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ABSTRACT
Prostate cancer is the second leading cause of cancer re-
lated deaths among men. Because of the slow growing na-
ture of prostate cancer, sometimes surgical treatment is not
required for less aggressive cancers. Recent debates over
prostate-specific antigen (PSA) screening have drawn new
attention to prostate cancer. Genome-based screening can
potentially help in assessing the risk of developing prostate
cancer. Due to the complicated nature of prostate cancer,
studying the entire genome is essential to find genomic traits.
Due to the high cost of studying all Single Nucleotide Poly-
morphisms (SNPs), it is essential to find tag SNPs which
can represent other SNPs. Earlier methods to find tag SNPs
using associations between SNPs either use SNP’s location
information or are based on data of very few SNP markers
in each sample. Our study is based on 2300 samples with
550,000 SNPs each. We have not used SNP location infor-
mation or any predefined standard cut-offs to find tag SNPs.
Our approach is based on using collaborative filtering meth-
ods to find pairwise associations among SNPs and thus list
top-N tag SNPs. We have found 25 tag SNPs which have
highest similarities to other SNPs. In addition we found 16
more SNPs which have high correlation with the known high
risk SNPs that are associated with prostate cancer. We used
some of these newly found SNPs with 5 different classifica-
tion algorithms and observed some improvement in prostate
cancer prediction accuracy over using the original known
high risk SNPs.
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1. INTRODUCTION
Prostate cancer is the most common type of cancer found

among the American male population. It is the second lead-
ing cause of cancer related deaths. Each year about 240,890
new cases of prostate cancer cases are detected [13]. Exist-
ing clinical tests for prostate cancer have limited accuracy,
with the U.S. Preventive Services Task Force asserting that
there are concerns that the harms of testing outweigh the
benefits [7]. Also the decision to carry out these tests at
an early age is dependent on the family history of a pa-
tient. Genome-based screening can potentially help in iden-
tifying individuals for which performing further testing is
advisable. Single Nucleotide Polymorphisms (SNP) repre-
sent single base change in a DNA sequence. SNPs are the
most common genetic variations found in the population.
SNPs themselves do not cause any disease but help to de-
termine the response to certain drugs and patient’s suscep-
tibility to develop a particular disease [6]. In order to study
complex diseases such as cancer all of the SNPs need to be
studied to find their associations with a particular disease.
Genome-wide association studies carry out research on the
entire genome and SNPs to find traits for major diseases.
Such studies typically compare people with disease (cases)
and people without the disease (controls), to see if a par-
ticular SNP is more common among cases and thus can be
associated with a particular disease [3]. Even with rapid re-
duction in hardware costs, it is not possible to genotype all
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the SNPs. [8] mentions cost and computational complexity
as motivation for finding tag SNPs.

2. APPROACH

2.1 Collaborative Filtering (CF)
Collaborative filtering methods are popular on the on-

line shopping websites like Amazon. Collaborative filtering
methods are also applied to sensing and monitoring data, fi-
nancial service institutions, advertising agencies, electronic
commerce and web 2.0 applications. Collaborative filtering
is also used to suggest research papers based on the users’
research interest [4]. To the best of our knowledge, a col-
laborative filtering approach has not been used to find the
associations between SNPs and thus to find the tag SNPs.
We have used a memory-based collaborative filtering al-

gorithm on our entire dataset. In our case, user association
is replaced by association among SNPs. Also items in our
case refer to corresponding frequency counts of high risk,
low risk and controls for each SNP-allele combination.

2.2 Similarity computation
We have used the Pearson correlation and vector cosine

similarity computation methods in this paper [5].

2.2.1 Pearson correlation based similarity computa-
tion

This method provides the strength of the linear depen-
dence between two users. The output value in the correla-
tion metric are in the range of -1 to +1 where -1 indicates
a perfectly negative correlation and +1 indicates a perfectly
positive correlation. For this computation, normalization
of the dataset using standard deviation and mean is re-
quired [11]. The Pearson correlation coefficient r between
two data samples (Xi and Yi) is given by following formula:

r =
∑n

i=1(Xi−X̄)(Yi−Ȳ )√∑n
i=1(Xi−X̄)2

√∑n
i=1(Yi−Ȳ )2

. where, X̄ and Ȳ are the

sample means.

2.2.2 Cosine similarity computation
The similarity between two vectors is given by measuring

the cosine of the angle between them. The similarity values
computed using this measure are in the range of -1 to +1
where +1 indicates that two vectors are most similar with
each other [12]. Similarity using this measure between two
vectors (Xi and Yi) is given by the following formula:

Similarity= cosΘ =
∑n

i=1 Xi×Yi√∑n
i=1(Xi)2×

√∑n
i=1(Yi)2

3. METHODOLOGY
Algorithm 1 provides the pseudo code for our method.

Figure 1 shows the system architecture and the following
sections provide the detailed description of each step:

3.1 Data preprocessing and integration
Prostate cancer case (high-low) and control information

are stored in a phenotype dataset. That information is
mapped with the SNP, allele information in genotype us-
ing sample id field.

3.2 Compute frequency count
We found that there are approximately three different

allele combinations for each SNP. We computed distinct

Algorithm 1 Algorithm for clustering SNP-allele pairs
based on similarity

Input: A set of n tuples <SNP, allele, case, control>
Output: k clusters: {C1, C2, . . . , Ck} (note: k is not an
input parameter)

1: Group all SNP-allele pairs (SA) and their
corresponding case/control counts

2: for i = 1 → n− 1 do
3: for j = i+ 1 → n do
4: Compute similarity (SAi, SAj);
5: end for
6: Merge i with the most similar node j∗;

If j∗ is already merged with a cluster
C = SA1, . . . , SAl, add i to cluster C;

7: end for

Figure 1: System architecture

SNP-allele combinations for each SNP. There are a total
of 1,713,739 SNP-allele combinations. For each SNP-allele
combination, we computed the frequency counts of high risk,
low risk and controls. To fit into the existing analogy of
user based collaborative filtering, in our case each SNP-
allele combination represents users and the corresponding
frequency counts are comparable to the ratings each user
has given to different items. Using this step we have consid-
erably reduced the computation by almost 1000 times from
samples * SNPs(550,000*2300) to just SNP-allele* controls,
low risk case, high risk case frequency count (1713,739*3).

3.3 Compute Z-score matrix
This step is not required if we are working with a cosine

similarity matrix. For Pearson correlation, before comput-
ing similarity between two vectors it is necessary to normal-
ize the sample data, otherwise the correlation will be biased
towards variables with higher ranges in sample data. To nor-
malize sample data, we computed the z-score matrix using
mean and standard deviation of each vector.
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3.4 Calculate similarity matrix
Here we computed similarities over the matrix of 1,713,739

rows (SNP-allele) combination and 3 columns (controls, low
risk case and high risk cases) using the Pearson correlation
and cosine similarity matrices. For Pearson correlation we
used the Z-score matrix computed in the previous step. Ide-
ally each SNP-allele vector needs to be compared with every
other SNP-allele vector to find the similarity between two
vectors but since the similarity measure is undirected it is
same in both directions. The similarity matrix is symmetric
which reduces the total computation time by half.

3.5 Extract tag SNPs
This is the final step of our process. In this step, we

extract top-N SNP-allele combinations based on their fre-
quency in the similarity matrix. These SNP-alleles represent
centroids in the clusters. Since these SNPs have higher sim-
ilarity with all other SNPs (similarity count), they can be
used to represent all these SNPs and thus act as tag SNPs.

4. EXPRIEMENTAL SETUP

4.1 Dataset details
For our experiment we have used the Cancer Genetic Mark-

ers of Susceptibility (CGEMS) prostate cancer genome-wide
association study provided by dbGaP(data base of Genotype
and Phenotype) [1]. For this dataset, genotyping (Illumina
platform) of 554,291 SNPs is performed and is included in
the study. This dataset contains 1,172 prostate cancer pa-
tients and 1,157 control patients of European ancestry. Of
1,172 prostate cancer patients 737 are classified as high risk
patients and 493 are classified as low risk patients. Aggres-
siveness of cancer is determined using Gleason score (>= 7)
and the stage of prostate cancer (stage 3 or above). The
dataset contains only family history and age as phenotype
parameters. It does not contain any clinical parameters such
PSA test results. Genotype data contains bi-allelic data for
each SNP.

4.2 Hardware and software
We used an AMD Opteron machine with 47 processors

(12 cores each) and 504 gigabytes of physical memory for
our experiments. We used a Mysql server for storing the
dataset. The source code is written in MATLAB.

5. RESULTS

5.1 Top-N tag SNPs
We found top-25 tag SNPs from our methodology. We

used Pearson correlation based similarity computation for
finding these tag SNPs. Table 1 shows top 25 tag SNPs along
with their corresponding similarity count. Also a graph in-
dicating 25 tag SNPs along with its subset of similar SNPs
is shown in Figure 3. In Figure 3, each node represents a tag
SNP. The nodes are colored based on their degrees(similarity
count) as follows: the degrees of blue, magenta, green, yel-
low, maroon, and red nodes are 2, 5, 7, 8, 10, and 11 respec-
tively.

5.2 Other associated SNPs
We found 16 high risk SNP-alleles related to prostate can-

cer from literature and SNPedia [2]. Through our cosine sim-
ilarity computations, we found other SNPs which are highly

Figure 2: Subgraph of association among SNPs

SNP-allele Similarity count
rs6632302-TT 12959
rs4077503-AA 8952
rs7700289-CC 8760
rs482877-CC 7460

rs17342020-AA 7138
rs7604484-TT 5636
rs364641-AA 5446
rs9823690-GG 4552
rs11688574-TG 3886
rs7760456-GG 3608
rs2554644-TT 3579
rs1924444-TC 3512
rs359045-AA 3465
rs6942067-AA 3317
rs506776-CC 3164
rs726730-TC 3155
rs9650108-AA 3039
rs7896195-CC 2671
rs8072737-TT 2623
rs305578-CC 2615
rs1427602-AG 2455
rs1552324-AC 2381
rs1401861-GG 2279
rs3734838-GG 2268
rs12509926-TC 2218

Table 1: 25 tag SNP-alleles

similar (cosine similarity > 0.9) to those 16 SNPs. Table
2 shows these 16 original high risk SNP-alleles along with
their associated SNP-alleles and cosine similarity measures.

5.3 Classification using newly found SNPs
To check the usage of these newly found SNPs using col-

laborative filtering, we applied an information gain algo-
rithm on all 32 SNPs (16 previously found prostate cancer
risk SNPs and 16 newly found SNPs). We used a ranking
method in information gain attribute selection. We have se-
lected first 16 SNPs according to the information gain out-
put. We found that among 16 newly found SNPs rs4775919,
rs1544872, rs8111157 and rs1998641 are useful and they
are associated with rs1859962, rs1447295, rs7652331 and
rs10492519 previously found risk SNPs respectively. We ap-
plied 5 classification algorithms on these 4 newly found SNPs
and 12 previously found risk SNPs. Table 3 shows compari-
sion of prediction accuracy between previously found 16 risk
SNPs and 12 previously found and 4 newly found SNPs us-
ing the collaborative filtering approach.
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Original high risk Associated Similarity
SNP-allele SNP-allele

rs4430796-AA rs9525604-TC 0.9923
rs1859962-GG rs4775919-AG 0.9745
rs6983267-GT rs9588748-GG 0.9823
rs1447295-AC rs1544872-TT 1.0000
rs1571801-AA rs789950-GG 0.9978
rs2107301-TT rs482355-TC 0.9145
rs1545985-AG rs4235534-CC 0.9145
rs7652331-TT rs8111157-AG 0.9951
rs629242-CT rs7585535-GG 1.0000

rs13149290-CC rs392306-CC 0.9874
rs251177-CT rs7878588-TT 0.9733

rs10492519-AG rs1998641-GG 0.9311
rs5945572-AA rs7935166-AA 0.9210
rs1456315-AG rs4242474-CC 0.9921
rs4054823-TT rs4520319-AG 0.9654
rs4242382-AA rs4242474-CC 0.9321

Table 2: prostate cancer high risk associated SNPs

Classification Accuracy with Accuracy with 4
algorithm 16 risk newly found SNPs and

SNPs 12 risk SNPs
Naive bayes 60% 62.44%
Bayesnet 59.778% 62.22%

SMO-polykernel 57.778% 60.8889%
SMO-RBF 56.4444% 61.333%

J48 57.1006% 58.87%

Table 3: Improvement in prediction accuracy with
4 newly found SNPs

We found 4 newly found SNPs, which were not previously
known to be associated with prostate cancer, and which we
used to increase the accuracy of our prediction algorithm. It
is known that rs4775919 is associated with psoriatic arthritis
[9] and rs1544872 is associated with type 2 diabetes [10].
However, their association with prostate cancer is not known
at this time. More clinical and molecular research is needed
for these 4 SNPs to clarify their association with prostate
cancer.

6. CONCLUSIONS
We have described a novel method for finding association

among a very large number of SNPs without using any gene
location information. We have used a collaborative filter-
ing methods to find the association among SNPs. To find
the similarity between each pair of SNPs, we used Pear-
son correlation and Cosine similarity measure. We found 25
tag SNPs which have highest similarity with other SNPs
in the dataset. Altogether approximately 400 SNPs can
be used to replace other 1713,739 SNPs. Researchers can
use these SNPs to facilitate research in prostate cancer and
other multi-genetic diseases, and thus reduce the overhead
of working on the entire genome. This approach can be
easily extended for top-N SNPs. Also we found high simi-
larity (> 0.9) 16 other SNPs which are associated with the
previously found SNPs mentioned in the literature. Out of
the 16 newly found SNPs, we used 4 SNPs for classification
and achieved some improvement in prediction accuracy. We
have used our approach on the entire dataset of almost 2300
samples with 550,000 SNPs per sample. Our method can be
easily generalized to any large SNP dataset. Our algorithm
is scalable for a large dataset with parallelization.
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