by h0 to the one by hd . Let ms indicate
the intermediary switch selected by hd and hm
indicate the hnode which controls ms. A 'connection
order' (CO) is sent from hd to hm . The connection
order has the following format:

Switch Number (ms) Request Originator (h 0 , 10)

In the meantime, hardware signals are sent to the
output switch to connect the output c-link and the
output s-link connected to ms. Notice that h0 , hd
and hm are not necessarily distinct, e.g. they can
actually be the same hnode. . .

(4) Upon receiving the connection order, hiT! wil_l ven_fy
the validity of the connection by checkmg mto 1ts
RelayTable. If the connection is valid, i.e. the li_nks
needed by the connection are not already occup1ed,
then hardware signals will be sent toms to connect
the input s-link and the output s-link. Meanwhile, an
'ack message' (ACK) is sent to h0 indicating that the
requested circuit has been set up. It is possible for a
connection to be invalid when the CO message
arrives. This is called a 'race condition' and we will
discuss this case in a later section.

The ACK message has the following format:

Switch number (ms) Request Destination (hd, /d)

(5) Having received the ACK message, h 0 will send
signals to the input switch to connect the input
c-link to the input s-link which links to the inter­
mediary switch indicated by ms. A 'ready message'
(READY) is then sent to the originating data processor,
orig. In the meantime, the lnputVector is modified.

(6) Upon receiving the acknowledgement (READY)
from the control processor network, the data
processor orig will send its data through th~ ci~cuit,
which effectively initiates the commun1cat1ons.
Thereafter, the two connected data processors can
communicate in any way they choose.

(7) When orig decides to release the circuit, it sends ?n
'originator disconnect circuit request' (ODCR) to 1ts
control node h0 •

(8) h will in turn send an 'intermediate disconnect
circuit request' (IOCR) to hm. The lnputVector of h0

will be modified to release the related s-link. Also, if
WaitingQueue is empty at this point, the status of
the leaf is set to idle. Otherwise, the first CR message
will be taken out of the queue and the connection
process for that CR message will be continued. The
IOCR have the following format:

MT (IOCR) I DA (hm) OA (h o, fo) I

Switch number (ms) Request Destination (hd, /d)j

(9) Upon receiving an IOCR message, hm will send a
'destination disconnect circuit request' (DDCR) to
hd and the RelayTable of hm will be modified to
release the related links. The DDCR message has the
following format:

72

Switch number (ms) Request originator (h 0 , 10)

(1 0) Upon receiving a DDCR message, hd will modify its
OutputVector to release the related link. If Waiting­
Queue is empty, the status of the leaf will be set t?
idle. Otherwise, the first CR message in the queue IS
activated.

Many such processes can be carried out simultaneously.
They are independent of each other ~xcep_t when two
connections need the same processor, m wh1ch case one
of them has to wait.

In the following sections, we discuss some details
related to the control algorithm.

Deadlock and its elimination

Two data processors are involved in setting up a
connection circuit, and the c-links to both processors
have to be available before the connect ion can be
established. In general, they are not always available at the
same time. Therefore, we have to allocate (hold) the one
that becomes available first and wait for the other. Since
the connection patterns and times are random, there can
be a hold-and-wait cycle as shown in Figure 6. Since the
connections are non-preemptive and the links are non­
sharable between connections, Figure 6 actually shows a
deadlock situation.

To solve the problem, the algorithm is designed so that
one always allocates the data processor with a small id
number and waits for the one with a greater id number. In
this way, it is impossible to have a ci rcular ~aiting
situation, and so the deadlock is prevented. The Imple­
mentation of the solution is that when a connection is
from a leaf of a smaller number to a leaf of a greater
number, the connection request is marked as an 'up­
going' CR. An up-going CR will allocate the originating leaf
on h 0 first by setting its status to busy and then go to hd to
wait for the destination leaf. On the other hand, a non-up­
going CR will go to hd first to allocate the destination leaf
and then the process will waitforthe originating leaf when
the ACK message arrives at h 0 • In either way, the leaf with
a smaller number is allocated first. The proof of the
correctness of this solution is trivial.

CollDection I

Holding

Holding

Connection 3
L~af3 Holding

ColliJectioc 2

Figure 6. A deadlock situation

Microprocessors and Microsystems

Selection of the intermediary control mode

As described earlier, three control hypercube nodes have
to be involved to establish one connection, namely, h0 ,

hd and h m. The h 0 and hd are decided by the location of
the originator and the destination, but hm has to be
selected by the control algorithm. The selection strategy
can have direct impact on the speed of the circuit-setup
process. The basic goal is to minimize the distance from
hd to h 0 through hm.

The problem can be generalized to a general hyper­
cube allocation problem as the following. Let d(n1 , n2 , n3)

be the shortest distance from n1 to n2 through n3 and
f(n1 , n2 , n3) be a Boolean function which yields a true
value if the three arguments meet certain conditions.
Given two nodes in the hypercube, n1 and n2, find the
third node, n3 , so that d(n1 , n2 , n3) is minimal and
f(n 1 , n2 , n3) is true.

A selection strategy and an algorithm implementing the
strategy, which is similar to the feedback shift register
technique, have been developed2

&. A simulation has
shown that utilizing the strategy can reduce the traffic in
the control hypercube by 20% compared to the case
where the selection is done in the ascending order of the
id numbers of the nodes starting from hd.

Race conditions

In some situations, a problem can occur in the above
algorithm: h0 could send a connection request with an
outdated lnputVector if there is any connection request
previously sent from h0 which has not been acknow­
ledged. Therefore, the hds of two different connections
originated from the same h0 could select the same
intermediary switch, resulting in a conflict over the input
s-link which connects h0 to the selected intermediary
switch. This is called the 'race condition' and is illustrated
in Figure 7.

The situation is resolved as follows. If hm detects that a
new connection requires a link which is already in use by
checking its RelayTable, a CANCEL message will be sent
back to hd, and hd will try to find another available
intermediary switch. The node hd also counts how many
CANCEL messages have been received for a particular
connection. If the count exceeds a limit, say three, the
lnputVector of h0 of the connection is most likely too
outdated, and a RESEND message will be sent back to h0

of the connection and h0 will start the whole process over
again with the current value of its lnputVector.

This solution requires some extra traffic in the system
and some overhead time for the connection involved.
However, a simulation has shown that the probability of
the race condition occurring is very low (less than 0.001

Figure 7. An occurrence of the race condition

Vo/ 16 No 2 1992

with the assumed communication pattern.) Therefore the
above activity happens infrequently, and thus the total
overhead is negligible.

When a connection is blocked

In general, the Clos network can be a blocking network.
For example, it is often the case that the switch
component has the same number of input and output
links, say x links on each side. The most efficient Clos
network that can be built based on the switch components
is N(x, x, x), which is a blocking network. That is, it could
happen that two idle processors cannot find a path
between them. A simulation on an N(32, 32, 32) Clos
network shows that under a random connection pattern,
the chance of the blocking situation occurring is very low
(less than 0.0001.) Therefore, the blocking situation can
be simply resolved by a timed re-try or wait until a
connection from the h 0 is relinquished without creating
much delay and traffic.

ENHANCEMENT TO THE DESIGN

Several modifications have been made to the original
design to enhance the architecture. The enhancements
are made mainly based on the consideration of per­
formance and the reliability of the system.

Separation of the control hypercube from the
packet-switching network

The hypercube on the top of the subtrees is the critical
part of the system. Its speed has a direct impact on the
performance of both the packet-switching network and
the circuit-switching network. Also, when a hypercube
node fails, it is difficult to keep the system alive without
losing performance significantly. To avoid the problem,
another hypercube is added to the system which is
connected to the system exactly as the original one.
Figure 8 shows the connections. Since the nodes of the
hypercube are a small portion of the processors in the
system, the extra hardware cost is not high. Under normal
operational conditions, one hypercube, called the control
hypercube, controls the Clos network, and the other,

Control Hypercube

Figure 8. Using two h ypercubes

73

called the communication hypercube, is in charge of
passing messages between the subtrees.

Since less traffic flows through each hypercube, the
maximum throughput of the packet switching network is
improved. Also, the speed of the circuit setup is increased
and is less sensitive to the traffic load of the packet­
switching network.

Furthermore, fault tolerance of the system will be
improved by using the two disjoint hypercubes. We will
discuss this issue later.

Data processors sharing circuit-switching
network links

The data processors are partitioned into pairs and the two
processors in a pair are connected through one link. This
requires each data processor to have one more link, which
is easy to satisfy since the requirement for the connectivity
of the data processors is very low.

There are two major functions of the additional
connection. First, it provides an alternative channel for a
data processor through the circu it-switch ing network.
Figure 9 shows an example. Processors a and b are
partners. When processor a is connected to processor c
through the network, another connection to processor a,
say from processor d, can be made to processor band the
connection can be relayed through processor b if b is not
connected to any one at the time. Since there is only one
step relay and the data can be transmitted in small
packets, the store-and-forward delay is expected to be
low. There is a computation overhead for the relaying
processor. However, since a processor only relays for one
other processor, the overhead is low. Statistically, when a
totally random communication pattern is present, the
benefit of using the additional connection is not significant.
A simulation shows that the additional connection
increases the effective bandwidth of the system under a
random communication pattern by 15%. The additional
connection plays a more important role when processor a
is connected to another processor for the transmission of
a very large quantity of data; the alternative route will
enable processor a to transmit large data sets to the other
processors simultaneously. When the higher level appli-

To packet-switching network

Processor a

Connect to
processor c

Clos network

Processor b

Connect to
processor d

Figure 9. The additional link between data processors

74

cation can be designed in a way that the two processors
are closely logically related, which is often possible, the
additional link can carry a significant portion of the traffic.
In addition, the additional link can provide a local small
granularity parallelism without too much additional
hardware.

The second function of the additional link is related to
the improvement of reliability, which will be discussed
later.

FAULT TOLERANCE

Hardware redundancy

Like most systems with built-in redundancy, CONNECT
also provides high reliability. We now analyse several parts
of the system.

In the enhanced packet-switching network, there are
two hypercubes on the top of the subtrees and they are
totally symmetric and disjoint. When one of the hyper­
cubes is down, e.g. a node of the control hypercube
malfunctions, the function of the failed hypercube can be
easily switched to another hypercube without losing
performance significantly.

Also, in the enhanced packet-switching network,
additional connection is provided between data pro­
cessors. The processors can be partitioned so that there is
always an additional link between the boundary of two
subtrees. In case the root of the subtree fails, the
messages can still flow out of the subtree through the
additional links to other subtrees and then climb to the
top of the subtrees if necessary. Thus, the failure of one of
the roots will not stop the system. In terms of performance
under such circumstances, it should be acceptable
bearing in mind that only small messages flow through
those links. A drawback of this is that since the processors
on the boundary of the subtrees are not topologically
symmetric to the roots of the subtrees and the routing
through the connection between data processors is not
part of the normal routing algorithm, the software solution
will not come naturally and will slow down a part of the
system. Nevertheless, the system can be kept al ive.

Furthermore, if the hardware permits, all the data
processors can be linked into a big ring, which is similar to
the X-tree27

• In that case, the routing in the emergency
situation is quite straightforward. A message has simply to
go through the ring until it gets out of the subtree with the
troubled root.

We now discuss the situation of the circuit-switching
network, when a path of the circuit-switching network
fails, i.e., a data processor finds itself unable to send a
message through the circuit-switching network. There are
two things it can do. First, an alternative connection can
be established through a neighbour and the messages can
be relayed to the destination. Second, the messages can
be sent through the packet-switching network for the
time being. Although the performance under these
circumstances will be worse than normal, the system can
be kept alive until the problem is fixed.

If an intermediary switch component fails, the effect to
the system is almost negligible since there are many of
them and they are all symmetric. On the other hand, if an
input or output switch component fails, the situation will
be worse. The data processors connected to the failed
switch will all have to divert their long messages through

Microprocessors and Microsystems

the packet-switching network, which could cause a
significant system-wide slow down. Thus, the input and
output switch components are the weak spots of the
architecture.

In summary, the system can stay alive when any one of
the components fails, though the performance may
suffer. The difference between the effects of different
failures lies in the amount of performance reduction
caused by the failure.

Monitoring the system

Several data processors can be assigned the duty of
monitoring the system. Each processor of the system can
send messages to the monitors periodically to indicate
that it is functioning normally. When a monitor notices
unexpected silence from some nodes or subtrees that
may have got disconnected from the packet-switching
network, the monitor will send a 'how are you doing?'
message through the packet-switching network to such
node(s). If the node(s) fails to respond for a timeout
period, the monitor will set up a temporary circuit to the
node(s) through which the status of the node(s) can be
obtained and the data from the node(s) can be relayed by
the monitors.

PERFORMANCE EVALUATION OF CONNECT

To have a realistic performance evaluation, the lnmos
transputer is used as the hardware model of the building
blocks. The configuration under investigation has 1216
processors, 960 data processors and 256 communication
processors. It is assumed that the data processors have
four communication links and the communication pro­
cessors have seven communication links.

The circuit-switching network is a three-stage Clos
network, N(32, 32, 32), consisting of 96 lnmos C004
dynamic reconfigurable switches (32 X 32).

All the communication links are serial links, including
those in the circuit-switching network, and have a speed
of 20 Mbit s- 1

. The experiments show that the effective
one-directional transfer rate is 0.8 Mbyte s- 1

. The links to
the T800 transputer processors have a much higher
bandwidth due to overlapping of data transmission and
acknowledgement, but we choose to use a conservative
number.

A simulation has been developed to evaluate the
dynamic performance of the interprocessor communi­
cation network. The enhanced version, with two separate
hypercubes on the top of the subtrees, is used. Figure 10
shows the connections of a subtree. The root has five
subtrees and each of the second level nodes has six
children. Each subtree has a total of 30 data processors.
The hypercubes are five-dimensional , so there are 32 such
subtrees.

The circuit-switching network can provide a link
between any pair of data processors. Depending on the
dynamic connection sequence, the number of pairs
which can be linked simultaneously varies from 240
(480 processors) to the best case of 480 (al l the 960
processors). Translated into the data transfer rate, it is from
384 Mbyte s- 1 to 768 Mbyte s- 1

. Bearing in mind that this
is a static figure, the statistical dynamic performance is

Vo / 16 No 2 1992

Passing Cootrol
Hypercube Hypercube

Data processo~

Figure 10. A subtree of the simulated system

expected to be much lower than the figures indicated
here due to competition for the same nodes.

The capacity of the packet-switching network depends
on the roots of the subtrees. Theoretically, the throughput
is 32 * 0.8 = 25 .6 Mbyte s- 1

. In practice, the throughput
has to be kept much lower than the full capacity, since the
average data transfer time will increase dramatically when
the system reaches its full capacity - due to the channel
contention. The following are some important assumptions
made by the simulation.

• The communication links are assumed to be driven by
DMA, i.e. all links in both directions can operate
simultaneously.

• The message routing between the links on a
processor is done by the CPU. The time taken by the
CPU to route a message is assumed to be a uniform
random number with an average of 30 ps.

• The links connected to a processor share a common
32-bit bus with the processor. The effect of the
contention is implemented as an overall reduction of
the link speed by a factor of 0.83 ; bearing in mind the
speed of the bus is 20 to 40 times faster than that of the
links, this is a conservative assumption.

In addition to the hardware system assumptions, the
following assumptions are made for the data flow
patterns:

(1) The interval time between two messages initiated by
a data processor is a random variable with an
exponential distribution.

(2) The message length follows a distribution with the
density function

f(x) = 0.6 __ 1_ e - (ln x- iJ)/2a2 + 0.4A.e-.l.x
ax/ 2rr

which is a combination of a log-normal distribution
and an exponential distribution. With this distribution,
60% of the messages are less than 1 00 bytes long and
have a near log- normal distribution with an average
message length of 50 bytes, and the messages which
are more than 1 00 bytes long have a near exponential
distribution with an average length of about 3000
bytes. This message size distribution was derived
from an application of CONNECT to a parallel
database machine25

.

(3) The destinations of the messages from a data
processor are uniformly distributed.

Under the given distributions, Figures 1 1 a and 1 1 b
show the relation between the throughput and the

75

Dt:li vt: ry time (m .t)

14

12

10

'----'----'-----'-----'----'-----L----'----'-----'------'- Throughput

20 40 60 80 100 120 140 160 180 200 (Megaby tes)

(a) Long messages (average 3000 bytes long)

Dehvery time {~t .l)

1800

1500

Hypercube

1200

900

600

300

'----'---'----'----'---'---'----'---'-----'----'- T hrou gh put

20 40 60 80 100 120 140 160 180 200 (Megabytes)

(b) Short messages (average 50 bytes long)

Figure 11. Throughput versus delivery time

message delivery time for the long messages and the short
messages, respectively. The curves marked with 'hyper­
cube' will be discussed later.

In the case of long messages, the delivery time climbs
quickly after the system load exceeds 170 Mbyte s- 1

.

Since the bandwidth of the circuit-switching network is a
constant once a circuit is set up, the curve in Figure 11 a
mainly reflects the change of the circuit setup time.
Notice that the increase of circuit setup time is not due to
the falling of the speed of the ci rcuit setup network, but
mainly because of the dynamic property of the Clos
network. When the system load increases, the waiting
time for the connection of a data processor to become
available increases in a Clos network. Under the given
distributions, the system shows a practical throughput
limit of 200 Mbyte s- 1

•

For short messages, the delivery time is from a little less
than 900 JlS to 970 JlS throughout the throughput range of
a few Mbytes to 200 Mbyte. This is the deliberate result of
one of our design goals. The short messages are mostly
control messages such as synchronization signals, data
locking and unlocking signals, acknowledgements etc.
The delivery speed of those messages has a direct impact
on the system performance. Therefore, we want them to
be as small as possible and as steady as possible. To show
the steadiness, an important parameter that we are
looking for is the correlation between the size of
messages and their delivery time. A close correlation
between the sizes of the messages and their delivery
times indicates that the message size and its t ravel time
have a nearly linear relation and the delivery time for a
given length of messages has a small standard
derivation. This provides stable and predictable behaviour

76

for the short messages, which is important in the design of
efficient higher level applications. The simulation results
indicate that short messages have a very high (message
size)-(delivery time) correlation, i.e. 0.97 throughout the
throughput range of 6 to 200 Mbytes. In Figure 12a the
sizes and delivery times of about 1000 short messages
from the simu lation results are plotted .

In an attempt to have a performance comparison with
other architectures, we select the hypercube architecture
as a benchmark since it is well accepted as a very strong
multiprocessor architecture framework.

A simulation was implemented for a hypothetical
1 0-dimensional hypercube system with 1024 processors,
close to the number of data processors in the case
simu lated for CONNECT.

Most of the simulation assumptions are the same as for
CONNECT. The processors are assumed to have the same
characteristics as transputers except that there are 11
communication links on each processor, which is more
than what we need in CONNECT.

The messages are passed in the hypercube in a store­
and-forward fashion using node buffers. The E-cube
routing with a route-shortest-first adaptive routing algorithm
is used.

The processors in the hypercube cannot be assumed
to be dedicated communication processors. However,
the load of the non-communication related computation
on each of the hypercube processors is assumed to be
very low, i.e. 17% of CPU utilization. Choosing this
utilization, we are comparing CONNECT to the near best
case of the hypercube in question.

Notice that the comparison described here is far from
exhaustive. There are many different types of hypercube
architectures8

•
9

•
17

. Comparisons to other architectures

3000

2400

1800

1200

600

Length

10 20 30 40 50 60 70 80 90 100 (Byles)

(a) CONNECT (1000 samples)

Del ivery time (~t-')

3000

2400

1800

1200

600

60 points (average 4473 1'.1) beyond this level

·.··
.· .. ;;1:: ... ·:·: ···· .

·.··::!:: ;::;::_ ;:.·: .. ::.:: :: ;:.::. ::.:·:.:::::.::,:·_·: .···.

Length

10 20 30 40 50 60 70 80 90 100 (Bytes)

(b) Hypercube (1000 samples)

Figure 12. Sample message delivery times

Microprocessors and Microsystems

may also be useful. More extensive comparisons in
different perspectives shou ld be conducted.

Figures 11 a and 11 b show comparisons of the
(throughput)-(delivery time) between CONNECT and the
hypercube in the case of short and long messages,
respectively. Under a system load of 120 Mbyte s - 1

, the
average delivery time of CONNECT is 40% less than that
ofthe hypercube for long messages, and 21% less for short
messages. For short messages, the delivery times of the
systems are very similar. However, the hypercube is more
sensitive to the system load. Also, it is sensitive to the CPU
load for non-communication related computation, which
is not shown in the diagrams. The sensitivity is caused by
the interference between the long messages and the short
messages, which also causes the problem of non-stability
of the delivery time for short messages, as we will discuss
below.

Figures 12a and 12b depict 1000 short messages on the
plain of (message size)-(delivery time) for the hypercube
and CONNECT, respectively. The data were obtained
under a system load of 120 Mbyte s-1

. It is clear that
CONNECT has a much more stable delivery time. Linear
regression analysis between message size and delivery
time shows a mean square error of 28 816 f.1S

2 for
CONNECT and 1 789 561 f.1S

2 for the hypercube; the
latter is 62 times higher. The reason is that in CONNECT
the short messages and long messages travel through
different parts of the network, and there is very little
interference between them, which is not the case for the
hypercube. In fact, for any packet-switching network in
which both long messages and short messages travel, the
(message size)-(delivery time) correlation for the short
messages is expected to be low and to grow worse when
the system traffic load increases.

DISCUSSION ON COST

Since CONNECT uses a hybrid network, it seems to be
more complex than a single network system. A cost
analysis is needed. In general, cost analysis is a difficult
issue which involves many factors such as overall design
criteria, constraints etc.

In a circuit-switching network comprising active
switching components, the circuit is set up by individual
switching components according to the routing infor­
mation contained in the message, and there is no need for
an external control mechanism. Examples are the Hyfer­
switch of NASA/JPL8· 9 and the Wormhole network1

.

However, in our design, passive switching components
(the connections are set by external control signals) are
assumed for the following reasons. To avoid long
propagation time, we want the number of stages of the
circu it-switching network to be as small as possible as in
the Clos network which can connect large numbers of
processors with a small number of stages (three stages in
our case.) However, the Clos network does not have a
routing algorithm local to each switch component.
Hence, it is difficult to build routing logic into the switch
components. Furthermore, since the overall design is
based on building blocks, it is desirable to use general
purpose programmable switches control led by external
signals. Therefore, an external control mechanism is
needed, a control network in our case.

Besides the small number of network stages, we gain
other advantages by using two networks. By sending short

Vol 16 No 2 1992

and long messages through different networks, the
performance is improved, especially the stability of short
messages. Also, the existence of two networks provides a
higher reliability.

While it is difficult to have absolute figures to judge the
cost o r compare to other systems, we make the following
observations.

• Since the Clos network is a passive network, the
switching components are much simpler than those
used in an active network. Thus, the cost of the
switching components should be much lower.

• The requirement of the packet-switching network is
less than that of a regular full scale network, since it
only passes short messages . The network is simplified
significantly compared to a full scale network. This
implies a much lower cost.

• In terms of communication lines, fo r a configuration of
1024 processors, there are 4096 unidirectional single
communication lines in the Clos network and about
3000 such lines in the packet-switching network; a
total of about 7000 lines. A hypercube network with
the same number of processors would require about
10 000 such lines.

• Since the network in CONNECT can be built out of
many independent modules, such as a subtree, a small
hypercube and the Clos network, the cost should be
much less than that of bu ilding a complete network al l
together.

• CONNECT requires a number of additional commun i­
cation processors, which is a cost not present in
networks with active switching components.

Combining the pros and cons discussed above, our
feeling is that the cost of CONNECT should be comparable
to, or less than, a single network of a comparable
complexity.

CONCLUSIONS

CONNECT has shown the potential of building large scale
parallel architectures based on limited hardware building
blocks. It is a hybrid circuit-switchingand packet-switching
network and provides advantages that the two types of
networks cannot provide individually. The details of the
circuit-switching network and the packet-switching
network can still have many variations and be radically
changed, but the phi losophy of a hybrid network is
probably a solution to many architectures.

As an example of an application, our ongoing research
on a database machine, called the Linear-throughput
Semantic Database Machine (LSDM) 25· l!!-Jo, uses
CONNECT as its hardware base. In LSDM, each data
processor of CONNECT is equipped with a disc drive,
providing massively parallel I/O capacity. The combination
of highly parallel computing power and parallel I/O power
makes LSDM a machine of an extremely high throughput.

Applications of CONNECT in other areas are yet to be
explored. Since CONNECT tends to have a large storage
space and high computation power, its applications in
knowledge-based systems and AI systems should be
examined.

Some possibilities for improvement remain, which the
authors intend to investigate in the future. For example,
due to the limitations imposed by the building blocks, the
control of the circuit-switching network is semi-distributed,
instead of fully distributed.

77

Due to the nature of the Clos network, it is difficult to
expand the network dynamically. The expansion needs
either adding more stages or using switching components
of higher connectivity. This problem will be studied
further.

The software mechanism which deals with the com­
ponent failure dynamically is yet to be developed and the
performance under a partial system failure is to be
studied.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the advice of David
Barton, Doron Tal, Nagarajan Prabhakaran, Samuel Shapiro,
Neil Wiseman, Eduardo Fernandez and Scott Graham.
Our special thanks go to the anonymous referees for their
valuable and detailed comments and suggestions, which
have resulted in a significant improvement of the
paper.

REFERENCES

1 Hillis, W D The Connection Machine MIT Press, USA
(1985)

2 Lipovski, G J and Tripathi, A 'A reconfigurable
varistructured array processor' in Proc. 1977 Inter­
national Conference on Parallel Processing, (1977) pp
165- 174

3 Lipovski, G J and Malek, M Parallel Computing
Theory and Comparison John Wiley (1987)

4 Gajski, D D, Lawrie, D H, Kuck, D J and Sameh, A H
'CEDAR' in Hwang, K (Ed) Supercomputing- Design
and Applications, IEEE (1984) pp 251-27 5

5 Gottlieb, A eta/. 'The NYU ultracomputer-designing
an MIMD shared-memory parallel computer' IEEE
Trans. Camp. Vol C-32 No 2 (1983) pp 175- 189

6 Batcher, K E 'Design of a massively parallel processor'
IEEE Trans. Camp. Vol C-29 No 9 (1980)

7 Siegel, H J, Schwederski, T S, Davis, N J and Kuehn,
J T 'PASM: a reconfigurable parallel system for image
processing' ACM SIGARCH Newsletter Vol 12 No 4
(1984) pp 7-19

8 Chow, E, Maden, H and Peterson, J Hyperswitch
Network for Hypercube Concurrent Computer,
Technical Report, Jet Propulsion Laboratory (1986)

9 Chow, E, Maden, H, Peterson, J, Grunwald, D and
Reed, D 'Hyperswitch network for the hypercube
computer' in Proceedings o f the 15th International
Symposium on Computer Architecture (June 1988)
pp 90-99

10 Seitz, C L 'The cosmic cube' Comm. ACM. Vol 28 No
1 (January 1985) pp 22-23

11 Snyder, L 'Introduction to the configurable, highly
parallel computer' Computer (January 1982) pp
47-56

12 Shaw, D E 'The NON-VON supercomputer' (1982)
13 Pfister, G ef a/. 'The IBM research parallel prototype

(RP3): introduction and architecture' in Proceedings
of the 1985 International Conference on Parallel
Processing (August 1985) pp 764-771

14 Rudolph, J A 'A production implementation of an
associative array processor STARAN' in Pro c. of the Fall

78

joint Computer Conference Las Vegas, Nev (November
1972) pp 229-241

15 Hwang, K and Briggs, F Computer Architecture and
Parallel Processing McGraw-Hill (1984)

16 Leiserson, C 'Fat-trees: universal networks for
hardware-efficient supercomputing' IEEE Trans. Camp.
Vol C-34 No 10 (1985) pp 892-901

17 Dally, W J 'A VLSI architecture for concurrent data
structures' PhD thesis, California Institute of Tech­
nology (1986)

18 Transputer Architecture Reference Manual lnmos
Corporation, Bristol, UK (1986)

19 Stone, H S High-Performance Computer Architecture
Addison-Wesley (1987)

20 Wu, C L and Feng, T Y Tutorial: Interconnection
Networks for Parallel and Distributed Processing IEEE
Computer Society Press (1984)

21 Clos, C 'A study of nonblocking switching networks'
Bell Syst. Techn. }. (March 1953) pp 406-424

22 Benes, V E 'On rearrangeable three-stage connecting
networks' Bell Syst Techn. }. (August 1962) pp
1481-1492

23 Rishe, N and Li, Q 'A proof of impossibility of
deadlock in a fixed-routing hypercube network' in
Proc. of the Fourth Conference on Hypercube Con­
current Computers Monterey, CA (March 1989) in
press

24 Dally, W J and Seitz, C 'Deadlock-free message
routing in multiprocessor interconnection networks'
IEEE Trans. Camp. Vol C-36 No 5 (May 1987)
pp 547-553

25 Li, Q 'The architecture and related control problems
of a transputer based highly parallel database machine'
PhD thesis Florida International University, Miami
(December 1989)

26 Li, Q, Wang, L and Rishe, N 'A three processor
grouping problem in the hypercube networks' Tech­
nical Report SCS TR 89-07 Florida International
University, Miami (August 1989)

27 Despain, A M and Patterson, D A 'X-tree: a tree

Qiang Li received a BE degree in electrical
engineering from the Xi'an)iaotong University,
Xi'an, China, in 1982, and MS and PhD degrees
from Florida International University, Miami, FL.
USA in 1984 and 1989, respectively. He is
currently an Assistant Professor of Computer
Engineering at Santa Clara University, Santa
Clara, CA. His research interests include parallel
processing, parallel arch itectures, operating
systems, and simulation.

Dr Rishe is an Associate Professor of Computer
Science at Florida International University. Dr
Rishe's publications on databases and related
issues include two books (Database Design
Fundamentals: A Structured lntrodudion to
Databases and a Structured Database Design
Methodology, Prentice-Hal/, 1988; Database
Design: The Semantic Modeling Approach,
McGraw-Hill, 1992) and 50 papers. Dr Rishe
chaired the steering and programme

committees of the PARBASE-90 conference and is on the steering
committee of the POlS conference series. Dr Rishe also has extensive
experience in data base applications and data base systems in industry.
This included eight years of employment as head of software and
database projects (1976-84) and later consulting lor companies such
as Hewlett-Packard. Prof. Rishe has a PhD in computer science from
Tel Aviv University, Israel.

Microprocessors and Microsystems

; .
structured multiprocessor computer architecture' in
Proceedings of the Fifth Annual Computer Architecture
Symposium (1978) pp 144- 151

28 Rishe, N, Tal, 0 and li, Q 'Architecture for a massively
parallel database machine' Microprocessing Micro­
prog. Vol 25 (1988) pp 33- 38

29 Rishe, N Database Design Fundamentals: A Structured

Vol16 No 2 1992

Introduction to Databases and a Structured Database
Design Methodology Prentice-Hall, Englewood Cliffs,
NJ (1988) pp 1- 40

30 Rishe, N 'Efficient organization of semantic database'
in Litwin, W and Schek, H-J (Eds) Foundation of
Data Organization and Algorithms Springer-Verlag
(1989) pp 114-127

79

