INTELLIGENT

DISTRIBUTED

PROCESSING

Ft. Lauderdale, Florida
December 13-15, 1989

EDITOR: R. Ammar

A Publication of
The International Society for
Mini and Microcomputers - ISMM

ISBN 0-88986-138-2

ACTA PRESS

ANAHEIM * CALGARY * ZURICH

Proceedings of the ISMM International Conference, Intelligent Distributed Processing, held in Fort Lauder-
dale, Florida, U.S.A. December 13-15, 1989.

SPONSOR

The International Society for Mini and Microcomputers — ISMM
Technical Committee on Computers

INTERNATIONAL PROGRAM COMMITTEE

N.A. Alexandridis U.S.A. B. Furht U.S.A. L. Miller U.S.A.
R. Ammar U.S.A. L. Furin U.S.A. A. Osorio-Sainz France
E. Fernandez U.S.A. E. Luque Spain C.L. Wu U.S.A.

“ditor: R. Ammar

Copyright © ISMM

ACTA PRESS ACTA PRESS ACTA PRESS
P.O. Box 2481 P.O. Box 3243, Stn. “B”’ P.O. Box 354
Anaheim, CA Calgary, Alberta CH-8053 Zurich
U.S.A. 92814 Canada T2M 4L8 Switzerland

ACTA PRESS CODE: 152

100

A RECOVERABLE AND CONCURRENT
LOCKING ALGORITHM FOR A PARALLEL
SEMANTIC BINARY DATABASE MACHINE

WITH INVERTED REPLICATION !

Ragae Ghaly

Naphtali Rishe

School of Computer Science
Florida International University
University Park
Miami, Florida 33199

Abstract

A recoverable and concurrent locking algorithm is proposed for
the Linear-throughput Semantic Database Machine (LSDM), a multi-
disk, multi-processor database machine that offers massive paral-
lelism. The database environment is based on the Semantic Binary
Model (SBM), a fact-oriented representation of an information sys-
tem. The whole database is represented by a set of facts and their
inverted replicas, which are distributed evenly with balanced seg-
ments g the ilable p Our algorithm employs a
locking strategy based on time-stamp ordering of transactions. The
requested locks depend on the granularity of data which is selected
to be either a fact or an object (a contiguous range of facts associated
with one entity). The algorithm is deadlock free since transactions
are globally ordered among all sites. Fairness and freedom from star-
vation are ensured, since transactions are partially ordered over the
waiting queues of a particular site. The recovery algorithm moni-
tors and controls the execution of transactions so that the fact base
includes only the results of the committed transactions.

Keywords: transaction, parallel processing, scheduling, database

1 INTRODUCTION

Systems that solve the concurrency control and recovery problems allow
their users to assume that each of their programs (transactions) executes
in an atomic (serializable) and reliable (recoverable) manner. That is, each
transaction accesses shared data without interfering with other transac-
tions; and if a transaction terminates normally, then all its effects are
made permanent, otherwise it has no effect at all.

The Semantic Binary Model (SBM) [6,7,9,10], is a fact-oriented repre-
sentation of an information system. It supports aggregation, classification
and generalization abstraction mechanisms [5]. Objects of the real world
are represented as abstract objects or printable objects. SBM represents
information of the Universe of Discourse (UoD) as a collection of elemen-
tary facts of two types:

- Unary facts: that categorize the objects of the UoD into categories
(entity sets). Categories can intersect. Properties are inherited by
subcategories. The fact aC means: the object a belongs to the
category C.

- Binary facts: relate object-pairs in relationships. A relation can be
1:1, 1:M, M:1 or M:M. The fact zRy means that there is a relation
R between objects z and y.

A storage structure (8] for SBM provides for a highly efficient perfor-
mance of simple queries. An elementary query normally requires only one
disk block access. Every abstract object in the database is represented by
a unique object identifier (OID). Various categories and relations of the
schema are also treated as abstract objects. Elementary retrieval opera-
tions are listed in [8]. Among them:

a?, ?C, aR?, ?Ra, a’+a??+?7a, ?Rv, ?R[vl, v2].

(The elementary range query: ?R[vi, v2] finds the objects z related by R
to a value v where vl < v < v2).

In order to expedite the query/transaction processing, the entire database
is stored in a single file that contains all facts and their inverses sorted
in a lexicographical order. The inverse fact of aC is Ca; the inverse of

'This work has been supported in part by a grant from Florida High Technology and
Industry Council.

zRy, where z and y are abstract objects, is yKz; the stored inverse of zRv,
where v is a value, is Rvz.

The file is maintained as a B-tree that allows both sequential and random
access. All facts related to an object are clustered together in the sorted
file.

The proposed locking algorithm is applied to the Linear-throughput
Semantic Database Machine (LSDM) [8]. LSDM is a multi-disk, multi-
processor database machine which offers massive parallelism. The archi-
tecture is designed to allow large databases with high query throughput
and to adapt linearly to any further increases in the number of the proces-
sors and /or disks. It also enables load balancing among the processors. All
processors are assumed to be identical and connected by a hypercube-like
network via high speed communication channels.

First, we shall discuss the fact distribution process in the LSDM. Then,
in Section 3, an object-oriented design for the transaction model is dis-
cussed. In Section 4 we discuss the proposed concurrent and recoverable

algorithm.

2 FACT DISTRIBUTION PROCESS

The whole database is represented by a file of facts and their inverses,
sorted in lexicographical order and sliced into evenly balanced segments
of facts[12]. The number of segments is equal to the number of processors.
The database file is distributed among n sites. Each site is charged with
managing all the original facts that belong to a specific set of objects.
Those sites are called the primary sites since they holds the primary copies
of facts. Inverted replication of all facts is included in the distribution
process in the sense that only one copy (the primary copy) is at one site
and its inverted one is (normally) at another site. A copy of the partition
table called Object Map Table (OMT) is kept at each site in order to
associate each object/fact with its hosting site. The inverse replication of
facts assists in fast and efficient manipulation of elementary queries. Fact
distribution process can be viewed either by:

» using only one fact segment type.
® using two fact segment types:

— one for the regular facts, that is the primary and inverted facts
beginning with an abstract object: aC, aRb, bRa, aRv
— another for the other inverted facts: Ca, Fva.
where
a, b: abstract objects
v: concrete object (value)
C: category (unary relation)
R: a binary relation (between two ob, jects)
C: is the inverse of C
R: is the inverse of R.

It is assumed that the distribution process is optimized in the sense that
each site will be concerned with all the information regarding some regular
objects. On the other hand the irregular facts (Ca, Kva) will be sliced
and divided among different sites. ,

In case of an expected overflow of facts at one of the site’s disk storage,
a redistribution process must be established to rebalance the load of facts

102

152-012

among all the sites. This process is quite expensive and should be handled
with complete transparency to the system’s users. Database management
functions are replicated in each site, and each site can be acting as an
originator of a certain transaction and/or contracting transactions to the
appropriate sites. Each site can be acting as a scheduler to execute those
subtransactions from different sites that are associated with the that fact
base.

Data granularity is structured for a fact or an object. The coarse
granule in our system is considered to be an object and the finer granule
is a fact. This convention is important in the definitions of further steps in
the algorithm, specifically in the locking strategy. However, granularity is
a performance issue, it improves the concurrency by allowing a transaction
to lock only those facts it accesses, but the fine granularity also involves
higher locking overhead, since more locks are requested [1].

3 THE TRANSACTION MODEL

A transaction is a set of interrelated queries/updates of objects/facts that
accesses a shared database and is executed atomically [10,11]. Syntacti-
cally, a transaction T consists of a set of queries and deletions and inser-
tions of objects/facts, bracketed by a Start command at one end (when T
begins its execution) and either Commit or Abort command at the other
end. An example of a t tion is shown in Fig (2). Our transaction
model Fig (1) consists of a distributed Tr tion Manager (TM), Sched-
uler or Lock Manager (LM), and a Fact Manager (FM), that are located
at each site [1].

3.1 General assumptions

All sites are identical in their abstraction functions.

All modular abstractions either of one site or different sites inter-
act with each other through the technique of handshaking, in order
to ensure ordering of operations by requests and acknowledgements
using a ing techni

e- ¥] |

Each transaction has a unique identifier that is generated by the
system and is transparent to the user. The identifiers establish a
global order of transactions. This assumption can be enforced by
using the local clock number generated by the system as a prefix
that is concatenated with the site-id to form the transaction’s global

Q999 99 ¢

Transaction Manager Transaction Manager

Site(i) Managers Site(j) Managers

Fig(1): C b) of Different Sites
TM; and TM; at two distinct sites [4].

The TM uses atomic commit protocol (ACP) that can consistently
terminate a transaction that access data at more than one site.

The TM follows the Read-any-Write-all approach (1], in the sense
that the read-requests require to lock either the primary or the in-
verted fact, but the write-requests require to communicate with both
the primary and the inverted facts.

The TM enforces the Strict Two-Phase Locking (2PL) by being
responsible for requesting all required locks from LMs during the
transaction’s lifetime at the growing phase, until it sends its Com-
mit/Abort command announcing to each invoked LM that the grow-
ing phase that ended and no more locks may be requested later. The
TM is not responsible for requesting to release locks, since this is a
strategic function of the LM.

identifier [3]. Operations:
e A query will be treated at the same priority level as other update Start, Commit, Abort: control commands for tr tion manag ks
transactions.

‘affect other transactions .

Site failures are detected by a timeout.

o Each transaction preserves its own consistency. Consistency and
integrity is a duty of the TM.

3.2 Transaction Manager Abstraction

TM acts as an interface between the user transactions and the database
system. TM assumes that the user calls on any site without a prior knowl-
edge of the availability of facts at that site. TM must take charge of that
transaction and coordinate its execution among the sites concerned until
all the results are obtained and are passed to the user. TM is aware of
each site’s availability and the range of facts hosted by that site (from the
local Object Map Table).

e TM manipulates each transaction as an atomic, self-contained unit
whose execution is transparent to the other user’s transactions.

Read, Delete, Insert: for object/fact management.

In order to avoid cascading aborts, only committed transactions can Compile, Optimize, Generate, Verify : operations assisting in making de-

cisions regarding commit or abort at transaction, generation of proper
lock types, checking validity and integrity constraints.

Start
qxCl) q: read a fact
axR1y) Q: read all facts of an object
Q@ d: delete a fact
QR D: delete all facts of an object
d(yR215) i: insert a new fact
D(w) I: insert group of facts of an object
KwR1y) C1 : abstract category object
Kv) R1,R2 : abstract relation objects
Commiy/Abort u,v,w.x,y,z abstract objects

Fig(2) : A Sample of an Optimized Transaction

Transactions are assumed to be compiled by the TM functions be-
fore its execution (before the TM issues a Start command). The
compiler can map requests efficiently by generating the appropriate
lock type for each request. This simply can be established by allow-
ing the compiler to consult the Object Map Table and to apply the
majority-rule concept in its decision. The lock type is decided as far
as granularity is concerned.

e The TM communicates only with LM schedulers at either the same
site or at different sites. No communications is assumed between

3.3 Lock Manager (Scheduler) Abstraction

The Lock Manager of each site manages the scheduling of all lock request
operations and guarantees the transactions’ execution in a serializable and
recoverable manner. The processing of data within a subtransaction of one
site is transparent to all the other (sub)transactions of the other sites.

o LM; is only sensitive to conflicts between operations on the same
copy of that fact/object hosted in its site. All the LMs are working
independently.

o The LM of a site communicates with the only FM of that site in

103

order to execute the transaction’s operations.

e The LM takes part in enforcing the Strict 2PL protocol only at the
shrinking phase by being responsible for releasing the locks. This
policy can let the LM work independently and, thus, avoid any
communication with other sites’ LMs. Since each LM; obtains the
complete information, it can decide when to process an operation
without any communication with other sites.

e LM; can not release locks of T; until it knows that TM; will not
submit any more lock operations to any other LM. This is to enforce
the 2PL.rules. Fig (4) shows the proposed behavior of the locking
strategy.

In order to avoid starvation and lockout situations, LM keeps a wait-
ing queue ordered by the global T-id. This insures fairness in select-
ing the next transaction to run.

The LM performs a part of the log operations while committing a
subtransaction at that site, and it also guarantees that the recover-
ability conditions hold for all transactions’ read operations at that
site.

LM controls the concurrent execution of the interleaving transactions
by restricting the order in which the FM executes Read, Delete,
Insert, Commit and Abort of different transactions.

Operations:
o Lock (T-id, object/fact, mode)
o Unlock (T-id, object/fact)

3.4 Fact Manager Abstraction

Fact manager keeps track of the physical changes in the database: deletion
and insertion of facts. It also manages the preparation at the physical
locks on objects/facts before acknowledging to the LM. This abstraction
consists mainly of two abstractions, the Recovery Manager (RM) and the
Cache Manager (CM) [1]:

3.4.1 Recovery Manager Abstraction

A recovery algorithm monitors and controls the execution of programs so
that the fact base includes only the results of committed transactions. If
a failure occurs while a transaction is executing, and the transaction is
unable to finish executing, then the recovery algorithm must wipe out the
effects of the partially completed transaction. Thus, it ensures that the
fact base dose not reflect the result of a partially committed or aborted
transaction. It also ensures that the results of the successful execution of
a transaction are never lost.

Thus, RM maintains a log of operations and guarantees that all the
transactions’ write operations are logged on a stable storage before ac-
knowledging the LM (Redo Rule)(1]. The RM ensures that a transaction
may read only those values that are written by committed transactions or
by itself, in order to avoid cascading aborts. The RM guarantees also that
no fact may be read or overwritten until the transaction that previously
wrote into it terminates, either by Abort or Commit.

Operations:

Start, Commit, Abort, Complete, Read, Write

3.4.2 Cache Manager Abstraction

The Cache Manager assists in moving facts/ob jects between volatile and
stable storage for requests from the LM of the same site [1].
Operations:

o Fetch(z): retrieves a certain fact/object from the stable storage into
the volatile storage.

o Flush(z): stores
volatile storage.

a certain fact/object into stable storage from the

4 THE LOCKING ALGORITHM
We have two levels of locking yahululty: a fact or an object. Multigranu-
larity locking allows each transaction to use granule sizes most appropriate

to its mode of operation.

o Long transactions, those that access ranges of facts may request

104

object locking (coarse granule).

o Short transactions, may request fact locking (fine granule).

A concurrency control algorithm ensures that transactions are executed
atomically. It does this by controlling the interleaving of concurrent ex-
ecutions of transactions, to create an illusion that transactions execute
serially, one after the next, with no interleaving at all. The concept of
serializable transaction is the basis on which any algorithm ensures cor-
rectness of interleaved operations.

A good concurrent algorithm should be correct in the sense that it is
deadlock free and starvation free. In the proposal of that algorithm we
assumed this correctness due to the fact that all transactions are globally
ordered and LMs refuse those transactions that arrive late to the site and
are requesting a conflicting lock that has already been granted to a younger
transaction. Thus the algorithm ensures the serializability.

4.1 Transaction Manager

When a transaction T arrives, certain tasks must be processed sequentially
in order to prepare for the transaction execution. The transaction will be
assigned a new global T-id according to the local clock time. The effect
of the clock on the system’s performance will be discussed later. In our
locking algorithm, once the TM requests a lock from any LM, it is waiting
to receive an acknowledgement before ding another r t to that
particular LM.

The following requests are issued from the TM to the concerned LM:

“

o TM prepares the execution of the transaction T by sending a Start
command to all the LM; where the j’s are decided upon completion
of the lock generation phase of the compiler and include each site

involved in executing T. The TM waits for acknowledgements from
each site involved in the transaction. For the sake of recovery, the
TM records <Start T-id> on its own log.

e Depending on the gr. ity level, each Read request will be sent to
the appropriate primary LM. The request is implicitly accompanied
with a shared lock. Thus, the following implicitly shared locks are
defined and sent to LM;

~ g(f): request a read lock for a fact f.
~ Q(X): request a read lock for all the facts belonging to an object
X.

In case of q(f), if a failure of primary site is detected (by timeout), it
can be reasonable to request this single fact from the inverted site.
This might be an expensive process for a query about an object since
a request must be sent to all the inverted sites involved.

o Deletion of a certain fact or an ob ject also depends on the granularity
level. The following requests for ezclusive locks are sent to both L.Ms
at the primary and inverted sites:

— d(f) : request a lock for the deletion of fact f.
—~ D(X) : request a lock for the deletion of object X.

o Insertion of a new fact/object. It is necessary to lock the new fact,
before its insertion, in both the primary and inverted sites, so as to
prevent any conflict with a read/delete. The explicit lock request
from TM to LM indicates that necessity. The following ezclusive

lock requests from both LMs at the primary and inverted sites are
sent:

— i(f) : request a lock to insert a new fact f.
— I(X) : request a lock to insert a new object X.

In the above two cases (delete/insert) a transaction T may decide to abort
and rerun due to a failure detection of any site involved in executing T.

While the transaction is active, the TM collects the necessary infor-
mation to check database integrity. After all the local requests of (q, Q,
d, D, i, I) are performed and all the necessary locks are obtained by the
LM of each site, the transaction performs its integrity constraint tests.
Depending on these results, the transaction sends either a Commit or an
Abort command. At this stage the tr idered terminated
or partially committed. :

When TM does not receive any acknowledgement from an LM due to

tion is co

a timeout for any request other than Start, it will assume that the site is
dead and will have to perform the following routine:

o Update the available site list and reconfigure its connection paths to
the available ob ject /facts.

o If the failed site holds only a shared lock, it can be found from its
inverted site. Depending on the inverted facts that can be collected
for a shared object from different sites, TM can decide to continue
on that strategy or to abort.

If the failed site holds an exclusive (delete /insert) lock on a fact /object
then it is necessary to dispatch an Abort to all other sites that are
involved in the transaction to allow other waiting T’s to continue
execution.

Similarly, TM can receive a late reply from an already assumed failed site:
either it was due to a traffic jam on the link that caused the delay or
due to a link failure that could not be recognized by either the LM of the
locking site or the TM of the requesting site. Another possible message
can be received from a recovered site that has just come to life and is only
sending messages to those TM; that were on its incremental log. TM must
take care of these situations, by updating its available site list.

4.2 Lock Manager

The lock manager is a distributed abstraction that keeps track of the
locks that are issued to transactions. It does this by using a local Lock
Management List (LML), that consists of a two level data structure. At
the top level there is the Object Lock Header (OLH), which keeps track of
the explicit locks at objects or implicit locks at facts at the bottom level.
The bottom level consists of the Fact Lock Table (FLT) that keeps track
of the explicit locks on facts that belong to one of the top level objects.
An entry of OLH consists of an OID, ob ject lock mode (shared/exclusive),
the fact-range of that object, the number of facts locked explicitly in the
FLT that belong to that object, and a pointer to the Wait-For-Queue(X)
that holds all T-ids requesting that object that are in conflict with the
existing lock. Also, it tells which T-id is utilizing the lock and a list of all
T-ids that are compatible and are utilizing the lock at the same object.

Each entry of the FLT consists of the fact, the mode (shared/exclusive)
and a pointer to a Waiting-For-Queue WFQ(f) that keeps track of each
T-id that is waiting for a lock on that fact. It tells also which T-id is
compatible and is utilizing the lock at the same fact. Locking manage-
ment must also be very fast since it consumes a significant fraction of the
processor’s time. As a common practice, lock entries are hashes to either
table in order to enhance the looking up mechanism. Also, the LM links
all of the read lock entries in the LML;, and all of the write lock entries
of each transaction together to speed up the releasing action of locks.

Another data structure that keeps track of each transaction status
within the site is the Transaction Header Table (THT). It tells how to
trace a transaction’s locks among the waiting queues, in order to speed up
the lock release mechanism. Also, the THT should keep track of the time
a transaction has spent inside the system, in order to prevent starvation
of other transactions waiting for lock releases. An example of the Lock
Manager’s data structures snapshot is shown in Fig (4).

A complete analysis of the LM behavior is as follow:

o Every lock request is fairly granted according to the availability of
the fact/object as decided by the FM;.

o Once a lock is granted, it is kept in the LML, and an acknowledge-
ment is issued to the appropriate TM;. A timeout limit (predefined,
but fairly different than that of TM;) is set for that transaction in
THT;. This prevents the starvation of the waiting transactions for
a lock held by a failed site.

Two lock requests are in conflict if one holds an exclusive lock ac-
cording to the compatibility matrix as shown in Fig (3).

A transaction T; that requests a lock that conflicts with a granted
lock waits in the WFQ; of that object/fact. Each WFQ is ordered
by T-id.

e When lock type is requested on a specific fact, the appropriate inten-
tion lock is set first on its object at the OLH, then the fact is locked
explicitly at the FLT. In our implementation, all facts are assumed
to have an explicit lock, while objects can have either an intention

105

Fig(3) : The Compatibility Matrix of Requesting Locks

lock (due to locking same facts) or an explicit lock.

e When TM; requests a Commit/Abort, the same message is sent to
the FM; to execute it and the LM, start releasing all read locks to en-
sure serializability (when the transaction terminates), but write locks
are only released when the FM; acknowledges a Commit/Abort.
This enforces the 2PL in a distributed environment, since the TM;
of a particular transaction is responsible to ensure that no more
lock requests are needed before starting the shrinking phase, which
is guaranteed by announcing a Commit to all the LMs that partici-
pate in the execution of the transaction.

o LM releases locks in hottom-up or leaf-to-root order (release locks
on facts first, then on objects), which is the reverse of the top-down
or root-to-leaf direction in which they were granted.

In order to improve on the efficiency of executing Commit, the LM;
must release the locks on Read (q, Q) earlier than Writes or to re-
lease all locks after FM; acknowledging the Commit request. This
saves the overhead of one message at the expense of decreasing con-
currency by holding Read locks a little longer than required. When
the TM; receives all Commit acknowledgements, it updates its log
by signing < Complete T-id >. This is done to facilitate recoverabil-
ity. The TM; also sends Complete as the last request to the LM,
for recovery purposes of RM;.

As far as the granularity is concerned, locking an object implies
locking all the facts composing it. Thus locking is an inherited phe-
nomenon in the hierarchy. Also, it requires that LM; prevent two
transactions from setting conflicting locks on two granules that over-
lap.

In case of requesting to insert a new fact, the fact should be locked
for read/delete. When a read/delete request is for a fact that has
not yet been inserted (it might be locked in the FLT for that pur-
pose,) then this request should be placed in the WFQ. If the request
(read/delete) is for a fact that has not arrived yet, then the TM
should be notified. The decision to continue is one of the TM's
tasks.

In order to prevent deadlock situations that may arise when several
transactions create a cycle in the global Wait-For Graph (2], the or-
dering of transactions by their T-id’s at that site is used. Thus, when
T; arrives and has a conflicting lock request with a T} that is al-
ready locked, LM; must decide to proceed according to the following
rules:

— If Tj-id > Ty-id then T; will be inserted in the WFQ in the
proper order of the waiting transactions and the TM; will be
acknowledged.

— If Tj-id < Ty-id then LM; must inform TM; to rerun T;-id
with a new id.

The second situation might arise due to a conflict between two TMs
requesting the same exclusive lock on a fact/object at both the pri-
mary and the inverted sites. Each request of both T M, and TM;
arrives at one site before the other. This situation is not likely to
continue to happen after rerunning the late T}, since one part of the

™Q3) I

™) ™ @) I
q(xR215) q(xR215) Q)
Q) Q) q(yR821)
D (K1) d(R1158) 4acy)
izch i(yRS3) 1R
Sie (« Site (2) Site (3)
LML (4)
Transaction Status Header
Tid_]eTime | sams | Fact Lock Table
TI (Commit
™ Start Pact | mode
=) CRRrwE Ay
Object Lock Header
il T
1o’ |DI{ Aren Q|
TAR4 y |] ' [2
™b{ R | D| t [T r‘[—
-T2
Lel] = i i (BN 152 4

W aiting-For-Object queue

Cl1 i]

i

Fig(5) : A Snapshot of the Lock Management Tables of LM(4)

previous conflict, namely Tj-id is assumed to have been executed
and since T; gets a new T-id.

4.3 Recovery From Failure

Recovery Manager RM should have the duties of logging all the changes of
the database state before they take place, in oreder to be able to retrieve
any data lost when a failure occurs. Also, the RM is responsible for
managing the process of putting the node on-line again and acknowledging
other involved nodes. Therefore, each RM has two main tasks: one is
while the node is active and the other is when the node comes to life after
a failure. Active Node Task:

e When a Start(T;) in received from LM;, RM; will record that on its
log along with the time and T;-id.

¢ When a delete/insert request is received, it is recorded on the log.

e An Abort/Commit is recorded before any acknowledgment to the
LM.

Recovery From Failure Task:

The first step for the RM is to estimate how long the site was idle by
comparing the time of the last operation on the log with the local clock.
If the time elapsed has exceeded the predefined time (timeout period,) the
RM must send a recovery message to all the sites that were involved before
the incident. The RM checks its log from the last checkpoint (which has
been marked before as a normal periodical routine in the active task) and
proceed as follows:

o If there is Start command without a correspondent Commit/Abort,
an Acknowledgement to TM; is performed. (Assuming a previous
message has been sent before, this can be tolerated in the TM rou-
tine).

o If the crash is before a Commit, while there have been delete /insert
operations, then Undo is performed on these operations.

o If the crash is after a Commit and before a Complete, then a Redo
is performed.

o If the crash is after a Cot;xplete then no action is taken.

The log operations should be idempotent, that is they can be performed
several times and yeild the same result (in order to ensure the recovery
from a failure while doing a previous recovery process).

4.4 The Global Clock

It appears from the previous requirement that synchronizing clocks at
different sites together is an important process to guarantee that a slower
running clock will cause all lock requests from that site to be aborted in
case a conflict might occur at any site. On the other hand, a fast running
clock will have to wait more than required in the ordered queue before it
is granted a lock. This synchronization issue can be dealt with either one
of the following techniques:

e The LM; is responsible for updating its site’s clock according to
the latest lock request from any TM;. The TM; also can share
the same clock resource by keeping updating it according the latest
acknowledgement from any LM;j. Those sites that have no activities
during a specific period of time may be run away from the global time.
They will be synchronized with the system by their next interaction.

The other more general solution is to synchronize the clocks periodi-
cally among all sites. This can be done by a special transaction called
Time-Synchronizing Transaction that should be sent to all the di-
rectly connected sites. This method will cause the propagation of the
fastest clock time to all the network without much expenses on the
traffic of all sites. This also might have the problem of driving the
whole network faster/slower according to the maximum/minimum
time.

5 CONCLUSION

A concurrent locking algorithm has been designed for a distributed database
environment based on the Semantic Binary Model (SBM). SBM is a fact-

oriented representation of an information system. Each fact is inversely

replicated for the purpose of query efficiency. The proposed locking algo-

rithm can be applied to the Linear-throughput Semantic Database Ma-

chine (LSDM), a multi-processor, multi-disk database machine which of-

fers massive parallelism. The algorithm is deadlock free since transac-

tions are globally ordered, and it is also free from starvation since the

transactions are partially ordered on each fact/object waiting queue. The

algorithm takes into account the possibility of a link failure.

References

(1) P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison Wesley, 1987.

[2] E. Knapp. Deadlock Detection in Distributed Databases. ACM Com-
puting Surveys, 19(4), December 1987.

[3] H.F. Korth and A. Silberschatz.
McGraw-Hill, New York, 1986.

[4] M. Maek , A.E. Oldehoeft, and R.R. Oldehoeft. Operating Sys-
tems: Advanced Concepts. The Benjamin/Cummings Pub. Co, Inc.,
1987.

[5] M.K. Pillalamarri, S. Navathe, and A.C Papachristidis. Semantic
Database Modeling: Survey and Research Issues. In Conference on
VLDB, Brighton, England, September 3-5, 1987.

[6] N. Rishe. Database Design Fund, a Structured introduction
to Databases and a structured Database Design Methodology. Prentice
Hall, Englewood Cliffs, NJ, 1988.

[7) N. Rishe. Database Design: The Semantic Modeling Approach.
Prentice-Hall, Englewood Cliffs, NJ, to appear in, 1990.

(8] N. Rishe. Efficient Organization of S tic Databases, pages 114-
127. Springer-Verlag, Lecture Notes in Computer Science,Vol. 367,
1989.

Database System Concepls.

™)

[9] N. Rishe. Semantic Database Management: from Microcomputers
to Massively Parallel Database Machines. Keynote Paper, Proceed-
ings of The Sixth Symposium on Microcomputer and Microprocessor
Applications, Budapest, October 17-19, 1989.

[10] N. Rishe. Transaction-management System in a Fourth Generation
Language for Semantic Databases. In H.H. Hamza, editor, Mini and
Micro Computers: From Micro to Supercomputers. Proc. of the ISMM
Int’l Conf. on Mini and Microcomputers, pages 92-95, Acta Press,
1988.

106

