
CONNECT - an architecture 
for a highly parallel system 
based on building blocks 

Qiang Li and Naphtali Rishe* describe an approach to highly parallel 
architectures using 'self-sufficient' building blocks with limited communication 

power to build efficient large-scale parallel systems 

Parallel processing and parallel architectures have become 
a promising solution to the ever-increasing demands for 
computational power. This paper describes an approach 
which uses 'self-sufficient' building blocks with limited 
communication power to build efficient large-scale parallel 
systems. The architecture, ca lled CONNECT, provides a 
medium granularity parallel processing environment with 
the following properties: the parallelism is fairly high, the 
interprocessor communication pattern is random with 
both small messages and large data sets being sent 
between processors, and a substantial amount of com­
putation is done by individual processors. 

architectures parallel systems hybrid networks 

Parallel processing and parallel architectures have become 
a promising solution to the ever-increasing demands for 
computational power. Numerous parallel architectures 
have been built or proposed. Each of these architectures 
is based on the philosophies, technologies and charac­
teristics of the intended applications. Some of the 
architectures have made an important impact on the 
research field at different points in time, e.g., 
the Connection Machine 1, TRAC2

• 
3

, CEDAR4
, Ultra­

compute,S, MPP6, PASM7
, Hyperswitch8· 9, Cosmic 

Cube10, CHiP1\ Non-Von12
, IBM RP313

, STARAN 1 4 etc. 
Various architectural frameworks have been studied and 
reportedJ, 15,16-18. 

Many issues are involved in designing parallel archi ­
tectures. Those raised most often are performance- cost 
relations, scales of parallelism, small versus large granularity, 
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shared versus distributed memory, packet-switching 
versus circuit-switching, bus-oriented versus point-to­
point connections, reliability and fault tolerance etc. Most 
of the issues boil down to the conflict between the inter­
processor communication capacity of a system, the 
limitations imposed by the level of technology and the 
cost. Excellent analyses of these issues can be found in 
References 3 and 19. 

This paper describes an approach which uses 'self­
sufficient' building blocks with limited communication 
power to build efficient large-scale parallel systems. By 
'self-sufficient' we mean that each building block is a 
complete computing unit. Each of the building blocks 
that we use has a fairly powerful processor, a local 
memory module and a limited number of point-to-point 
communication links. The data routing between links of a 
processor requires CPU intervention. The lnmos trans­
puter18 is a real-world model of these building blocks. As 
implied by the nature of the building blocks, the 
architecture is a distributed memory system. 

It is generally agreed that parallel architectures are very 
application dependent and that it is difficult to have a true 
general-purpose parallel architecture. The parallel archi­
tectures based on building blocks have the advantage of 
being relatively easy to tailor to suit particular applications 
without involving VLSI chip design and processing. When 
properly designed, this type of architecture can be cost 
effective since the building blocks are often relatively 
cheap to produce. On the other hand, such building 
blocks have thei r limitations due to the fact that their 
design must be based on a set of assumptions and trade­
offs so that they can be used in a wide range of 
applications. 

Theoretically, it is easy to build a large-scale system 
with this type of building block since there is no direct 
contention for memory or communication links and no 
capacitive penalty as more processors are added to the 
network. However, such systems tend to have large 
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communication radii due to the limited connectivity of 
the individual processors. Further, since the communication 
related tasks and the non-communication related tasks 
share processors, they tend to interfere with each other. 
These impose a severe limit on the effective parallelism 
that can be built into a system. The problem becomes 
especially significant when the system works in an 
environment where the communication pattern is random 
and both small messages as well as large data sets are to 
be sent between processors. 

The architecture described in this paper, called 
CONNECT, challenges the limitations imposed by the 
nature of the building blocks. The environment which 
CONNECT is intended to provide is a medium granularity 
parallel processing environment with the following 
properties: the parallelism is fairly high (in the range of a 
thousand); the interprocessor communication pattern is 
random, with both small messages and large data sets 
being sent between processors; and a substantial amount 
of computation is to be done by individual processors. 
The potential systems of such environments are parallel 
database machines, parallel control systems with many 
in lets and outlets, and interactive large-scale simulation 
systems. In addition to the building blocks described 
above, dynamically configurable passive switching 
components which are compatible with the point-to­
point communication links are assumed to be available. 

Like most large-scale multiprocessor systems, the heart 
of CONNECT is its interprocessorcommunication network. 
The goal of the network is to provide short and steady 
delivery times for short messages and high effective 
bandwidth for large data sets. The argument is that the 
short messages are often control messages such as 
synchronization signals, data locking and unlocking 
signals, acknowledgements etc. A short and steady 
delivery time for the control messages will have a direct 
impact on the overall system performance. We emphasize 
the steadiness of delivery time because a predictable 
response to the control messages will facilitate an 
efficient higher level design. On the other hand, a higher 
effective bandwidth implies a faster delivery time for the 
large data sets. 

STRUCTURE OF THE INTERPROCESSOR 
NETWORK 

lnterprocessor networks are a sub-area of a more general 
area, namely, interconnection networks. Interconnection 
networks have been well studied and there is a rich 
collection of literature on the subject. Reference 20 
is a collection of many important works. Chapter 5 
of Reference 3 gives analysis of, and comparison 
between, many interconnection networks. A taxonomy 
of interconnection networks and graphs is also given in 
Reference 3. 

Roughly speaking, interconnection networks can be 
divided into two categories: the statically connected 
packet-switching network and the dynamically con­
figurable circuit-switching network, each with its own pros 
and cons. 

The packet-switching network has the advantage of 
fast response time to the sending processors and the 
flexibility of being able to send messages to any node at 
any time asynchronously. It is suitable for short and 
frequent messages between processors. The main dis-
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advantage of the packet-switching network is that when 
a large amount of data is sent, the packaging and 
depackaging time and the store-and-forward delay can be 
very long. In addition, interference between the large data 
package and the small messages makes the behaviour of 
the small messages unpredictable. 

On the other hand, the circuit-switching network has 
the advantage of sending a large amount of data directly 
to the destination at the hardware speed without 
disturbing other nodes in the system. However, when the 
switching components are passive, i.e. the switching is 
done by external control signals instead of the messages 
themselves, which is a common case in the hardware 
environment that we assume, the circuit-switching 
networks suffer from the circuit set-up time delay, 
especially when short messages are sent. 

To achieve our goal of satisfactory performance for 
both the short messages and the large data sets without 
excessive hardware cost, we have developed a hybrid of 
the packet-switching network and the circuit-switching 
network. Figure 1 shows the block structure of the 
interprocessor network, which consists of a packet­
switching network, a circuit-switching network and a 
network of circu it control processors. A cost analysis of 
the network is given in a later section. 

The basic idea is that when a short message is sent, it is 
delivered through the packet-switching network, which 
provides a quick delivery time; when a large data set is 
sent, a circuit setup request is sent to the circuit 
controllers through the packet-switching network, the 
controllers set up a dedicated circuit between the 
originator and the destination and the large data set can 
be sent directly to the destination. Furthermore, since the 
packet-switching network can have the luxury of sending 
only very small messages, the requirements of the design 
of the network and its components become less rigid , and 
packet-switching network behaviour related to the short 
messages becomes steady and predictable. 

We now describe some details of different parts of the 
network. To clarify the discussion, we call the processors 
that do the actual data processing the 'data processors' 
and the processors dedicated to communication tasks (in 
the packet-switching network) the 'communication 
processors'. 

The packet-switching network 

The packet-switching network is a 'tree-shaped' network 
with the data processors as the leaves, as shown in Figure 
2. To avoid a bottleneck, the 'root' of the tree is a small 
hypercube network instead of a single node. In other 
words, one can imagine a small hypercube with a subtree 
hanging from each of its nodes with the data processors at 
the bottom of the subtrees. The word 'subtree' is used in a 
loose sense, since the whole structure is not really a tree. 
As we will discuss later, the hypercube network is also the 
control network of the circuit-switching network. The size 
of the hypercube and the degree of the subtrees depend 
on the size of the entire system and the characteristics of 
the hardware components. The reason for selecting the 
tree-shaped network is threefold: a tree network has a 
reasonab le communication radius; it is natural for the 
subtrees to concentrate the circuit setup requests from 
the data processors to the circuit control processors at the 
top of the subtrees; and the requirements of the 
connectivity of a tree node are flexible. 
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Figure 1. Block structure of CONNECT 

The circuit-switching network 

Data 
Processors 

The circuit-switching network is a three-stage Clos 
network21 as shown in Figure 3. Each box in the figure is an 
n x m crossbar switching component. There are three 
columns of switches: the input switches, the output 
switches and the intermediary switches. The links between 
the switches are uni-directional. The leftmost column is 
the output side of the data processors; the rightmost 
column is the input side of the data processors. For 
convenience, we call the links between the data processors 
and the switches, and between the different columns of 
switches, the ' input c-links', the 'output c-links', the 'input 
s-links' and the 'output s-links', respectively, as marked in 
Figure 3. A Clos network is denoted by N(m, n, r) if its 
input, output and intermediary switches are n X m, m X n 
and r X r, respectively. 

The three-stage Clos network has been selected 
because it can simultaneously connect many processors 
without too many layers of switching components, which 
could result in a long propagation time. Although the Clos 
network is known not to have a routing algorithm local to 
the switch components, it does not concern us since the 
routing is done by the external control in our case, due to 
the hardware constraints assumed. 

r-------------------------------1 
1 Hypercube Network 1 
I I 

-- ------ I 
I 

\ 
Data processors 

Figure 2. The tree-shaped packet-switching network 
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Figure 3. The three-stage Clos network 

Two important properties of an N(m, n, r) network are 
given below, and the detailed proofs can be found in 
References 21 and 22. 

• If m > n, then for every partitioning of the set of all 
processors into pairs, there exist connection configur­
ations where all the pairs talk simultaneously. 

• When m > 2n - 1, the network is non-blocking, that is, 
there is always a path available between any idle input 
c-link and any idle output c-link, independent of the 
connection history. 

The network of the control processors 

The circuit controller of the circuit-switching network is 
responsible for selecting an available path for setting the 
ci rcuit up, sending the hardware signals that actually set 
the circuit up, keeping track of the current status of the 
network, maintaining a queue of the connection requests 
that are unable to be satisfied for the time being, etc. 

There are two problems which can prevent the control 
processors from achieving short circuit setup time and 
high circuit setup rate. First, the large amount of requests 
coming from the data processors have to converge to the 
controller, which presents a communication bottleneck. 
Second, the processing speed of the controllers must be 
high enough to handle the flow of requests. To alleviate 
this problem, a group of control processors is employed 
for the task, applying the parallel processing concept to 
the parallel architecture control itself. The circuit setup 
requests will arrive at one of the control processors 
depending on where the request is originated. A control 
processor receiving a request wi ll process the request with 
the cooperation of the other control processors. In this 
way, the requests arrive through many independent 
channels and are processed in parallel by many processors. 
Thus the controller bottleneck can be significantly 
relaxed. 

As mentioned above, the control processors are linked 
into a hypercube network which is also used as part of th_e 
packet-switching network. Each node of the hypercube 1s 
called an hnode. Figure 4 shows the relationship between 
the hnodes and the other components of the network. 

The data processors at the bottom of the subtrees have 
not been drawn explicitly. Each switch is connected to a 
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Figure 4. The connections between the hnodes and 
other parts of the network 

set of data processors. We say that a switch is connected 
to a tree if the switch is connected to data processors in 
the tree. Each hnode controls the switches connected to 
its t ree and one or more intermediary switches. For 
convenience, an intermediary switch was drawn together 
with each pair of input and output switches. In practice, 
the number of input and output switch pairs and the 
number of intermediary switches are often not the 
same. 

ROUTING IN THE PACKET-SWITCHING 
NETWORK 

Routing in the packet-switching network is quite straight­
forward. There is a system-wide numbering for the data 
processors. Each processor has a unique number and the 
leaves of any tree have consecutive numbers. The hnodes 
in the hypercube are numbered from 0 to 2M - 1, where 
M is the dimension of the hypercube. Since each hnode is 
the root of a tree, the trees are numbered accordingly. 
There is a static map between each tree-number and the 
range of data processor numbers in that tree. Each hnode 
has a copy of that map. The communication processors in 
the trees are called the tnodes. Each tnode controls d sub­
trees, where d is the degree of the tree. The sub-trees are 
numbered from 1 to d. 

There are two classes of messages travell ing in the 
packet-switching network: data messages and control 
messages. Data messages are the messages passed 
between the data processors; all other messages are 
considered control messages. Both types of messages 
have the same header containing message-type, desti­
nation address and originator address, followed by the 
content of the message. Data messages are simply 
forwarded by the communication processors while the 
control messages are interpreted by the control processors. 

The routing algorithm has two parts, one for the 
subtrees and another for the hypercube on top of the 
subtrees. The routing in the subtrees is straightforward. 
When a tnode receives a message, it will determine which 
way to forward the message by checking the destination 
address against a table and send the message accordingly. 
A message with a negative address number (in the case of 
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a control message) is always sent to the parent. This 
process involves searching a table of a few entries, which 
can be done very quickly. 

When an hnode receives a data message, it will send 
the message to the destination subtree according to its 
map. An hnode receiving a control message will process 
the message, as we will discuss in later sections. 

The routing algorithm used in the hypercube is the 
'fixed routing algorithm'. When the messages are short 
and the communication pattern is random, which is our 
case, the fixed routing algorithm is very efficient. In 
addition, a properly implemented fixed routing algorithm 
is deadlock free; a description of the deadlock-free 
implementation and a formal proof can be found in 
References 23 and 24. Furthermore, the tree network is 
inherently deadlock free. Therefore, the entire packet­
switching network is deadlock free. 

High performance of the packet-switching network is 
expected for the following reasons. First, only short 
messages are sent through the packet-switching network. 
Giving a bandwidth of the communication channels, the 
messages have less chance to run into each other and 
compete for a channel. Second, the network consists of 
dedicated communication processors, so the messages 
are processed promptly. Third, the packet-switching 
network is inherently deadlock free, so there is no 
deadlock prevention overhead. 

In the following sections, we describe the control 
mechanism of the circuit-switching network, which is a 
more challenging problem: the parallel control of a Clos 
network. 

PARALLEL CONTROL OF THE THREE-STAGE 
CLOS NETWORK 

The status data and its representations 

In this section, we describe the data structures and the 
information held in each hypercube node for the purpose 
of communication control. To clarify the discussion, a 
data processor is sometimes called a 'leaf' since it is a leaf 
of the subtree connected to the control node in question. 
Also, when we say 'to allocate a data processor', it means 
to allocate the link between the data processor and the 
Clos network. 

Two logically independent types of information are 
kept by each control node: the status of the switch 
components of the Clos network which is under the 
control of the control node in question and the status of 
each data processor (leaf) under the control of the control 
node in question. 

Status of the switching components 

Each hnode keeps the following information about every 
switch under its control : 

• lnputVector: A bit vector representing the status of the 
input s-links. The bit positions in the vector correspond 
to the s-link numbers and a bit value of 1 indicates the 
correspond ing input s-link is occupied . 

• OutputVector: Similar to lnputVector except that it 
represents the status of the output s-links. 
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• Relay Table: A table indicating the current connections 
between the input s-links and the output s-links on the 
intermediary switch. 

An available path between an input switch and an 
output switch can be found using the lnputVectors and 
the OutputVectors. Suppose the vectors are 8 bits long 
and a path is to be found between the input switch 
controlled by h1 and the output switch controlled by h2 . 

lnputVectorh, is 01001100, indicating that its links to the 
intermediary switches 2, 3 and 6 are occupied, and 
OutputVectorh

2 
is 11001010, indicating that its links to the 

intermediary switches 1, 3, 6 and 7 are occupied. Let 

V = lnputVectorh, OR OutputVectorh
2 

= 11001110 

Then the O-bit positions of V are the intermediary switch 
numbers that are available. In this case, they are 0, 4 
and 5. 

Status of each of the data processors 

An hnode keeps track of the status of each of its leaves. 
When considering the control algorithm, it should be 
clear that a leaf of an hnode is a logical entity represented 
by a set of data structures on the hnode. The following 
describes some ofthe data structures and the information 
that they represent. More details can be found in 
Reference 25. 

• Status: Status of the leaf in terms of its connection to 
the Clos network. The status can be 'idle' or 'busy'. 
Their meanings are indicated by their names. 

• WaitingQueue: Holds the Connection Requests at the 
hnode for the leaf in question. The requests can come 
from other data processors in the system or be initiated 
by the leaf itself. 

The circuit control algorithm 

We now describe the process of setting up a circuit. To 
simplify our discussion, let us assume the circuit-switching 
network is a non-blocking network, i.e., as long as the two 
processors to be connected are not currently connected 
to something else, there is a path available between them. 
We will discuss other cases later. 

Suppose the circuit-setup request is originated by a 
data processor, orig, and the destination data processor is 
dest. Let h0 be the root of the tree that contains orig, and 
hd be the root of the tree that contains dest. Note that 
orig, h0 , hd and dest are all defined in terms of a particular 
circuit setup request. Figure 5 shows a flow diagram of the 
process of setting-up a circuit. The messages that flow 
between the hnodes for the purpose of setting-up a 
circuit have the general form: 

I MT I DA I OA 1 ... Other information I 

where MT, DA and OA stand for message-type, destination 
address and originator address, respectively. Additional 
information is contained in the message depending on 
the message-type, which will be described individually. 

For convenience, the leaves of an hnode are not 
addressed by their processor numbers, instead they are 
addressed by their leaf numbers. The leaf numbers are a 
sequence of unique numbers local to an hnode starting 
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Figure 5. A process of setting-up a circuit 

from 0. The leaf number of a leaf (data processor) under a 
particular hnode can be easily calculated from its 
processor number under a given system configuration. 
Therefore, the addresses of a leaf contained in the 
messages flowing in the control hypercube normally 
consist two parts: the number of the hypercube node 
which controls the leaf called cube number and the leaf 
number. 

To make it easier to understand, we shall describe a 
process of setting up one connection circu it. Figure 5 will 
serve as a graphical aid for the discussion. 

The process is described by the following numbered 
steps and the numbers are consistent with the numbers 
marked in Figure 5. 

(1) Starting from the leaf orig, a circuit-setup request 
message (CSR) will be sent up the tree to the control 
hypercube node h0 • 

(2) Upon receiving the CSR, a 'connection request' (CR) 
message will be constructed; if the status of the 
originator leaf is busy, the connecting process will 
be suspended by putting the CR message into the 
WaitingQueue and h 0 will continue to handle other 
messages. The suspended process will resume 
when the CR is taken out of the queue. If the status 
of the leaf is idle, h0 will set it to busy, and determine 
the position of hd in the hypercube, and send the 
CR to hd . The connection request has the following 
format: 

(This means that the message type MT is 'CR', the 
destination address field DA contains the pair 
(hd, /d), and so on.) 

(3) Upon receiving the CR, if the status of the desti­
nation leaf is busy, the process will be suspended by 
putting the CR message into WaitingQueue of the 
leaf and the control node hd is released to handle 
other messages. The process resumes from this 
point when the CR is eventually taken out of 
WaitingQueue. 
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If the status of the destination leaf is idle, hd will 
set it to busy and check the lnputVector of h0 

against its own OutputVectorto find an intermed_iary 
switch which has free links to connect the sw1tch 
controlled by h0 to the one by hd . Let ms indicate 
the intermediary switch selected by hd and hm 
indicate the hnode which controls ms. A 'connection 
order' (CO) is sent from hd to hm . The connection 
order has the following format: 

Switch Number (ms) Request Originator (h 0 , 10 ) 

In the meantime, hardware signals are sent to the 
output switch to connect the output c-link and the 
output s-link connected to ms. Notice that h0 , hd 
and hm are not necessarily distinct, e.g. they can 
actually be the same hnode. . . 

(4) Upon receiving the connection order, hiT! wil_l ven_fy 
the validity of the connection by checkmg mto 1ts 
RelayTable. If the connection is valid, i.e. the li_nks 
needed by the connection are not already occup1ed, 
then hardware signals will be sent toms to connect 
the input s-link and the output s-link. Meanwhile, an 
'ack message' (ACK) is sent to h0 indicating that the 
requested circuit has been set up. It is possible for a 
connection to be invalid when the CO message 
arrives. This is called a 'race condition' and we will 
discuss this case in a later section. 

The ACK message has the following format: 

Switch number (ms) Request Destination (hd, /d) 

(5) Having received the ACK message, h 0 will send 
signals to the input switch to connect the input 
c-link to the input s-link which links to the inter­
mediary switch indicated by ms. A 'ready message' 
(READY) is then sent to the originating data processor, 
orig. In the meantime, the lnputVector is modified. 

(6) Upon receiving the acknowledgement (READY) 
from the control processor network, the data 
processor orig will send its data through th~ ci~cuit, 
which effectively initiates the commun1cat1ons. 
Thereafter, the two connected data processors can 
communicate in any way they choose. 

(7) When orig decides to release the circuit, it sends ?n 
'originator disconnect circuit request' (ODCR) to 1ts 
control node h0 • 

(8) h will in turn send an 'intermediate disconnect 
circuit request' (IOCR) to hm. The lnputVector of h0 

will be modified to release the related s-link. Also, if 
WaitingQueue is empty at this point, the status of 
the leaf is set to idle. Otherwise, the first CR message 
will be taken out of the queue and the connection 
process for that CR message will be continued. The 
IOCR have the following format: 

MT (IOCR) I DA (hm) OA (h o, fo) I 

Switch number (ms) Request Destination (hd, /d)j 

(9) Upon receiving an IOCR message, hm will send a 
'destination disconnect circuit request' (DDCR) to 
hd and the RelayTable of hm will be modified to 
release the related links. The DDCR message has the 
following format: 
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Switch number (ms) Request originator (h 0 , 10 ) 

(1 0) Upon receiving a DDCR message, hd will modify its 
OutputVector to release the related link. If Waiting­
Queue is empty, the status of the leaf will be set t? 
idle. Otherwise, the first CR message in the queue IS 
activated. 

Many such processes can be carried out simultaneously. 
They are independent of each other ~xcep_t when two 
connections need the same processor, m wh1ch case one 
of them has to wait. 

In the following sections, we discuss some details 
related to the control algorithm. 

Deadlock and its elimination 

Two data processors are involved in setting up a 
connection circuit, and the c-links to both processors 
have to be available before the connect ion can be 
established. In general, they are not always available at the 
same time. Therefore, we have to allocate (hold) the one 
that becomes available first and wait for the other. Since 
the connection patterns and times are random, there can 
be a hold-and-wait cycle as shown in Figure 6. Since the 
connections are non-preemptive and the links are non­
sharable between connections, Figure 6 actually shows a 
deadlock situation. 

To solve the problem, the algorithm is designed so that 
one always allocates the data processor with a small id 
number and waits for the one with a greater id number. In 
this way, it is impossible to have a ci rcular ~aiting 
situation, and so the deadlock is prevented. The Imple­
mentation of the solution is that when a connection is 
from a leaf of a smaller number to a leaf of a greater 
number, the connection request is marked as an 'up­
going' CR. An up-going CR will allocate the originating leaf 
on h 0 first by setting its status to busy and then go to hd to 
wait for the destination leaf. On the other hand, a non-up­
going CR will go to hd first to allocate the destination leaf 
and then the process will waitforthe originating leaf when 
the ACK message arrives at h 0 • In either way, the leaf with 
a smaller number is allocated first. The proof of the 
correctness of this solution is trivial. 

CollDection I 

Holding 

Holding 

Connection 3 
L~af3 Holding 

ColliJectioc 2 

Figure 6. A deadlock situation 
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Selection of the intermediary control mode 

As described earlier, three control hypercube nodes have 
to be involved to establish one connection, namely, h0 , 

hd and h m. The h 0 and hd are decided by the location of 
the originator and the destination, but hm has to be 
selected by the control algorithm. The selection strategy 
can have direct impact on the speed of the circuit-setup 
process. The basic goal is to minimize the distance from 
hd to h 0 through hm. 

The problem can be generalized to a general hyper­
cube allocation problem as the following. Let d(n1 , n2 , n3) 

be the shortest distance from n1 to n2 through n3 and 
f(n1 , n2 , n3) be a Boolean function which yields a true 
value if the three arguments meet certain conditions. 
Given two nodes in the hypercube, n1 and n2, find the 
third node, n3 , so that d(n1 , n2 , n3) is minimal and 
f(n 1 , n2 , n3) is true. 

A selection strategy and an algorithm implementing the 
strategy, which is similar to the feedback shift register 
technique, have been developed2

&. A simulation has 
shown that utilizing the strategy can reduce the traffic in 
the control hypercube by 20% compared to the case 
where the selection is done in the ascending order of the 
id numbers of the nodes starting from hd. 

Race conditions 

In some situations, a problem can occur in the above 
algorithm: h0 could send a connection request with an 
outdated lnputVector if there is any connection request 
previously sent from h0 which has not been acknow­
ledged. Therefore, the hds of two different connections 
originated from the same h0 could select the same 
intermediary switch, resulting in a conflict over the input 
s-link which connects h0 to the selected intermediary 
switch. This is called the 'race condition' and is illustrated 
in Figure 7. 

The situation is resolved as follows. If hm detects that a 
new connection requires a link which is already in use by 
checking its RelayTable, a CANCEL message will be sent 
back to hd, and hd will try to find another available 
intermediary switch. The node hd also counts how many 
CANCEL messages have been received for a particular 
connection. If the count exceeds a limit, say three, the 
lnputVector of h0 of the connection is most likely too 
outdated, and a RESEND message will be sent back to h0 

of the connection and h0 will start the whole process over 
again with the current value of its lnputVector. 

This solution requires some extra traffic in the system 
and some overhead time for the connection involved. 
However, a simulation has shown that the probability of 
the race condition occurring is very low (less than 0.001 

Figure 7. An occurrence of the race condition 

Vo/ 16 No 2 1992 

with the assumed communication pattern.) Therefore the 
above activity happens infrequently, and thus the total 
overhead is negligible. 

When a connection is blocked 

In general, the Clos network can be a blocking network. 
For example, it is often the case that the switch 
component has the same number of input and output 
links, say x links on each side. The most efficient Clos 
network that can be built based on the switch components 
is N(x, x, x), which is a blocking network. That is, it could 
happen that two idle processors cannot find a path 
between them. A simulation on an N(32, 32, 32) Clos 
network shows that under a random connection pattern, 
the chance of the blocking situation occurring is very low 
(less than 0.0001.) Therefore, the blocking situation can 
be simply resolved by a timed re-try or wait until a 
connection from the h 0 is relinquished without creating 
much delay and traffic. 

ENHANCEMENT TO THE DESIGN 

Several modifications have been made to the original 
design to enhance the architecture. The enhancements 
are made mainly based on the consideration of per­
formance and the reliability of the system. 

Separation of the control hypercube from the 
packet-switching network 

The hypercube on the top of the subtrees is the critical 
part of the system. Its speed has a direct impact on the 
performance of both the packet-switching network and 
the circuit-switching network. Also, when a hypercube 
node fails, it is difficult to keep the system alive without 
losing performance significantly. To avoid the problem, 
another hypercube is added to the system which is 
connected to the system exactly as the original one. 
Figure 8 shows the connections. Since the nodes of the 
hypercube are a small portion of the processors in the 
system, the extra hardware cost is not high. Under normal 
operational conditions, one hypercube, called the control 
hypercube, controls the Clos network, and the other, 

Control Hypercube 

Figure 8. Using two h ypercubes 
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called the communication hypercube, is in charge of 
passing messages between the subtrees. 

Since less traffic flows through each hypercube, the 
maximum throughput of the packet switching network is 
improved. Also, the speed of the circuit setup is increased 
and is less sensitive to the traffic load of the packet­
switching network. 

Furthermore, fault tolerance of the system will be 
improved by using the two disjoint hypercubes. We will 
discuss this issue later. 

Data processors sharing circuit-switching 
network links 

The data processors are partitioned into pairs and the two 
processors in a pair are connected through one link. This 
requires each data processor to have one more link, which 
is easy to satisfy since the requirement for the connectivity 
of the data processors is very low. 

There are two major functions of the additional 
connection. First, it provides an alternative channel for a 
data processor through the circu it-switch ing network. 
Figure 9 shows an example. Processors a and b are 
partners. When processor a is connected to processor c 
through the network, another connection to processor a, 
say from processor d, can be made to processor band the 
connection can be relayed through processor b if b is not 
connected to any one at the time. Since there is only one 
step relay and the data can be transmitted in small 
packets, the store-and-forward delay is expected to be 
low. There is a computation overhead for the relaying 
processor. However, since a processor only relays for one 
other processor, the overhead is low. Statistically, when a 
totally random communication pattern is present, the 
benefit of using the additional connection is not significant. 
A simulation shows that the additional connection 
increases the effective bandwidth of the system under a 
random communication pattern by 15%. The additional 
connection plays a more important role when processor a 
is connected to another processor for the transmission of 
a very large quantity of data; the alternative route will 
enable processor a to transmit large data sets to the other 
processors simultaneously. When the higher level appli-

To packet-switching network 

Processor a 

Connect to 
processor c 

Clos network 

Processor b 

Connect to 
processor d 

Figure 9. The additional link between data processors 
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cation can be designed in a way that the two processors 
are closely logically related, which is often possible, the 
additional link can carry a significant portion of the traffic. 
In addition, the additional link can provide a local small 
granularity parallelism without too much additional 
hardware. 

The second function of the additional link is related to 
the improvement of reliability, which will be discussed 
later. 

FAULT TOLERANCE 

Hardware redundancy 

Like most systems with built-in redundancy, CONNECT 
also provides high reliability. We now analyse several parts 
of the system. 

In the enhanced packet-switching network, there are 
two hypercubes on the top of the subtrees and they are 
totally symmetric and disjoint. When one of the hyper­
cubes is down, e.g. a node of the control hypercube 
malfunctions, the function of the failed hypercube can be 
easily switched to another hypercube without losing 
performance significantly. 

Also, in the enhanced packet-switching network, 
additional connection is provided between data pro­
cessors. The processors can be partitioned so that there is 
always an additional link between the boundary of two 
subtrees. In case the root of the subtree fails, the 
messages can still flow out of the subtree through the 
additional links to other subtrees and then climb to the 
top of the subtrees if necessary. Thus, the failure of one of 
the roots will not stop the system. In terms of performance 
under such circumstances, it should be acceptable 
bearing in mind that only small messages flow through 
those links. A drawback of this is that since the processors 
on the boundary of the subtrees are not topologically 
symmetric to the roots of the subtrees and the routing 
through the connection between data processors is not 
part of the normal routing algorithm, the software solution 
will not come naturally and will slow down a part of the 
system. Nevertheless, the system can be kept al ive. 

Furthermore, if the hardware permits, all the data 
processors can be linked into a big ring, which is similar to 
the X-tree27

• In that case, the routing in the emergency 
situation is quite straightforward. A message has simply to 
go through the ring until it gets out of the subtree with the 
troubled root. 

We now discuss the situation of the circuit-switching 
network, when a path of the circuit-switching network 
fails, i.e., a data processor finds itself unable to send a 
message through the circuit-switching network. There are 
two things it can do. First, an alternative connection can 
be established through a neighbour and the messages can 
be relayed to the destination. Second, the messages can 
be sent through the packet-switching network for the 
time being. Although the performance under these 
circumstances will be worse than normal, the system can 
be kept alive until the problem is fixed. 

If an intermediary switch component fails, the effect to 
the system is almost negligible since there are many of 
them and they are all symmetric. On the other hand, if an 
input or output switch component fails, the situation will 
be worse. The data processors connected to the failed 
switch will all have to divert their long messages through 
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the packet-switching network, which could cause a 
significant system-wide slow down. Thus, the input and 
output switch components are the weak spots of the 
architecture. 

In summary, the system can stay alive when any one of 
the components fails, though the performance may 
suffer. The difference between the effects of different 
failures lies in the amount of performance reduction 
caused by the failure. 

Monitoring the system 

Several data processors can be assigned the duty of 
monitoring the system. Each processor of the system can 
send messages to the monitors periodically to indicate 
that it is functioning normally. When a monitor notices 
unexpected silence from some nodes or subtrees that 
may have got disconnected from the packet-switching 
network, the monitor will send a 'how are you doing?' 
message through the packet-switching network to such 
node(s). If the node(s) fails to respond for a timeout 
period, the monitor will set up a temporary circuit to the 
node(s) through which the status of the node(s) can be 
obtained and the data from the node(s) can be relayed by 
the monitors. 

PERFORMANCE EVALUATION OF CONNECT 

To have a realistic performance evaluation, the lnmos 
transputer is used as the hardware model of the building 
blocks. The configuration under investigation has 1216 
processors, 960 data processors and 256 communication 
processors. It is assumed that the data processors have 
four communication links and the communication pro­
cessors have seven communication links. 

The circuit-switching network is a three-stage Clos 
network, N(32, 32, 32), consisting of 96 lnmos C004 
dynamic reconfigurable switches (32 X 32). 

All the communication links are serial links, including 
those in the circuit-switching network, and have a speed 
of 20 Mbit s- 1

. The experiments show that the effective 
one-directional transfer rate is 0.8 Mbyte s- 1

. The links to 
the T800 transputer processors have a much higher 
bandwidth due to overlapping of data transmission and 
acknowledgement, but we choose to use a conservative 
number. 

A simulation has been developed to evaluate the 
dynamic performance of the interprocessor communi­
cation network. The enhanced version, with two separate 
hypercubes on the top of the subtrees, is used. Figure 10 
shows the connections of a subtree. The root has five 
subtrees and each of the second level nodes has six 
children. Each subtree has a total of 30 data processors. 
The hypercubes are five-dimensional , so there are 32 such 
subtrees. 

The circuit-switching network can provide a link 
between any pair of data processors. Depending on the 
dynamic connection sequence, the number of pairs 
which can be linked simultaneously varies from 240 
(480 processors) to the best case of 480 (al l the 960 
processors). Translated into the data transfer rate, it is from 
384 Mbyte s- 1 to 768 Mbyte s- 1

. Bearing in mind that this 
is a static figure, the statistical dynamic performance is 

Vo / 16 No 2 1992 

Passing Cootrol 
Hypercube Hypercube 

Data processo~ 

Figure 10. A subtree of the simulated system 

expected to be much lower than the figures indicated 
here due to competition for the same nodes. 

The capacity of the packet-switching network depends 
on the roots of the subtrees. Theoretically, the throughput 
is 32 * 0.8 = 25 .6 Mbyte s- 1

. In practice, the throughput 
has to be kept much lower than the full capacity, since the 
average data transfer time will increase dramatically when 
the system reaches its full capacity - due to the channel 
contention. The following are some important assumptions 
made by the simulation. 

• The communication links are assumed to be driven by 
DMA, i.e. all links in both directions can operate 
simultaneously. 

• The message routing between the links on a 
processor is done by the CPU. The time taken by the 
CPU to route a message is assumed to be a uniform 
random number with an average of 30 ps. 

• The links connected to a processor share a common 
32-bit bus with the processor. The effect of the 
contention is implemented as an overall reduction of 
the link speed by a factor of 0.83 ; bearing in mind the 
speed of the bus is 20 to 40 times faster than that of the 
links, this is a conservative assumption. 

In addition to the hardware system assumptions, the 
following assumptions are made for the data flow 
patterns: 

(1) The interval time between two messages initiated by 
a data processor is a random variable with an 
exponential distribution. 

(2) The message length follows a distribution with the 
density function 

f(x) = 0.6 __ 1_ e - (ln x- iJ)/2a2 + 0.4A.e-.l.x 
ax/ 2rr 

which is a combination of a log-normal distribution 
and an exponential distribution. With this distribution, 
60% of the messages are less than 1 00 bytes long and 
have a near log- normal distribution with an average 
message length of 50 bytes, and the messages which 
are more than 1 00 bytes long have a near exponential 
distribution with an average length of about 3000 
bytes. This message size distribution was derived 
from an application of CONNECT to a parallel 
database machine25

. 

(3) The destinations of the messages from a data 
processor are uniformly distributed. 

Under the given distributions, Figures 1 1 a and 1 1 b 
show the relation between the throughput and the 
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Figure 11. Throughput versus delivery time 

message delivery time for the long messages and the short 
messages, respectively. The curves marked with 'hyper­
cube' will be discussed later. 

In the case of long messages, the delivery time climbs 
quickly after the system load exceeds 170 Mbyte s- 1

. 

Since the bandwidth of the circuit-switching network is a 
constant once a circuit is set up, the curve in Figure 11 a 
mainly reflects the change of the circuit setup time. 
Notice that the increase of circuit setup time is not due to 
the falling of the speed of the ci rcuit setup network, but 
mainly because of the dynamic property of the Clos 
network. When the system load increases, the waiting 
time for the connection of a data processor to become 
available increases in a Clos network. Under the given 
distributions, the system shows a practical throughput 
limit of 200 Mbyte s- 1

• 

For short messages, the delivery time is from a little less 
than 900 JlS to 970 JlS throughout the throughput range of 
a few Mbytes to 200 Mbyte. This is the deliberate result of 
one of our design goals. The short messages are mostly 
control messages such as synchronization signals, data 
locking and unlocking signals, acknowledgements etc. 
The delivery speed of those messages has a direct impact 
on the system performance. Therefore, we want them to 
be as small as possible and as steady as possible. To show 
the steadiness, an important parameter that we are 
looking for is the correlation between the size of 
messages and their delivery time. A close correlation 
between the sizes of the messages and their delivery 
times indicates that the message size and its t ravel time 
have a nearly linear relation and the delivery time for a 
given length of messages has a small standard 
derivation. This provides stable and predictable behaviour 

76 

for the short messages, which is important in the design of 
efficient higher level applications. The simulation results 
indicate that short messages have a very high (message 
size)-(delivery time) correlation, i.e. 0.97 throughout the 
throughput range of 6 to 200 Mbytes. In Figure 12a the 
sizes and delivery times of about 1000 short messages 
from the simu lation results are plotted . 

In an attempt to have a performance comparison with 
other architectures, we select the hypercube architecture 
as a benchmark since it is well accepted as a very strong 
multiprocessor architecture framework. 

A simulation was implemented for a hypothetical 
1 0-dimensional hypercube system with 1024 processors, 
close to the number of data processors in the case 
simu lated for CONNECT. 

Most of the simulation assumptions are the same as for 
CONNECT. The processors are assumed to have the same 
characteristics as transputers except that there are 11 
communication links on each processor, which is more 
than what we need in CONNECT. 

The messages are passed in the hypercube in a store­
and-forward fashion using node buffers. The E-cube 
routing with a route-shortest-first adaptive routing algorithm 
is used. 

The processors in the hypercube cannot be assumed 
to be dedicated communication processors. However, 
the load of the non-communication related computation 
on each of the hypercube processors is assumed to be 
very low, i.e. 17% of CPU utilization. Choosing this 
utilization, we are comparing CONNECT to the near best 
case of the hypercube in question. 

Notice that the comparison described here is far from 
exhaustive. There are many different types of hypercube 
architectures8

• 
9

• 
17

. Comparisons to other architectures 
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Figure 12. Sample message delivery times 
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may also be useful. More extensive comparisons in 
different perspectives shou ld be conducted. 

Figures 11 a and 11 b show comparisons of the 
(throughput)-(delivery time) between CONNECT and the 
hypercube in the case of short and long messages, 
respectively. Under a system load of 120 Mbyte s - 1

, the 
average delivery time of CONNECT is 40% less than that 
ofthe hypercube for long messages, and 21% less for short 
messages. For short messages, the delivery times of the 
systems are very similar. However, the hypercube is more 
sensitive to the system load. Also, it is sensitive to the CPU 
load for non-communication related computation, which 
is not shown in the diagrams. The sensitivity is caused by 
the interference between the long messages and the short 
messages, which also causes the problem of non-stability 
of the delivery time for short messages, as we will discuss 
below. 

Figures 12a and 12b depict 1000 short messages on the 
plain of (message size)-(delivery time) for the hypercube 
and CONNECT, respectively. The data were obtained 
under a system load of 120 Mbyte s-1

. It is clear that 
CONNECT has a much more stable delivery time. Linear 
regression analysis between message size and delivery 
time shows a mean square error of 28 816 f.1S

2 for 
CONNECT and 1 789 561 f.1S

2 for the hypercube; the 
latter is 62 times higher. The reason is that in CONNECT 
the short messages and long messages travel through 
different parts of the network, and there is very little 
interference between them, which is not the case for the 
hypercube. In fact, for any packet-switching network in 
which both long messages and short messages travel, the 
(message size)-(delivery time) correlation for the short 
messages is expected to be low and to grow worse when 
the system traffic load increases. 

DISCUSSION ON COST 

Since CONNECT uses a hybrid network, it seems to be 
more complex than a single network system. A cost 
analysis is needed. In general, cost analysis is a difficult 
issue which involves many factors such as overall design 
criteria, constraints etc. 

In a circuit-switching network comprising active 
switching components, the circuit is set up by individual 
switching components according to the routing infor­
mation contained in the message, and there is no need for 
an external control mechanism. Examples are the Hyfer­
switch of NASA/JPL8· 9 and the Wormhole network1 

. 

However, in our design, passive switching components 
(the connections are set by external control signals) are 
assumed for the following reasons. To avoid long 
propagation time, we want the number of stages of the 
circu it-switching network to be as small as possible as in 
the Clos network which can connect large numbers of 
processors with a small number of stages (three stages in 
our case.) However, the Clos network does not have a 
routing algorithm local to each switch component. 
Hence, it is difficult to build routing logic into the switch 
components. Furthermore, since the overall design is 
based on building blocks, it is desirable to use general 
purpose programmable switches control led by external 
signals. Therefore, an external control mechanism is 
needed, a control network in our case. 

Besides the small number of network stages, we gain 
other advantages by using two networks. By sending short 
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and long messages through different networks, the 
performance is improved, especially the stability of short 
messages. Also, the existence of two networks provides a 
higher reliability. 

While it is difficult to have absolute figures to judge the 
cost o r compare to other systems, we make the following 
observations. 

• Since the Clos network is a passive network, the 
switching components are much simpler than those 
used in an active network. Thus, the cost of the 
switching components should be much lower. 

• The requirement of the packet-switching network is 
less than that of a regular full scale network, since it 
only passes short messages . The network is simplified 
significantly compared to a full scale network. This 
implies a much lower cost. 

• In terms of communication lines, fo r a configuration of 
1024 processors, there are 4096 unidirectional single 
communication lines in the Clos network and about 
3000 such lines in the packet-switching network; a 
total of about 7000 lines. A hypercube network with 
the same number of processors would require about 
10 000 such lines. 

• Since the network in CONNECT can be built out of 
many independent modules, such as a subtree, a small 
hypercube and the Clos network, the cost should be 
much less than that of bu ilding a complete network al l 
together. 

• CONNECT requires a number of additional commun i­
cation processors, which is a cost not present in 
networks with active switching components. 

Combining the pros and cons discussed above, our 
feeling is that the cost of CONNECT should be comparable 
to, or less than, a single network of a comparable 
complexity. 

CONCLUSIONS 

CONNECT has shown the potential of building large scale 
parallel architectures based on limited hardware building 
blocks. It is a hybrid circuit-switchingand packet-switching 
network and provides advantages that the two types of 
networks cannot provide individually. The details of the 
circuit-switching network and the packet-switching 
network can still have many variations and be radically 
changed, but the phi losophy of a hybrid network is 
probably a solution to many architectures. 

As an example of an application, our ongoing research 
on a database machine, called the Linear-throughput 
Semantic Database Machine (LSDM) 25· l!!-Jo, uses 
CONNECT as its hardware base. In LSDM, each data 
processor of CONNECT is equipped with a disc drive, 
providing massively parallel I/O capacity. The combination 
of highly parallel computing power and parallel I/O power 
makes LSDM a machine of an extremely high throughput. 

Applications of CONNECT in other areas are yet to be 
explored. Since CONNECT tends to have a large storage 
space and high computation power, its applications in 
knowledge-based systems and AI systems should be 
examined. 

Some possibilities for improvement remain, which the 
authors intend to investigate in the future. For example, 
due to the limitations imposed by the building blocks, the 
control of the circuit-switching network is semi-distributed, 
instead of fully distributed. 
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Due to the nature of the Clos network, it is difficult to 
expand the network dynamically. The expansion needs 
either adding more stages or using switching components 
of higher connectivity. This problem will be studied 
further. 

The software mechanism which deals with the com­
ponent failure dynamically is yet to be developed and the 
performance under a partial system failure is to be 
studied. 
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