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Abstract. In this paper it is shown a possibility of creating efficient
computing technology for solving matrix-vector-based scientific, engi-
neering, economic, and other problems. It is based on using the new class
of hypercomplex systems opened by W.F. Hamilton but formed by a pro-
cedure which is different from the procedure proposed by his followers.
This method allows, for example, to reduce multiplication/summation
of two large size matrixes/vectors to multiplication/summation of only
two whole numbers and, in general, to use a single real number as an
operand instead of matrix/vector. Transforming matrices and vectors
into whole numbers can be performed on the basis of parallel mas-
sive/multiprocessor systems.

1 Introduction

Matrix-vector processing is known to find a wide usage for solving numerous
scientific, engineering, economic, and other problems. In this paper it is proposed
an efficient computing method for matrix-vector processing.

Irish world-known mathematician W.F. Hamilton proposed and to-gether
with his followers developed the new class of hypercomplex systems and quater-
nion algebra based on these systems [1]. Later other mathematicions showed the
possibility of construction of a class of hypercomplex systems whose presenta-
tions have a dimension 2¢ (d = 0,1,2,...,) and can be obtained by a special
procedure of doubling. In particular, systems of dimension 1 and 2 are the real
and complex number systems respectively. Each of such systems is presented as
linear algebra.

All of above systems with a dimension more than 4 don’t have properties
of associativity and commutability. In this paper is presented other method of
construction of associative- commutative linear algebra systems based on hy-
percomplex systems which are formed by a special procedure of doubling and
differed from the above mentioned procedure.

On the basis of this method the sequence of such algebra systems is biult in
correspondence with the following formula:

H(2n) = H(n) + H(n)j(n), (1)
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where n is a dimension of algebra (n = 2% d = 0,1,2,...); j(n) is the new
hypercomplex unit which does not belong to algebra H(n). The basis of algebra
H(2n) is the sequence of hypercomplex units 1, j(1),5(2),...,7(n), ..., j(2n); the
basis of algebra H(n) is : 1,5(1),4(2),...,5(n — 1).

A rule for doubling the new hypercomplex units is introduced in correspon-
dence with requirements for associativity and commutability. For example, any
number of hypercomplex system corresponding to algebra of a dimension 16 has
the following view:

z(15)5(1))j
where j(1)? = —1; j(2)* = —1; j(4)* = =1; j(8)* = -1.

If d = 0 the algebra corresponds to real number system. If d = 1 the algebra
corresponds to complex number system. The algebra of domension 4 is the result
of doubling complex number system.

The following property for the introduced algebra classes H(n) is based on
the isomorphism between complex and real numbers complex modulo [2].

Let a complex module is m = m(1) + m(2);j and its norm is:

N =m(1)? +m(2)% (m(1),m(2)) = 1.

Then each whole number of algebra H(2n) is comparable with only one real
remainder,which corresponds to only one value of set: 0,1,2,..., N — 1. Proof.
Let us consider a hypercomplex number X (2n) of a form similar to (2). Extract
the following complex numbers within X (2n) :

X(0) + X(1)j(1)

X(2) + X(3)j(1)

X(4) + X(5)j(1)

X(2n—2) 4+ X(2n—1)j(1)

In correspondence with the above mentioned declaration each of these num-
bers is comparable with a single remainder out of a range [0— (/N —1)] to complex
modulus m.

Denote these remainders as k(1), k(2), k(3), .... Now form the following hy-
percomplex number within algebra H(n)

K(n) = k(1) + k(2)7(2) + (k(3) + k(4)7(2))7(4) + ... 3)
Evidently, (2) and (3) are connected by the congruence relation
X (2n) = (K (n))ymodm (4)

The basis of algebra classes H is linearly independent. Becuase of the number
X (2n) of algebra H(2n) is comparable with a single remainder K (n), which is
a hypercomplex number of algebra H(n).
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Thus this procedure sets isomorphism between hypercomplex remainders of
algebra H(2n) and H(n) modulo m. Applying it d times we shall obtain the real
remainder having the single significance from set: 0,1,2,..., N — 1.

2 Matrix Presentation of Associative-Commutative
Algebra

Both Hamilton systems and associative-commutative systems can be presented
in matrix form. So a system of dimension 4 has four different methods of a
presentation in matrix form. For example, the matrix form of such system has
the following view for one of four possible basises:

X = 2(0)U(4) + 2(1)j(14) + 2(2)5(24) + 2(3)j (34) =

( )
z(0) —z(1) —z(2) x(3)
z(1)  2(0) —2(3) —=(2)
x(2) —z(3) x(0) —=(1)
z(3) z(2) z(1) =x(0)

The important significance for further considerations has a conception of
conjugate hypercomplex numbers Z and Z’ which belong to H(2n) and are
determined as

Z=X+Yjn)and Z' = X' —Y'j(n),
where X, X' Y,Y’ belong H(n) and each of couple X, X’ and Y,Y’ presents
conjugate numbers within H (n).

Coefficients of numbers X are elements of the first column of its matrix
presentation or elements of the first array of the matrix presentation of number
X'. For example, if

X =2(0) +2(1)j(14) + x(2)7(24) + 2(3)7(34) (5)

then
X' =2(0) — x(1)j(14) — (2)j(24) + 2(3)5(34) (6)

The matrix form of X was presented above and X’ has view

z(0) (1) x(2) =(3)
—2(1)  (0) —=(3) =(2)
—2(2) —x(3)  x(0) =(1)
2(3) —x(2) —=(1) =(0)

3 Matrix-Vector Procedures

Elements of two arbitrary square matrix-multipliers X, Y are chosen from asso-
ciative-commutative linear algebra H(e). Let

X = [a(if)] (7)
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and
Y=t [y(ij)], (8)
where 7,5 = 1,...,n.
Let us present the matrix X-premultiplier as a vector-column:

X = [X'(u)], 9)

where X (u), X'(u) belongs to H(n) and are conjugate numbers; u = 1,2, ..., n.
Coefficients of number X (u) are elements of u — th array of matrix X. Here
coefficients of number within algebra H(n) are numbers of algebra H(e), that
is, they can be real and complex numbers or numbers from algebraic systems
obtained by the procedure of doubling. It means that algebra H(e) is embedded
in algebra H(n).
Now present the matrix Y-postmultiplier as a vector-array:

Y = [Y(v)], (10)

where Y'(v) belong to H(n) and its coefficients are elements of v — th column of
the matrix Y; v =1,2,...,n.
The basis of hypercomplex system corresponding to algebra H(n) is

1’j(1)’j(2)""’j(n_1) (11)

Then numbers X'(u) and Y (v) will have the following view within this basis:

X'(uw)=zwl)+/—z@2)j)+/— ...+ /—z(w)jv—-1)+/— ...+ /) —
z((un)j(n — 1),
where choosing sign ”+” or ”-” depends on a singularities of conjugate numbers
X (u) and X'(u) (z(uv) is the element of matrix X) and

Y(v) =y(1v) + y(20)j(1) + ... + y(wv)j(u — 1) + ... + y(nv)j(n — 1),

where y(uv) is the element of matrix Y.

It was already noticed that the elements of matrices z(uv) and y(uv) belong

Form a matrix Z(e) from all possible pair products of numbers X'(u) and
Y (v).

A part of matrix Z(e)

belonging to algebra H(e) is equal the product of square matrixes X and Y.

In order to prove this equaty it is enough to show that the part of the product
X'(u)Y (v) belonging to algebra H(e) is a significance of the element z(uwv) of
matrix product Z = XY, that is,

z(uww) = >°0  w(ui)y(iv), where i = 1,...,n.
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On nother hand, a part of number-product X’(u)Y (v) belonging to algebra
H(e) is the sum of corresponding pair products of elements of the first upper
array of number X’(u) in its regular matrix presentation and elements of the
first left column of number Y (v) of its regular matrix presentation. The first
matrix array of number X'(u) corresponds to u — th array of matrix X and the
first matrix column corresponds to v — th column of matrix Y.

Thus, the part of the product X’(u)Y (v) belonging to algebra H(e) fully
coincides with the element z(uv) of matrix product of matrixes X and Y.

The algorithm of multiplying two matrixes includes the following stages:

1. Direct transforming consisting in

- presenting matrix-premultiplier as the hypercomplex number;

- presenting matrix-postmultiplier as the hypercomplex number;

- transforming the obtained hypercomplex multiplicands into real numbers.

2. Multiplying real numbers.

3. Inverse transforming which includes obtaining number-product of the ma-
trix and determining the real part of this matrix.

Summerizing can be performed by a similar method. Indeed, the sum of
numbers of algebra H is the number of this algebra and the matrix obtained
from this sum is the sum of matrixes obtained from addends.

4 Versions of Decisions for Computing

It was above mentioned the suggested method includes, as the main element,
transforming hypercomplex numbers into real whole numbers and vice versa. As
it was shown in the section 1 the both direct and inverse transforming is based
on using the property of isomorphism of complex and real numbers [2]. If a norm
N for complex modulo m = mj +msj is equal to N = m% + m% and mq, my are
mutually simple numbers then any whole complex number is comparable with
one and only one whole number from the set: 0,1, 2, ..., N — 1. In other words, if
any whole complex number is ¢ = ¢1 + ¢2j (¢1 and c¢o are whole numbers) there
always is a congruence of a view:

c=c1 + caj = r(modm), (12)

where r is whole number; » < N. In this case multiplying/summing two com-
plex numbers is reduced to multiplying/summing of only two whole numbers
modulo N. At the same time, a hypercomplex number of any order 2n = 2 x 2¢
(d=0,1,2,...) and a form similar to (12) can be mapped onto a field of complex
numbers and, then, real numbers by above method. This process means consec-
utive (step-by-step) extracting groups of complex numbers of a view ¢1 + ¢35 ()
and their transforming into whole numbers on the basis of (12); i=1,...,d. The last
step means obtaining the final single whole number corresponding to the initial
hypercomplex number. Thus, the result of operations on hypercomplex numbers
presented by real numbers also is real number. The inverse transforming means
a reverse process of step-by-step obtaining a group of complex numbers from
coefficients of complex numbers obtained within a preceding step. Evidently,
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the first step means obtaining only one complex number from one initial real
number. Consider this process on the following simple example for quaternions.
Mapping a quaternion onto a field of complex numbers includes presenting the
initial quaternion

X =20+ 2151 + T2J2 + 37172

in the form
X = (o + x1J1) + (T2 + 2351)j2 = c1 + c2J2

In beginning, complex numbers ¢; and co are transformed into real numbers
r1 and ro respectively. Then, the obtained complex number r* = r; + rjs is
transformed into one whole number-remainder r complex modulo m. Now neces-
sary algebraic operations can be executed in field of whole numbers-remainders
modulo equal to the norm N of complex modulus m. Naturally, it is rational
to use within computers values of moduli equal approximately to a value of a
binary computer word.

The inverse transformation means the reverse process of step-by-step ob-
taining group of complex numbers from whole coefficients of complex numbers
obtained in the preceding step. For example, this process for quaternion will be
to consist of two steps:

- transforming real number r into a complex number r* (r* = r; + r2j2);

- transforming r; and ry into two complex numbers respectively:

c1 + caj1

and
c3+caji-

Thus, the obtained quaternion has the view:
c1 + c2j1 + ¢3j2 + cajija.

Evidently, the above described computing methods for matrix-vector proce-
dures are highly efficient if a number of these procedures exeeds significantly
a number of isomorphic transforms or if these transforms are performed with
separate hardware tools. The most suitable structure of computer system for
the second version is multimicroprocessor or massive parallel processor (MPP)
consisting of processor elements (PE). All PEs within such MPP performs mod-
ule algebraic procedures as well as transforming separate matrix arrays,/columns
(as hypercomplex numbers) into real numbers in parallel. The rational size of
MPP is n or 2n PEs where n % n is a maximum or middle dimension of ma-
trix operands. 2n PEs are necessary for parallel executing transforms on two
matrices. A maximum size of MPP is respectively n? or 2n?PEs. The method
discussed in the paper is efficient if n > 100. Evidently, general purpose micro-
processors can be used as processor elements within MPP. An implementation of
the described computing technology for multimicroprocessor/MPP means fully
software version.
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5 Conclusion

Efficient computer algebra for matrix-vector processing was presented in this pa-
per. It allows, for example, to reduce multiplying/summerizing two real square
large size matrixes to multiplying/summerizing two real numbers-remainders,
corresponding to hypercomplex ”"images” of the matrices. Therefore, a computa-
tion complexity of multiplying two matrices presented in hypercomplex systems
equals to O(1) = 1. In the same time a complexity of multiplying two real ma-
trices by traditional parallel methods oscillates between values O(n?) and O(n?)
where n * n is a dimension of square matrix operands.

The described above technology is highly efficient if a number of matrix-
vector procedures significantly exeeds a number of isomorphic transforms or if
these transforms are performed on the basis of multimicroprocessor or other par-
allel structure, for example, massive parallel processor (MPP). Evidently, general
purpose and special microprocessors can be used as processor elements within
MPP. All microprocessors can perform algebraic procedures on the basis of con-
crete moduli as well as transforming separate arrays/columns (as hypercomplex
numbers) into real numbers in parallel.

An efficiency of the presented method in a comparison with traditional paral-
lel methods can be determined as a ratio their computation complexities. Taking
in account ’expenses’ for above modular transforming operations, a value of this
ratio oscillates between n? and 1. A value of the ratio depends on a volume
of transforming operations within problems solved. In the worst case this ratio
equals to 1; in the best case the ratio is approximately limited by n2.
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