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Abstract 
 

The complexity of implementing a sound, complete and 
efficient algorithm to detect containment (and by extension 
equivalence) in XPath fragments has frustrated previous 
attempts by computer scientists. Some algorithms have 
been developed to deal with these problems but these have 
lacked either in completeness, efficiency, or soundness, 
working only when restrictions in the type of XPath 
fragments are enforced.  

In this paper we will attempt to evaluate a prominent 
algorithm in terms of time for different inputs. These 
inputs try to explore different behaviors of the algorithm 
such as:  the most influential construct for the running 
time, the behavior of the algorithm in common cases. And 
the response time of the algorithm for the worst case, 
which covers the whole tree. We present experiments that 
allow us to determine the behavior of the algorithm and 
evaluate it via each of the above questions. 
 
1. Introduction 
 

XPath is ubiquitous in today’s computing environment. 
Technologies such as XSLT, XQuery, XPointer, XLink 
and others are based on XPath, which may be 
implemented differently in these technologies but 
essentially always do the same task: given an input tree (in 
XML), a context (a point of reference) and an expression 
(the selection criteria), XPath will return one, many, or 
zero nodes from the XML input tree.  

What are the characteristics of an ideal algorithm? 
First, we expect it to be sound; that is, in the case of the 
nodes returned by an XPath expression, the nodes should 
indeed be part of the expected result set. There should not 
be erroneous nodes included in the result set. Second, the 
algorithm should be complete; that is, it should not return 
false negatives. In other words, the result set of the nodes 
returned by an XPath expression should include each and 
all nodes that are expected to be included. Lastly, the 
algorithm should be efficient, both in its use of space 

(memory) and in the time it takes to execute. An ideally 
efficient algorithm would execute with logarithmic 
growth, which would make the algorithm insensitive to the 
size of the input tree (XML) and the complexity of the 
XPath expression after certain threshold. This is the 
inverse of exponential execution (EXPTIME), the worst 
case scenario, where after an initial small threshold, every 
increment in the size of the input tree results in dramatic 
increases of both space and time requirements.  

The subset of XPath fragments that have proved elusive 
are defined as XP {[],*,//} , where [] means branching, * 
means wildcards and // means descendants. Efficient 
algorithms have been found for fragments that include any 
two of the three constructs, but finding and algorithm to 
detect containment in fragments with all three constructs 
has proven to be coNP-Complete.  

Why is the containment problem important? Every time 
XPath is used to select a set of nodes from an XML 
document (input tree) the processor implements an 
algorithm to traverse the input tree and identifies the nodes 
that must be returned. So far all implementations are 
considered to be inefficient in that the time and memory it 
requires XPath to do its work is exponential with respect 
to the size of the input tree. Finding an efficient algorithm 
will optimize the speed and memory requirements for 
applications manipulating XML documents.  Also, when 
two XPath expressions are found to be equivalent, one can 
be substituted for the other resulting in optimization.  
 
2. Fundamentals 
 

There are some notions that must be understood in 
order to understand how and why the proposed algorithms 
are implemented. Some of the terms that must be fully 
understood are “tree patterns”, “arity”, “embedding”, 
“boolean patterns”, "canonical models", 
“homomorphism”, and “FTA”.  
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2.1. Tree Patterns 
 

Although we usually refer to XPath expressions using a 
notation such as a//*[b//d][c], this expression can be 
converted to a tree pattern. In fact, as stated in [4], “Every 

expression in XP {[],*,//} can be translated into a tree 
pattern of arity one with the same semantics, and, 
conversely, each pattern of arity one can be translated into 

an XP {[],*,//} expression.” By converting two XPath 
expressions into two tree patterns, it becomes easier to 
visualize the containment problem, which is trying to 
identify if a tree pattern is contained in the other one. 
Likewise, existing algorithms designed to detect 
containment work on tree structures, not expressions, thus 
the conversion from expressions to tree patterns becomes 
necessary.  
 

2.2. Arity 
 

In mathematics, arity refers to number of arguments in 
the domain of a function. Although in real life 
programmers typically create functions with many 
arguments, it is rare in mathematics and sciences to see 
functions with arity greater than 3, and seldom with more 
than 1. With tree patterns, arity refers to the number of 
tuples returned by an expression. 

 
2.3. Boolean Patterns 
 

Boolean patterns are important because they are used in 
the construction of models and canonical models that 
would help us identify containment. Boolean patterns are 
tree patterns with arity 0; in other words, a Boolean 
pattern only returns a true or false answer; even if the 
answer is true, it still does not return any tuples (for false 
it returns the empty set and for true it returns the empty 
tuple). More importantly, it has been proposed in [4] 
Proposition 1 that any tree pattern, of any arity, can be 
translated to an equivalent Boolean pattern, and that 
proving containment for two Boolean patterns also prove 
containment for the original tree patterns. 

 
2.4. Canonical Models 
 

First we must define what a model is. Model refers to 
all variations of possible trees based on the infinite 
alphabet Σ that evaluate to true when a given Boolean 
pattern is applied to them [1]. The models of Boolean 
pattern p are all trees that would return true when 
compared against p. Models of Boolean pattern p are 
identified as Mod(p).  

Canonical models of p are the subset of Mod(p) for 
trees that have the same shape as p. They are identified as 
m(p). There is a translation that takes place in the resulting 
m(p) where all wildcards * are replaced by symbols from 
Σ, but this would make m(p) infinite since each * can be 
replaced by an infinite number of symbols from the 
infinite alphabet Σ. Thus, to have a working model with a 
finite set of trees, a constraint is introduced. First, it 
becomes necessary to identify a symbol z from Σ that is 
not in either tree patterns (remember, we are trying to 
determine if one tree pattern is contained by another). 
Then all the * in m(p) are then replaced by that one 
character z. The resulting canonical models are identified 
by mz

n(p).  
 
3.Algorithm CheckContainment II 
 

The CheckContainment II is the algorithm evaluated in 
this paper. It was proposed by Miklau and Suciu [4]. It is 
sound and complete, but is not efficient unless some 
bounds are imposed on the wildcards, the descendant 
edges or branching.  However, further improvements will 
consist of approximations or heuristics, as the previous 
work has proven the problem of checking XPath 
containment to be in EXPTIME, if no bounds are enforced 
on the number any particular operand.  This algorithm 
works by dealing with the containment problem of regular 
tree languages because the containment problem of tree 
patterns can be reduced to it. 

The steps of the algorithm are as follows [4]:  
1. Construct the DFTA A accepting RegΩp  

2. Construct the AFTA A’ accepting Up
-1(Mod(p’))  

3. Compute the AFTA B = A X A’ (the product automaton)  
4. Compute the DFTA C = det(B)  
5. If lang(A) is a proper subset lang(C) then return true, else 

return false.  
 

It is rather simple to determine if a regular tree language is 
contained within another regular tree language. However, 
the original input to the algorithm is in a tree pattern 
format, not a regular tree language, and thus the 
complexity in this algorithm lies in converting tree 
patterns into regular tree languages. More specifically, tree 
patterns are unranked, unordered trees, whereas the tree 
automata needed to determine if a language is a subset of 
another works on ordered, ranked trees. “Ranked trees 
have the property that every node which is not a leaf has 
the same number of children … On the other hand, in 
unranked trees different nodes can have different number 
of children” [3] page 129.  

RegΩp is a regular tree language, which in this case 
will be accepted by a DFTA (explained below). RegΩp is 
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also the resulting ranked and ordered alphabet derived 
from the infinite alphabet Σ used in the original tree 
pattern. As part of the algorithm, we must find canonical 
models based on boolean pattern p. For further 
information refer to Miklau and Suciu [4]. 

 
4. Experimental Evaluation 
 

We now evaluate the proposed algorithms using the 
implementation made by Haj-Yahya [3] on Java.  Given 
that the original algorithm only tested containment in one 
direction and we required the algorithm to be more 
verbose, we added the test on the missing direction.  
Hence each test we report consist of two checks, given p 
and p' the program will verify if p' is a subset of p and if p 
is a subset of p'.  However, this does not affect the 
algorithm's running time order because each test is 
disjoint, thus the algorithm remains in the same 
complexity class. 
 
4.1. Experimental Setup 
 
    Our testbed is composed of two machines.  In the first 
machine has a Pentium 4 2.00 GHz processor and 1GB of 
RAM memory running Linux 2.6.17, here we ran the 
worst case test, that two equal expressions therefore all 
there space tree has to be explored in order to find a 
solution.  The second machine has a Pentium M 1.60GHz 
processor with 512MB of RAM and also runs Linux 
2.6.17 and was used for the random XPath expressions 
experiments. 
 
4.2.Covering all the Pattern Tree (worst case) 
 

The first evaluation is to calculate the time taken by the 
algorithm in the worst case, that is examining all the tree 
pattern. To ensure that the algorithm explores all the tree 
pattern, we introduce the same XPath expression in both 
parameters, p and q. Note that the XPath expressions used 
in each of these experiments are generated randomly given 
a number of descendants, wild-cards and branches. For 
this experiments we ran the algorithm 36 times, each with 
200 wild-cards and 200 branches. The number of 
descendants was varied from 0 to 370 making increments 
of 10 in each run. Figure 1 shows the results for this 
experiment. The x-axis corresponds to the number of 
descendants in each expression introduced to the 
algorithm. On the other hand, the y-axis corresponds to the 
running time measured in seconds of the algorithm. We 
can see the big impact that the number of descendants has 
in the running time of the algorithm. Based in this 
experiment, it is clear that the running time of the pattern 
tree containment algorithm, in the worst case, increases 
exponentially with the number of descendants in the 
XPath expressions.  This backs the formal prove presented 
in [1] that the CheckContainment II algorithm is 
EXPTIME given an arbitrary number of descendants. 
 
4.3.Running time for different wildcards and 
descendants 
 

Another interesting evaluation for this algorithm is to 
measure the difference between the impact of the 
operands, wild-card and descendant. For this experiments 
we start from the same expressions to get the time for a 
base case. Then we increment the corresponding operand, 
wild-card or descendant, and log the running times in 
seconds. After plotting the values we obtained the graph in 
the Figure 2. The x-axis corresponds to the number of the 
execution in each case and the y-axis is the time in the 
seconds of the corresponding instance. For each execution 
we increment the number of the operands by one that were 
being evaluated. We can see in the graph the big influence 
that the descendant operands have in the running time of 
the algorithm. Thus, the highest impact in the running time 
is directly related to the number of descendants in the 
evaluated expressions. 

Figure 1: Behavior of the CheckContainment II 
algorithm in worst case. 
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4.4. Evaluation of random Xpath expressions 

 

The second evaluation of the tree pattern algorithm 
tests how well it behaves with random expressions as 
parameter, in other words, how good the performance is 
without forcing it to cover all the tree. Given that the 
operand with most influence in the execution time is the 
descendant, in this case, we introduce random XPath 
expressions with different number of this operand in both 
parameters. For this experiment, we ran the algorithm 600 
times. For each instance, in the first parameter, we 
introduce a random XPath expression with 200 wild-cards, 
200 branches and descendants starting from 200 until 
6200 incrementing each time 10 units; the second 
parameter was a similar random expression. The above 
graph shows the result in this experiment. The x-
axis represents the number of descendants in the 
expression and the y-axis corresponds to the running time 

in seconds of the algorithm. We can see that for random 
expressions, the algorithm has a polynomial running time 
even varying the the most relevant operand in the 
parameters. Thus, this experiment shows that the 
algorithm in most of the cases is capable to response in a 
polynomial time and the need of explore the complete tree 
is not the common case, if we consider this to be the 
average case for applications checking XPath containment 
or equivalence. 

 
5. Related Work 
 

Containment for P{[ ],//} was shown in PTIME. The 
contaiment can be effectively decided for a large XPATH 
expression that includes Union, Intersection, path 
composition, together with all XPATH axes, branching 
and wild cards[7]. Containment for conjunctive queries is 
NP complete. In a graph-based data model, it has been 
showed that a restricted language without wildcard, the 
containment is NP-Complete.   
 
6. Conclusions 
 

In this paper we presented a simplified version of the 
XPath containment and equivalence checker proposed by 
Miklay and Suciu [4,5,6]. We also present three 
experiments which evaluate different behaviors in the 
CheckContainment II algorithm. Just measuring the 
running time of different inputs, we were able to obtain 
what is the most influence component in the running time 
algorithm that, based in our experiments result, was the 
descendant operand. Additionally, this practical 
experiments corroborate the Theorems 4 and 5 in the 
Miklau and Sucius paper [4]. However, it also demonstrate 
that for most of the cases the algorithm has a polynomial 
time response with the increasing of the descendant 
operands. Finally, we demostrate that just in the worst 
cases, where the algorithm needs to cover all the tree, the 
algorithm has a exponential increase in the running time. 
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