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Abstract—Methods of surface reconstruction from 3D point
clouds have received much attention in recent years due to
their vast array of applications and the increasing supply of
accurate 3D data. Providing smoothness, local modification, and
robustness to noise, the B-spline surface fitting is one of the
most popular of such methods. However, a problem encountered
when using B-spline surface reconstruction is the representation
of sharp features: corners and edges tend to be smoothed out.
We propose an approach to sharp feature preservation which
relies on curvature analysis of the B-spline surface. B-spline
patches that have high curvature and are surrounded by patches
with low curvature are identified as those representing sharp
features. The location of sharp features is then determined
through interpolation from low-curvature patches surrounding
the identified patches. Finally, these features are preserved
through repeated addition of points to the point cloud. We
evaluate our sharp feature preservation algorithm at varying
levels of noise, demonstrating its high accuracy at low noise and
moderate robustness as the noise increases.

Index Terms—computer graphics, analytical modeling

I. INTRODUCTION

Surface reconstruction is a growing area of research that
investigates methods of obtaining 3D computer models of
physical objects from data gathered through various scanning
techniques. Recent advancement in both scanning technology
and computer graphics has fueled increased demand for robust
and accurate surface reconstruction methods, as these methods
have widespread applications in areas including engineering,
medical imagery, and computer-generated imagery (CGI) an-
imation [1]. Conventional methods of surface reconstruction
tend to rely on modeling objects as polygonal meshes, most
ubiquitously those generated through Delaunay triangulation
[2].

One alternative approach to surface reconstruction which
has received significant attention is parametric surface fitting.
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Parametric surfaces exhibit useful properties that make them
favorable in certain scenarios compared to polygonal meshes.
Such surfaces have C2 continuity, permitting more accurate
representations of smooth objects, in addition to greater robust-
ness to noise [3]. Further, parameterization allows calculation
of the coordinates of any point on the surface, enabling one
to conduct a more accurate analysis of surface features [10].

The predominant technique of parametric surface recon-
struction is based on the generation of B-spline surface
patches, through an implementation known as the non-uniform
rational B-spline (NURBS) method [3]. One issue with B-
spline surfaces is that due to smoothness, sharp features such
as corners and edges tend to be represented poorly. This is
a problem, which, despite recent progress, still remains and
limits the effectiveness of B-spline and NURBS surface fitting
methods [4], [11].

This paper seeks to address the problem of sharp feature
preservation in B-spline surface reconstruction. We propose a
solution that preserves sharp features by analyzing the cur-
vature of the parametric surface, identifying B-spline surface
patches belonging to sharp features, using those patches to
interpolate the actual locations of sharp features, and then
adding points to the point cloud to accurately represent those
features. We hypothesize that local curvature analysis of B-
spline patches will allow for accurate detection and preserva-
tion of sharp features up to moderate levels of noise.

The novelty of this approach stems from the fact that while
sharp feature preservation during surface reconstruction has
been tackled in the past, existing approaches consist primarily
of first detecting points of the point cloud which belong to
sharp features, and then constructing the B-spline with added
expression of these points. A downside of such approaches
is that they are more sensitive to falsely identifying noisy
points as sharp features, in comparison to surface analysis,
which is not as easily influenced by noise [12]. In addition,
our use of point interpolation allows for a more accurate
representation of edges and corners which may not be defined



by the initial control points. Lastly, a method of sharp feature
optimization which detects edges and corners from the surface
domain rather than the point cloud has the potential to improve
efficiency and reduce computational cost.

The rest of this paper is organized as follows. In Section 2,
we provide background information on surface reconstruction
and especially on parametric B-spline fitting. In Section 3,
we review the relevant work that has been done on sharp
feature preservation for surface reconstruction. We describe
our approach to the problem in Section 4. We outline the
experiment we use to test our algorithm and present the results
of this experiment in Section 5. We evaluate these results in
Section 6. We conclude and discuss future research in Section
7.

II. BACKGROUND

Methods of surface reconstruction often take as their input
point clouds in R3 obtained from 3D scanning devices. Inputs
sometimes also include oriented or unoriented normal vectors
for each point, as well as other types of scanner information
[7]. In the present work, we focus on methods that generate
models based on point clouds alone. The most popular ap-
proach to surface reconstruction is to represent the model as a
polygonal mesh, most commonly as one composed of triangles
generated through Delaunay triangulation [2].

Parametric surface fitting is a popular surface reconstruction
alternative to mesh generation. The most common form of this
technique is NURBS, which is based on B-spline curves and
surfaces. B-spline curves are generalizations of Bézier curves.
A Bézier curve for the points {p0, p1, p2, p3} in R3 is the
parameterized curve

p(u) = uTMBp

where 0 ≤ u ≤ 1,

u =


1
u
u2

u3

 , p =


p0
p1
p2
p3

 ,

and MB is a 4 by 4 matrix of constants, known as the Bézier
geometry matrix [10]. The values of MB are such that p(u)
satisfies the following conditions: p(0) = p0, p(1) = p3,
p′(0) = p1−p0

3 , and p′(1) = p3−p2

3 . These conditions ensure
that the Bézier curve is contained in the convex hull of
{p0, p1, p2, p3}. For an arbitrary number of points, the Bézier
curve approximation for those points is often constructed by
repeatedly joining the Bézier curves of every consecutive set
of 4 non-overlapping points.

A B-spline curve for the points {p0, p1, p2, p3} is similar to
the Bézier curve for those points, but only approximating the
region from p1 to p2 [10]. Because of this, the B-spline curve
for any set of points must be constructed for the points pi to
pi+3, pi+1 to pi+4, and so on. Construction of B-splines thus
requires three times as much work as for Bézier curves, but
allows for both C1 and C2 continuity at joint points, unlike
Bézier curves, which exhibit only C0 continuity at joints.

B-spline surfaces share the same smoothness properties and
are constructed by parameterizing a B-spline curve over an
additional parameter v, so that

p(u, v) = uTMPMTv =
3∑

i=0

3∑
j=0

bi(u)bj(v)pij .

Here, M is again a 4 by 4 matrix of constants, P is the 4 by
4 matrix of pij for 0 ≤ i, j ≤ 3,

v =


1
v
v2

v3

 ,

and bi(u) and bj(v) are cubic functions known as blending
polynomials.

An important feature of the B-spline surfaces is that they
preserve C0, C1, and C2 continuity. This smoothness aids in
surface approximation but precludes accurate representation of
edges and corners. However, derivative continuity of B-spline
surfaces can be broken at certain points by repeating those
points multiple times in the point cloud. Figure 1 demonstrates
this effect.

Fig. 1. Sharp Feature Preservation. Using repeated points to preserve
sharpness in a B-spline surface.

Our sharp feature detection algorithm relies on finding the
curvature of the parametric surface used to approximate the
model. The two measures of a surface’s curvature at a specified
point are its mean curvature and Gaussian curvature, which are
respectively equal to the arithmetic mean and the product of
the surface’s two principal curvatures at that point. We use
the absolute value of the mean curvature to determine how
”curved” surface patches are. Finding the mean curvature of
a parametric surface P (u, v) involves finding the first and
second partial derivatives of P , as well as the normal vector
of P [20]. These are used to calculate what are called the
fundamental coefficients of P , given by:

E = Pu · Pu

F = Pu · Pv



G = Pv · Pv

and
L = Puu · n

M = Puv · n

N = Pvv · n,

where
n =

Pu × Pv

|Pu × Pv|
.

The mean curvature is then equal to

EN − 2FM +GL

2(EG− F 2)
.

We select the mean curvature for use in the present algo-
rithm because it yields nonzero values for features resembling
edges and corners, while the Gaussian curvature is zero at
valleys and ridges due to one principal curvature being zero.

III. RELATED WORK

Because sharp features are generally of interest when con-
ducting any form of surface reconstruction, numerous methods
have been developed for identifying such features. These
methods can generally be divided into three categories. First
are those which require a polygonal mesh as their input
and identify sharp features using the normal and connectivity
information of the mesh. Second are those which operate
directly on the point cloud and identify sharp features through
analysis of point neighborhoods [12]. Third are those which
detect sharp features from a parametric surface constructed
from the point cloud. In our research, the input of our
algorithm is either a raw point cloud or a B-spline surface,
not a polygonal a mesh. Although it is possible to construct a
polygonal mesh from the point cloud and then apply a mesh-
based sharp feature detection method, mesh generation without
any additional connectivity or normal information tends to
chamfer edges and corners, making it sub-optimal for sharp
feature detection [13]. In addition, mesh methods of sharp
feature detection serve primarily as post-processing steps for
mesh-based surface reconstruction, which does not fit our goal
of B-spline surface optimization. For these reasons, we do not
need to explore the state of the art on the detection of sharp
features from mesh input. Rather, we will direct our attention
to methods that identify sharp features from either the point
cloud directly or from a parametric surface input.

Methods of sharp feature detection from the point cloud
typically begin with identifying point neighborhoods, often
through a k-nearest neighbor algorithm, and then analyze these
neighborhoods to identify points that belong to sharp features.
We will first address point cloud detection methods, which,
rather than specifically finding sharp features, extract line-type
features more generally. Such features include edges, creases,
and border loops, and while they tend to have high local
curvature, they are not necessarily sharp. Gumhold et al. [18]
propose a method for identifying surface features: they first use
a Delaunay tetrahedralization and subsequent Riemann tree to

obtain connectivity information of the point cloud, allowing
them to find point neighborhoods. They then analyze these
neighborhoods using principal component analysis (PCA),
yielding a dense set of points representing line-type features.
A minimum-spanning tree is then used to reduce these points
to a sparse set representing feature lines. Pauly et al. [19] use a
similar method; they identify point neighborhoods and utilize
PCA coupled with a minimum spanning graph to approximate
sharp features. However, Pauly improves upon Gumhold’s
method by adding a multiscaling analysis of neighborhoods
of varying sizes. This makes their algorithm more robust,
especially to noisy data points, but increases computational
cost. An important limitation of both Gumhold’s and Pauly’s
methods is that they detect any visually prominent surface
feature, while neither method differentiates between sharp and
non-sharp features.

There have been several approaches proposed specifically
for detecting sharp features from point clouds. Demarsin et al.
[16] identify sharp features using normal estimation; they first
construct Delaunay triangulations of each point’s k-nearest
neighbors, which allows for normal vectors to be estimated
for each point along the object’s surface. Using normal in-
formation, they then locate points that are likely to belong
to sharp features and cluster the point cloud according to the
locations of these features. Similar to Gumhold’s Riemann tree
method, Demarsin uses a minimum spanning tree to extract
sharp feature lines from the point cloud. An important note
on Demarsin’s method is that it focuses solely on detecting
closed edges, while in the present work, we aim to detect all
sharp features. Similarly to Demarsin, Weber et al. [14] use the
triangulation of local point neighborhoods to estimate surface
normals. However, they introduce the use of a Gaussian map
to detect when normal vector behavior indicates that a point
belongs to a sharp feature. One downside of Weber’s approach
is that it is quite sensitive to noisy points around sharp
features. Bazazian et al. [12] propose an improvement on
Weber’s method. They still apply a Gaussian map to point
neighborhoods found through a k-nearest neighbor search.
However, they estimate normals using PCA and analysis of
the eigenvalues of each neighborhood’s covariance matrix, as
opposed to simple triangulation. The result is an algorithm that
is faster and more robust to noise than Weber’s. Despite this
improvement, Bazazian’s approach achieves under 90% preci-
sion with no noise present, an accuracy that we hypothesize
could be surpassed through curvature analysis.

There have been relatively few methods proposed that
identify sharp features from parametric surface input. Weber et
al. [17] extend their Gaussian map approach to improve sharp
feature preservation in moving least squares (MLS) surface
reconstruction, and their optimization proves successful up to
roughly 0.5% noise. However, MLS surface reconstruction,
despite being a parametric surface fitting method, is different
from NURBS and B-spline techniques, which are the focus
of the present work. Some strategies have been proposed for
preserving sharp features in B-spline surfaces, including that
of Leal et al. [4], who use an evolutionary algorithm to find



optimal weights of points in NURBS patches to minimize their
error in approximating sharp features. Their method is able to
achieve a 14% reduction in the distance between the model
and the NURBS surface, although their algorithm is computa-
tionally expensive. A few others, particularly [5] and [6], have
tackled NURBS surface optimization with the same approach
of employing algorithms to find optimal point weights for error
minimization. Some limitations of such strategies are that they
are not tailored specifically to sharp features and tend to have
high computational costs [4], whereas our method focuses
specifically on sharp feature representation without having to
optimize the entire surface.

IV. SHARP FEATURE PRESERVATION

We now describe our approach to sharp feature preservation
for B-spline surface reconstruction. The first step of our
method is to construct an initial B-spline surface modeling
the point cloud. This parametric surface consists of many B-
spline patches, each representing four points. We then calculate
k for each patch, defined as the absolute value of the mean
curvature at the center point of a patch, where the center point
for a B-spline patch parameterized by p(u, v) for 0 ≤ u, v ≤ 1
is defined as p( 12 ,

1
2 ).

Once the curvature of each patch has been calculated, we
establish a threshold ε > 0 such that if k < ε for a patch, that
patch is classified as flat, and if k > ε, that patch is classified
as curved. After classifying them as flat or curved, we compare
each patch to its 8 neighboring patches. If a curved patch has
4 or more flat neighbors, we classify it as sharp. These patches
are predicted to belong to sharp features of the original model.

Our sharp feature detection algorithm is based on the fact
that B-spline patches representing sharp features will have high
curvature and be neighbored by patches with low curvature.
Because any non-sharp region of a surface will resemble a
flat plane when magnified to a high enough degree, this is a
valid assumption to make when the point cloud has reasonable
resolution near sharp features.

After identifying sharp patches, we locate sharp features
themselves by interpolating based on the surrounding flat
patches. Because a sharp feature is either a corner or an edge,
we expect it to be either an intersection of two planes (an
edge) or an intersection of more than two planes (a corner).
Because every sharp patch must be surrounded by at least four
flat patches, we use these flat patches to approximate planes
and then find their intersections, predicting the locations of
sharp features. Doing this allows us, for each sharp patch, to
generate a point which we predict to lie on the sharp feature
that the patch represents.

Once we have found points corresponding to the sharp
feature represented by every sharp patch, we add each of
these points to the point cloud three times. We then regenerate
the B-spline surface at and around sharp patches, and the
repeated points break continuity and allow for sharp feature
preservation.

V. EXPERIMENT AND RESULTS

We test our sharp feature preservation algorithm using a
point cloud consisting of a box with a cylinder on top. The
point cloud contains roughly 34 000 uniformly distributed
points and includes a total of 14 edges and 8 corners, as shown
in Figure 2. The geometric simplicity of the model allows us
to know the exact location of each edge and corner, which
will facilitate precise evaluation of our accuracy in preserving
sharp features.

Fig. 2. A Point Cloud used to test our algorithm.

We first model this point cloud with a normal B-spline sur-
face and then apply our sharp feature preservation algorithm.
We gauge our algorithm’s accuracy by finding the average
error of our optimized surface in approximating the sharp
features of the original model. Our error estimates are found
by calculating the average distance from the model to the
parametric surface at each corner point and at 100 equally-
spaced points along each edge, with distances normalized to
the average distance between adjacent points of the point
cloud. We calculate this error for four categories of sharp
features: straight edges, the lower circular edge, the upper
circular edge, and corners, as shown in Figure 3. We also
test our algorithm’s robustness to noise, analyzing each sharp
feature separately in a bounding box of side length equal to
one-eighth that of the full model. We add to each original
point a random vector of magnitude equal to the noise level,
represented as a percentage of the length of the bounding box,
and then evaluate the accuracy of our algorithm at varying
levels of noise. We also record noise levels as decibels of
signal-to-noise ratio (SNR); this aids in expressing the power
of noise in relation to the strength of the point cloud.

At all tested noise levels, our algorithm has been highly
successful in detecting sharp features of the model with
our curvature threshold ε set at 0.10. Patches representing
straight edges, circular edges, and corners were all identified
accurately; edges consisted of a 1-patch-wide band of patches,
while corners consisted of a single patch. No patches on
flat faces of the model, nor any on the lateral face of the
cylinder, were identified as sharp. Our algorithm was thus
100% accurate at detecting sharp patches.



Fig. 3. Sharp Features. A Point Cloud with straight edges (green), lower
circular edge (orange), upper circular edge (red), and corners (yellow) marked.

After detection of sharp patches, our algorithm used sur-
rounding flat patches to interpolate the location of sharp
features, added repeated points to represent those features,
and reconstructed the B-spline surface around those features
for sharp feature preservation. Figure 4 displays the effect
this had on different sharp features. The error values of the
parametric surface in representing sharp features prior to and
after optimization for various noise levels are shown in Table
1.

Noise Level Sharp Feature Initial Error Final Error Reduction
Straight Edges 0.3955 0.0000 100.00%

0.0% Lower Circular Edge 0.3917 0.0002 99.95%
Upper Circular Edge 0.3997 0.0002 99.95%

Corners 0.4958 0.0000 100.00%
Straight Edges 0.3952 0.0444 88.77%

0.5% Lower Circular Edge 0.3906 0.0428 89.04%
(46dB) Upper Circular Edge 0.3992 0.0450 88.73%

Corners 0.4951 0.0499 89.92%
Straight Edges 0.3939 0.0890 77.41%

1.0% Lower Circular Edge 0.3901 0.0829 78.75%
(40dB) Upper Circular Edge 0.3979 0.0849 78.66%

Corners 0.4933 0.0927 81.21%
Straight Edges 0.3920 0.2172 44.59%

2.0% Lower Circular Edge 0.3879 0.2241 42.23%
(34dB) Upper Circular Edge 0.3966 0.2053 48.23%

Corners 0.4903 0.2468 49.66%

TABLE I
Sharp feature error values prior to and after surface optimization,

normalized to the average distance between adjacent points in the original
point cloud.

When no noise was present, our optimization algorithm
preserved edges and corners almost perfectly, with error reduc-
tions of over 99.90% for all sharp features. At the 0.5% noise
level, our algorithm remained effective, reducing errors by
nearly 90% for all sharp features. At 1.0% noise, our percent
reduction dropped to around 80%, and at 2.0% noise, it fell
to 40% to 50% depending on the type of sharp feature. Past
2.0% noise, our error reduction continues to decrease and our
algorithm begins to incorrectly label flat patches as sharp. That
indicates that our algorithm performs best at low to moderate
levels of noise.

Fig. 4. Sharp Feature Optimization. The B-spline surface before (left) and
after (right) sharp feature preservation through interpolation and addition of
repeated points. Here, patches identified as sharp are highlighted red. The
specific sharp features represented are (from top to bottom): a straight edge,
the lower circular edge, and the upper circular edge.

VI. EVALUATION

Our curvature-based sharp feature preservation algorithm
for B-spline surface fitting proves successful and can tolerate
up to roughly 2% noise, corresponding to 34db of SNR. We
have thus demonstrated a method of surface reconstruction
optimization which specifically targets and represents sharp
features from a parametric B-spline surface. In contrast to most
prior approaches to sharp feature preservation, our method
does not require mesh input, nor does it require the point cloud
itself. Rather, it is a post-processing algorithm that operates on
surface patches.

Our conceptually simple algorithm shows very favorable
results at low levels of noise, with only a small computational
cost, unlike machine learning-based methods of NURBS op-
timization, which tend to require more complex analysis and
longer training time. In addition, the fact that we detect sharp
features based on the B-spline surface allows circumvention of
many of the challenges encountered by point-cloud methods.
For instance, our algorithm takes advantage of the natural re-
silience of B-spline surfaces to noisy control points, affording
our method greater robustness to noise than point-cloud-based
methods. At the same time, our method retains high accuracy;
its precision is par with or surpasses that of the aforementioned
methods; yet the fact that we analyze surface curvature offers



a convenient approach to sharp feature preservation free from
conventional requirements of neighborhood searches, normal
estimation, or PCA.

VII. CONCLUSION AND FUTURE RESEARCH

We have designed and implemented a novel approach to
optimizing parametric surface reconstruction through curva-
ture analysis of B-spline patches. Our algorithm provides
a means of sharp feature preservation, which, unlike other
methods, relies only on the parametric surface, rather than
on connectivity information, normal estimates, or other point-
based data. Our method proves highly successful at detecting
and representing sharp features at low levels of noise and is
moderately robust as noise increases.

In the future, we hope to improve upon our sharp feature
preservation algorithm by testing it against increasingly com-
plex point clouds, such as those with more intricate sharp
features or with non-uniform point density, and adjusting our
procedure to handle more difficult models. We would also
like to increase our algorithm’s effectiveness at higher levels
of noise by improving the versatility of our sharp feature
interpolation procedure. Finally, we would like to explore
the potential of curvature analysis to optimize other forms of
parametric surface fitting.
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