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ARTICLE INFO ABSTRACT

Background: Functional magnetic resonance imaging (fMRI) is an MRI-based neuroimaging technique that
measures brain activity on the basis of blood oxygenation level. This study reviews the main fMRI methods
reported in the literature and their related applications in clinical and preclinical studies, focusing on relating
functional brain networks in the prodromal stages of Alzheimer’s disease (AD), with a focus on the transition
phases from cognitively normal (CN) to mild cognitive impairment (MCI) and from MCI to AD.

New method: The purpose of this study is to present and compare different approaches of supervised and un-
supervised fMRI analyses and to highlight the different applications of fMRI in the diagnosis of MCI and AD.
Results: Survey article asserts that brain network disruptions of a given dysfunction or in relation to disease
prone areas of the brain in neurodegenerative dementias could be extremely useful in ascertaining the extent of
cognitive deficits at the different stages of the disease. Identifying the earliest changes in these activity patterns is
essential for the early planning of treatment and therapeutic protocols.

Comparison with existing methods: Analysis methods such as independent component analysis (ICA) and graph
theory-based approaches are strong analytical techniques most suitable for functional connectivity investiga-
tions. However, graph theory-based approaches have received more attention due to the higher performance
they achieve in both functional and effective connectivity studies.

Conclusion: This article shows that the disruption of brain connectivity patterns of MCI and AD could be asso-
ciated with cognitive decline, an interesting finding that could augment the prospects for early diagnosis. More
importantly, results reveal that changes in functional connectivity as obtained through fMRI precede detection of
cortical thinning in structural MRI and amyloid deposition in positron emission tomography (PET). However, a
major challenge in using fMRI as a single imaging modality, like all other imaging modalities used in isolation, is
in relating a particular disruption in functional connectivity in relation to a specific disease. This is a challenge
that requires more thorough investigation, and one that could perhaps be overcome through multimodal neu-
roimaging by consolidating the strengths of these individual imaging modalities.
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1. Introduction

Alzheimer's disease (AD) is one of the most common progressive
neurodegenerative dementias where neurofibrillary tangles and amy-
loid plaques (amyloid B-peptide (AB)) accumulation in the brain tissue
trigger damages in neurons and synapses in the cortex (Hardy and
Selkoe, 2002; Nestor et al., 2004). The disease is characterized by
memory loss, neuronal atrophy, cell death and decline in cognition and
language, resulting in cognitive and behavioral impairments that affect
and limit normal daily activities (Karas et al., 2003; Delbeuck et al.,
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2003). In 2018, almost 5.7 million Americans have AD which is pre-
dicted to increase to 13.8 million people by 2050 in the United States
(Alzheimer's Association et al., 2018). According to data reported in the
2017 report by the Alzheimer's Association, Alzheimer's disease is af-
fecting 10% of the population over the age of 65 and the growing costs
in managing the disease are estimated to be $259 billion.

The pathogenic mechanisms of this neurological disorder can be
investigated using different imaging modalities that include: magnetic
resonance imaging (MRI) to assess structural changes; functional
magnetic resonance imaging (fMRI) to gauge the functional patterns of
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neuronal activities; electro and magnetoencephalography (EEG/MEG)
to study the high-resolution temporal brain dynamics; positron emis-
sion tomography (PET) to assess functional and metabolic changes
through radioactive tracers in order to delineate healthy brain regions
from diseased or affected ones; diffusion tensor imaging (DTI), which is
essential for determining the white matter fiber tracks and for eluci-
dating any disruption in these tracks due to disease; and Computed
Tomography (CT), although it exposes the subject to a moderate level of
radiation (X-ray based technology), it is the fastest image acquisition
modality that provides added information on density and texture of
body organs and is less prone to subject movement during image ac-
quisition (Li et al., 2016). Of course, the most effective approach to
diagnosis, although costly, will be the multimodal neuroimaging ap-
proach that combines the individual strengths of these modalities, and
consolidate structural measurements to functional and metabolic mea-
surements. In the recent decades, fMRI has been introduced as a non-
invasive, radiation-free, and useful imaging analysis technique to di-
agnose, predict and classify different stages of a disease, cross-sec-
tionally or through longitudinal studies. The fMRI modality is a reliable
tool to investigate functional connectivity, study the spatiotemporal
correlations between the different brain regions, and to assess brain
dysfunction in terms of its neural connectivity networks (Ogawa et al.,
1990).

Resting state fMRI (rs-fMRI) is a major field of study that embodies
the low-frequency fluctuations of the fMRI signal (Fox and Greicius,
2010). The correlations among these low frequency fluctuations is what
defines functional connectivity (FC) of the brain (Biswal et al., 1995;
Damoiseaux and Greicius, 2009). Rest state defines a distinct brain
network known as the default mode network (DMN). The DMN is
presumed to be active during wakeful moments of day dreaming, mo-
ments of contemplation or thinking about the past as well as the future,
and any other moment in time that is void of external stimulation.

Task-based fMRI (t-fMRI), on the other hand, is an advanced tech-
nique for evaluating functional activity alternations and for brain
mapping given a specific assigned task (motor, visual, language, neu-
ropsychological, etc.). These task-based studies investigate functional
changes during a particular activity such as memory encoding (Yetkin
et al., 2006; Machulda et al., 2003), visual (Rombouts et al., 2000),
language (Kljajevié, 2015), and auditory encoding (Golden et al., 2015,
2016). These studies provide evidence of specific functional con-
nectivity patterns in regions of the brain associated with the targeted
areas of the task and allow us to observe the related disruptions that
could occur due to diseased areas or to specific presumed dysfunctions
(Fleisher et al., 2009; Smitha et al., 2017).

When contrasting rs-fMRI with t-fMRI, task-based fMRI is more
complex to acquire, needs added cooperation from the subjects while
performing the task, and often yields a lower signal to noise ratio; while
rs-fMRI is easier to acquire as it voids the need for a task to be per-
formed, and is more amenable for use when involving impaired patients
who are unable to participate in performing a given task. Moreover,
with the last assertion in mind, while gauging progression of the dis-
ease, 1s-fMRI could be very useful in identifying the subtle changes in
functional connectivity at the different stages of the disease, and most
importantly at detecting the early signs of the disease for the planning
of early treatment and for customizing therapeutic protocols (Fox and
Greicius, 2010). Nonetheless, in order to investigate specific brain
networks such as visual, motor or auditory, using t-fMRI is necessary.
Moreover, empirical evaluations have shown that rs-fMRI and t-fMRI
are uncorrelated, and if both are appropriately administered, the as-
sumption of uncorrelatedness supports the notion that the DMN can be
thought of as a linear additive model, unless the assumed DMN is af-
fected by the subject's excitation or tiredness during the recording
session (Daliri and Behroozi, 2013).

In AD studies, many researchers reported gray matter atrophy in
some brain regions such as the temporal lobe and hippocampus (Karas
et al., 2004; Frisoni et al., 2002), and some reported white matter
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volume reduction due to myelin and axon loss (Braskie et al., 2012;
Bartzokis, 2011; Hua et al., 2008). However, recent studies suggested
that AD is not only associated with the gray and white matter atrophy
but also with changes in the brain regions connectivity that are de-
tectable before structural atrophy due to amyloid deposition (Bozzali
et al., 2002; Naggara et al., 2006; Kiuchi et al., 2009; Greicius et al.,
2004; Stam et al., 2006; Wang et al., 2007; Bai et al., 2009; Qi et al.,
2010; Jiang et al., 2004; Grady et al., 2001). Some studies reported
BOLD fMRI signal changes in sensorimotor cortex under resting state
condition (De Luca et al., 2005; Vahdat et al., 2011; Rosazza and
Minati, 2011), and other similar studies explored fMRI signal changes
in visual and auditory related cortices (Cordes et al., 2000; Schmidt
et al., 2013; Lowe et al., 2000; Golden et al., 2016). Liu et al. found that
strength of disruption in functional connectivity of parahippocampal
gyrus is correlated to the disease severity which becomes more pro-
nounced as a subject transitions from the early stage of mild cognitive
impairment (EMCI) to the late stage of AD (Liu et al., 2016). Another
study indicated that low episodic memory is associated with anterior-
posterior dynamic alternation in the brain connectivity (Quevenco
et al., 2017). Bero et al. corroborated the bidirectional relationship
between amyloid aggregation and reduction of resting-state functional
connectivity in the brain (Bero et al., 2012), while at the same time
showing an increase in functional connectivity in some other regions
(Allen et al., 2007; Zhou et al., 2013). This last finding could suggest the
causality that one affected region of the brain could have impact on
other distant regions of the brain as mentioned earlier.

There are valuable review articles that studied AD based on fMRI
data (Guo et al., 2018; Teng Xie, 2011; Friston, 2011; Fox et al., 2012;
Sheline and Raichle, 2013; Calhoun and Adali, 2016; Smith et al., 2013;
Van Den Heuvel and Pol, 2010). Guo et al. reviewed the effect of
medicines on AD by understanding the role of fMRI technology in
Alzheimer therapies (Guo et al., 2018). Friston reviewed the mathe-
matical modeling of effective connectivity (Friston, 2011), while di-
viding the modeling procedures into two categories of dynamic causal
modeling (DCM) and Granger causality modeling (GCM). Xie Teng et al.
reviewed AD studies mainly focusing on graph theory applications in
brain connectivity (Teng Xie, 2011). In their review, structural MRI
(sMRI), fMRI, and EEG based studies in AD patients are reviewed briefly
and some future perspective in AD studies are suggested. Fox et al.
reviewed the rs-fMRI and transcranial magnetic stimulation (TMS)
techniques in brain connectivity modeling and the combination of TMS
and rs-fMRI techniques (Fox et al., 2012). However, they did not focus
on any specific disease, e.g., AD, and they briefly reviewed studies re-
lated to the diagnosis and treatment of neurological diseases. Smitha
et al. aimed to study the importance of rs-fMRI and its advantages to the
task-based fMRI (Smitha et al., 2017). Van et al. reviewed the func-
tional connectivity patterns in disease like AD, and schizophrenia using
rs-fMRI (Van Den Heuvel and Pol, 2010). Sheline et al. reviewed some
studies that cover preclinical AD to clinical AD using rs-fMRI (Sheline
and Raichle, 2013). It was shown that changes in resting-state func-
tional connectivity are detectable from rs-fMRI before any changes that
can be identified by PET through amyloid accumulation. In (Dennis and
Thompson, 2014), three major approaches to study functional con-
nectivity using the fMRI signal were considered, including graph
theory, region of interest or seed-based and independent component
analysis (ICA). They compared the functional connectivity disruption in
normal aging subjects and AD patients and proved that FC was dis-
rupted in normal aging but not uniformly across the brain. However,
the accelerated decline in AD subjects considerably affected some
particular regions in the brain like DMN.

In this survey article, we focus on the most recent functional brain
mapping studies and related methods of analysis on AD and MCI using
resting-state and task-based fMRI. In addition, we reviewed preclinical
as well as clinical applications of fMRI. Studies using fMRI have proven
the merits of this modality as it detects subtle changes in the functional
activities prior to any observable changes in the structural (MRI) or in
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the metabolic/functional (PET) modalities. The rest of the article is
organized as follows: Section 2 reviews the most prominent methods for
preprocessing and analyzing fMRI data. Section 3 illustrates the brain
connectivity fundamentals. Section 4 reviews recent exploration of ef-
fective and functional connectivity in clinical AD studies, then, Section
5 studies the preclinical application of fMRI data which represents the
functional connectivity alternation along with PET scanning and Apo-
lipoprotein (APOE) ¢4 allele. Finally, in Section 6, we discuss the ex-
isting limitations and challenges that remain to be addressed and future
perspective of fMRI studies. Section 7 provides the concluding remarks.

2. Methods
2.1. Preprocessing

Prior to processing the fMRI data, there is a need for minimizing
data artifacts, and attenuating the effects of noise and offsetting any
potential image degradation during image acquisition (Lindquist,
2008). Empirically, the signal of fMRI could be affected by three major
sources of artifacts, which include thermal noise of MR imaging, system
noise of the MR hardware, and subject-related noise resulting mostly
from head motion (Skup, 2010). Preprocessing is also important to fa-
cilitate registration of different imaging modalities (e.g. T1 MRI with
PET). In addition, in group analysis it is assumed that every voxel for
each subject is located in the same area as for other participants.
Consequently, steps for preprocessing fMRI data are slice time correc-
tion, co-registration, motion correction and smoothing as illustrated in
Fig. 1.

Slice time correction shifts the time series of voxels to validate the
assumption that data points are collected simultaneously. Motion cor-
rection estimates the amount of motion by calculating the translational
and rotational parameters of the input and target images. However,
motion correction and whole brain regression analyses are con-
troversial since some believe that insufficient motion correction or
whole brain regression produces fake correlations (Lee et al., 2013). Co-
registration and normalization realign the functional and anatomical
images to provide standard anatomy for each subject. Since every
subject has a specific brain shape, size, and features, the data needs to
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be normalized to be comparable in a large population. Finally,
smoothing the signal which is usually defined by Gaussian filter im-
proves the signal to noise ratio to acquire normal data for analysis.

2.2. Data processing

Recently, many approaches have been proposed for fMRI data
analysis, each with its advantages and limitations. Graph theory re-
mains the most reliable approach that can be used to construct and
analyze brain connectivity. Graph theory methodology is able to illus-
trate the functional and effective connectivity of the brain. In other
words, graph theory not only demonstrates the functionally connected
regions but also shows how they influence each other (delEtoile and
Adeli, 2017). In this section, the main approaches for fMRI analysis are
briefly explained.

The model-based approaches including coherence, statistical para-
metric mapping (SPM), and correlation are based on prior knowledge
about the region of interest or seed. The region of interest (ROI) was
proposed for the first time by Biswal in 1995 in which a region is se-
lected as a reference region and the correlation of the time series with
other regions are calculated (Biswal et al., 1995). In the ROI or seed-
based approach, a region is selected as a reference region and the time
series of that region are obtained. Then, the correlation of time series of
the fMRI signal in seed voxel and time series of all other voxels of the
brain regions are calculated. The regions with a high positive value of
correlation are functionally connected, and regions with a negative
value of correlations are presumed disconnected. A threshold is usually
used to determine strong correlations which lead to strong connectivity
between the seed and other brain regions. The results of the ROI
method are easier to compare since there is a reference region in this
method. Therefore, fewer variations of components and the simplicity
of extracting the same networks for the same seed in different subjects
make it preferable to the other methods. However, preselecting ROI in
all brain regions is an issue in functional connectivity investigation
since it remains unclear how different choices of seed selection would
affect the functional connectivity (Li et al., 2009). Seed-based methods
need consideration of a seed to find the connectivity map based on prior
information about the seed region, requiring significant clinical

Preprocessing

Data Acquisition

Output

Localization of
Brain Activity

Brain

Connectivity

Classification

Fig. 1. fMRI data processing pipeline from data acquisition to classification.
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experience and expert intervention. On the other hand, different seed
selections will result in different connectivity patterns, which causes
some concerns about these techniques.

On the other hand, data-driven techniques are totally different from
prior information-based techniques and can be classified into trans-
formational based and clustering based. The main advantage of data-
driven methods is that they do not need prior information on brain
activity. Transformational-based techniques map fMRI signal into the
high-dimensional space in order to separate different components of the
data. It is also possible to separate the noise from the original data using
this approach, which is mainly performed by principal component
analysis (PCA) and independent component analysis (ICA). Sometimes,
PCA is applied as a preprocessing method before ICA by data decom-
position and temporal dimension reduction. On the other hand, clus-
tering based methods classify the time course signal into similar pat-
terns using the correlation between neighboring voxels (Heller et al.,
2006). Gaussian mixture model, viewed as a general version of the
clustering-based method outperformed the ICA for task-based studies
when extracting a small number of components; however, they are al-
most similar when 10 or more components are involved (Kim, 2008).

2.2.1. Cross-correlation analysis

Cao et al. introduced cross-correlation analysis (CCA) for the first
time in 1999 (Cao et al., 1999). The cross-correlation method is based
on the required correlation between signal time courses of the seed and
another region if they are functionally connected. The correlation can
be computed as follows:

CVon(7)

Jv(m) x v(n)

Cm,n =
m

where C defines the cross-correlation at lag =, V(m) and V(n) are the
variances of time courses of T,(i) and T,(i) as a seed in lag z, respec-
tively. CV(z) is the cross variance of those time courses that can be
defined as follows:

CVu,n(7) = E{((Tn (1) — E(Tn)) X (T,(0) — E(Tp)))} (2
where E is the mean or expected value that can be determined if T,,(i)
and T,(i) are functionally connected considering a threshold. The
computation time for complete calculation would be heavy for all lags.
Therefore, there is a need to calculate the correlation with a dozen time
points in a time window that limits the application of this method. In
addition, cross correlation analysis depends on the hemodynamic re-
sponse function (HRF) which is different among different subjects or
even different regions of the brain in one subject with limited duration
time.

2.2.2. Coherence analysis

Although the cross-correlation analysis is a useful method for both
type of fMRI analysis of rs/t-fMRI, the connectivity measurement at
zero lag would be argumentative (Li et al., 2009). On the other hand,
sensitivity to HRF which is different among subjects and high correla-
tion caused by cardiac activity noise between regions with no fluctua-
tions in blood flow are disadvantages of CCA method, which leads to
the use of coherence analysis (CA) (Sun et al., 2004). Coherence mea-
sures the correlation of two time series of Tp,(i), and T,(i) at the fre-
quency, f, which can be defined as

[Enn (P

O = 5 Dbn®

3)

where C represents the coherence, F,, ,(f) defines the cross spectrum in
the frequency domain, F, ,, and F, ,, are the power spectrum determined
by Fourier transform as Eq. (4)
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Fm,n (f) = Zk CVm,n(k)L’_jﬂ(
Eon(f) = 2, CVun(k)e I
Fm‘m(f) = Zk Cmem(k)L’_jfk (4)

This coherence method does not depend on neural activity or HRF
which can be considered as the advantage over the correlation method
(Sun et al., 2004). Correlation in the frequency domain provides a va-
luable and easier way to get functional connectivity. For example, the
frequency below 0.1 Hz is associated with FC while the frequency above
1.2 Hz is contributed to the cardiac activity since the flow fluctuations
of the blood have 10-second period (Li et al., 2009).

2.2.3. Statistical parametric mapping

Statistical parametric mapping is an approach based on the general
linear model (GLM) which includes some useful algorithms such as
subtraction, correlation coefficient, i-tests, and ANCOVA (Friston et al.,
1994). The results of SPM are illustrated usually by the voxels with P-
value lower than the threshold in color. In order to estimate the para-
meters of the data, GLM uses the Gaussian random field to solve com-
parison problems. Application of SPM involves preprocessing of the
data for motion correction and spatial smoothing. In addition, SPM can
be used in the statistical analysis of the data on each voxel for func-
tional mapping and functional connectivity investigations (Greicius
et al., 2003). In this approach, the model is set up and fitted to the data.
The GLM for a variable matrix of T which represents the time course of
voxels can be defined as (5)

T=GU+E (5)

where G is the column of the coefficients consisting of the variables
associated with the experimental conditions and E is the vector of errors
that are independent and normally distributed. The parameter n is the
vector of unknown parameters at each voxel that can be estimated
using the least square method. The Magnitude of the least square, [,
demonstrates the activation presence or absence and can be calculated
by (6)

I = (G'G)'G'T (6)

where t denotes the matrix transpose. The variance-covariance matrix,
V, can be defined as follows:

V = Var(E)(G'G)™! (9]

By defining error term, E{I} = #, the statistical inference can be created.
The SPM toolbox provides all statistical analysis which is one of the
most popular toolboxes in fMRI studies. The validity and application of
statistical GLM have been confirmed in the vast majority of studies in
recent decades. However, there are some limitations and assumptions
for the application of this method. The error term should be considered
normally distributed and observations should have a Gaussian dis-
tribution. In addition, this method relies on smoothed images that may
decrease the fMRI spatial resolution.

2.2.4. Graph theory

Functional brain network is a complicated system with properties
like small-world characteristic, hub distribution and connection, hier-
archy, centrality, and modularity among others. Graph theory is a
mathematical method to represent a complicated network as a rather
simplified graph characterizing the ‘choreography’ in terms of activa-
tion between brain regions. Using graph theory, the functional network
can be investigated in four essential steps (Bullmore and Sporns, 2009).
First, the nodes and associations among these nodes need to be de-
termined. The fMRI signal is spatially segregated, and the correlations
between pairs of brain regions are stored in a matrix. These correlations
of time series of the different brain regions represent the relationship or
connectivity of those regions. In the end, the network features of the
graph including shortest path length, betweenness, clustering, small-
word, and modularity that can be measured mathematically, are
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Fig. 2. Procedure to obtain the functional network and graph theory parameters.

calculated. An overall view of graph theory analysis is displayed in
Fig. 2. Most graph theory based studies use symmetrical calculations
like correlation and coherence or partial coherence to find the asso-
ciation between nodes.

A graph consisting of N nodes which are shown by dots and K links
that are drawn by lines can be represented as G(N, K). It is important to
know which pairs of nodes create a link (Boccaletti et al., 2006). Node
degree that is the most fundamental parameter can be described by the
number of connections of a node with the other nodes in the network.
Shortest path length, a criterion to show the integrity of a network,
provides the optimal pathway and characterization of the internal
graph structure as well. This can be represented as a matrix of L which
includes all shortest path lengths as follows:

1
L =(N(N— 1)]Z 4

where dj; is the length of the link between node i and node j.
Node betweenness property that provides node centrality is used to
detect the individual in a network, and it is determined as:

(8)

by = Z nU_(k)

i ©)
where by is betweenness node network property, n; is the number of
shortest path lengths connecting the i and j nodes, and ny(k) is the
number of shortest path lengths connecting the i and j while passing
node k. The edge betweenness can be described in the same way as the
number of shortest path lengths between a pair of nodes passing an
edge.

Clustering coefficient which is defined by the segregation of a net-
work is related to the neighboring communication. It can be calculated
by the ratio between the number of connections of the nearest neigh-
bors and the maximum number of connections or edges that can exist
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(van den Heuvel et al., 2008; Bullmore and Sporns, 2009) as given by
103

C=%Zgi

(10
where g; can be defined as follows:
_ number of edges
&= maximum possible number of edges (11)

The centrality of a node defines the number of shortest paths be-
tween node pairs which pass through that specific node in the network.
Modularity exhibits how graphs are unified within subnetworks or se-
parated between modules.

Small-world, S, that is mathematically calculated by the ratio of
normalized clustering coefficient to the normalized path length, is a
property that determines the global efficiency of a network. A network
with a small value of shortest path length and high value of clustering
coefficient corresponds to a network with a high value of efficiency.
Small-world topology can be obtained through the brain hubs that
provide every node the ability to have a low number of connections
while remaining linked to the other nodes (Lee et al., 2013). Brain hubs
can be described as brain regions that are strongly connected to many
other regions of the brain or nodes with high centrality (Drzezga et al.,
2011). Normalization is defined by comparing the value of C and S of
the random networks (Humphries and Gurney, 2008) as in (12).

S==
A 12)

L

rand Lrand R

troduced to provide graph theory analysis for the researchers such as

GraphVar (Kruschwitz et al., 2015), CONN (Whitfield-Gabrieli and
Nieto-Castanon, 2012), GAT (Hosseini et al., 2012), and brain con-
nectivity toolbox (Bullmore and Sporns, 2009).

where y = LL and A = . Recently, some toolboxes have been in-
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2.2.5. Principal component analysis

PCA decomposes the fMRI signal into some variations through an
orthogonal transformation which separates important features from
those with lesser importance (Friston et al., 1993). The data is trans-
ferred into a set of eigenvectors by mapping the highest variance on the
first principal component, the next greatest variance into the second
principal component, etc. In order to apply PCA on fMRI signal, the
data needs to be set up in a two-dimensional matrix of voxels and time
series which provides components at each time point (Szabd and
Horvath, 1998). The projection can be defined as follows:

Y = WX (13)

where W is the transformation matrix formed from eigenvectors of the
autocorrelation matrix and X is the centered two-dimensional matrix of
fMRI data with the mean of distribution subtracted from the data. The
eigenvector matrix, E, is obtained by (14).

XcE = AE (14)
where X¢ is the covariance matrix of the fMRI signal and A is the matrix
of eigenvalues. Using PCA for fMRI analysis has been reported by some
studies (Viviani et al., 2005; Andersen et al., 1999; Baumgartner et al.,
2000); however, there are some limitations in using PCA for fMRI
analysis. For example, the orthogonality of the transformation causes
loss of some important data if the main signal and noise are non-or-
thogonal. In addition, it may cause loss of some functionality patterns
or small changes in fMRI signal due to capturing the greatest vari-
abilities (Jackson, 2005).

2.2.6. Independent component analysis

Independent component analysis known as blind signal separation is
a method for source separating components and whose application in-
volves many fields of research. The hypothesis of using ICA is the lin-
earity in data recording from independent non-Gaussian sources which
is the key factor for estimating the sources (Hyvéarinen and Oja, 2000).
In fMRI investigation, ICA is an effective method for parsing the two
dimensional signal of temporal and spatial data into the spatially in-
dependent components each associated with a time course. Each spatial
distribution determines a spatial map that is uniquely specified
(McKeown et al., 1997; Du et al., 2016). Decomposing the fMRI signal
into the map voxel and time courses can be expressed as:

N
Xij= ), AiSu
kzz:1 (15)

where X is the matrix of the data which is the fMRI signal, A is the
matrix of mixing coefficient, and S is the matrix of map's components. §
can be calculated by summing the product of matrix of the fMRI signal,
X, and the unmixing matrix, W, for the N points of the fMRI input using
(16)

N
Sy = Z Wik Xy
k=1

(16)

The index of ij describes the jth voxel in the ith component map and the
index of ik defines the ith time point of the kth voxel.

The advantages of ICA methods are in obtaining the time course of
the brain activation overcoming the difficulty in determining the time
course a priori in ROI (McKeown et al., 2003), and in separating noise
and motion artifacts from fMRI signal (Thomas et al., 2002). However,
there are some challenges in using ICA including the number of in-
dependent components to be considered, the lack of a predefined model
to apply to the data, differentiation of physiological network compo-
nent from noise component, and the complexity in the group compar-
ison due to a large number of variations in reconstructing the signal
(Dennis and Thompson, 2014).
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2.2.7. Clustering analysis

Clustering approach which is widely used in functional connectivity
studies consists of 3 steps: (1) calculating the correlation of neighbors
for each voxel, (2) finding the maximally correlated neighbor for each
voxel, and (3) clustering the data according to the voxels and maxi-
mally correlated neighbor. Self-organizing maps (Ngan and Hu, 1999),
hierarchical clustering (Cordes et al., 2002), fuzzy C-mean (Fadili et al.,
2000), and k-mean clustering (Venkataraman et al., 2009) are the main
approaches in clustering analysis with the fuzzy C-mean and K-mean
clustering being the most beneficial as detailed next.

2.2.7.1. K-mean clustering. K-mean clustering is a method used to find
groups in the data defined as x,, observations or time courses that have
been set as vectors. In this approach, the data is classified according to
the feature of similarity that uses minimization of squared error with an
objective function, J, for clustering the data.

K Cp
Jmn = E Z (”xn - Tm”)z
m=1 n=1

where K is the number of clusters, C,, is the number of time courses at
mth cluster, T,, is the centroids, and (x,, — T,,)* defines the Euclidean
distance between time courses and the centroids. The centroid can be
recalculated by (18)
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(17)

(18)

The algorithm consists of the following steps: First, the value of
centroid is initialized. Second, the distance between each data point
and centroid is obtained, and third, each data point is assigned to the
associated centroid according to the obtained minimum distance. This
process is repeated using the new centroid from Eq. (18) until no data
points need to be reassigned. In this approach, the number of clusters is
needed to be predefined, which is a disadvantage of the K-mean algo-
rithm. There is no algorithm or general solution to find the initial value;
however, it can be estimated using the mean distance to the centroid of
each cluster, while the number of clusters in the hierarchical method
can be defined in the final stage.

2.2.7.2. Fuzzy C-mean clustering. The main idea of the fuzzy C-mean
clustering method is the minimization of the least square error of
objective function which is the total of the distances between patterns
(Fadili et al., 2000). Fuzzy partition of the data set is defined as follows:

k m
Jp = Z Z ufsi g, ¥)
i=1 j=1

where m is the number of voxels in fMRI, u; is fuzzy membership, y; is
centroids, and s is the distance between voxel i and a centroid j. The
fuzzy index, n > 1, and the number of clusters, k > 2, and n is the
number of features. Minimization of J, can be obtained under the
following conditions:

1
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where the initial value for u is calculated by (22)
b1 B (D)
2 2 (22)

where U, = % and Uy is a random partition of the fMRI signal. The fuzzy
C-mean is less likely to converge unsatisfactory which is one of the
advantages of this approach; however, it is relies on a threshold value
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Table 1
Comparisons among different model-based methods for fMRI analysis.
Method Purpose Strength Limitations
Model-based ~ -Measuring the correlation of the seed and other -Easy to implement
regions
-Robust in results -Prior knowledge is required
CCA -Finding the correlation of the time courses of -Easy to implement
functionally connected regions
-Computing the correlation with a time window of a
dozen time points
-Sensitivity to the HRF
-High correlation caused by cardiac activity noise
between regions with no fluctuations in blood flow
CA -Finding the correlation of two time series in a -It does not depend on the HRF -Predefining the seed
frequency domain
SPM -Presenting the variables associated with the -Having application in preprocessing of the data for
voxels signal time course motion correction and spatial smoothing
-Having application in the statistical analysis of the
data on each voxel for functional mapping
-Availability as a software package
-The error term should be considered normally
distributed
-Observations should have a Gaussian distribution
which may decrease the fMRI spatial resolution
Graph theory  -Finding the functional and effective connectivity
using the nodes as voxels and edges as connections
-Finding the parameters of the different networks of
the brain
-Representing the complex network as a visual graph
-Making easier way to distinguish the relationship -Having complexity for implementation
between brain regions using topological parameters
Table 2
Comparisons among different data-driven methods for fMRI analysis.
Method Purpose Strength Limitations
Data-driven -Separating the different components of the  -Prior knowledge is not required -Lower accuracy
data
-Missing data
ICA -Finding and separating temporal and -Obtaining the time course of the brain activation
spatial independent components instead of determining a priori in ROI
-Separating noise and motion artifacts signals
-Defining the number of independent components
-Having lack of a predefined model to apply to the data
-Having difficulty in differentiation of physiological
network components from noise components
-Having complexity in the group comparison
PCA -Finding the most important temporal and -Capturing the most important variables -Orthogonality of the transformation may cause loss of

K-mean Clustering

C-mean Clustering

spatial components

-Clustering the data according to the
feature of similarity

-Clustering the data by minimization of the
least square error

-Easy to implement

-Ability of changing the clusters by instances
-Being fast

-Less likely to diverge

-Having the best performance for overlapped data

some important data

-Loss of some functionality patterns or small changes in
fMRI signal

Considering orthogonality and linearity assumptions of
the data

-Predefining the number of clusters

-Probability of being influenced by the initial seed
-Sensitivity to scaling

-Failing for nonlinear datasets

-Depending on the threshold value

-Depending on the number of the prior clusters

-Having high computational time in comparison to other
clustering methods
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and depends on the number of clusters which creates some difficulties
in medical applications.

Tables 1 and 2 provide the advantages and disadvantages of the
discussed methods and related purposes of the analyses.

As mentioned earlier, there are various kinds of available methods
that can be used to analyze fMRI data, but they all comply with the
linearity assumption of connectivity. In general, none of the methods
outperformed the others and their application would depend on the
aims of the study. However, graph theory attracts more interests due to
its ability to express the complex network analysis visually while pro-
viding both functional and effective connectivity information. In addi-
tion, there are some nonlinear statistical methods such as synchroni-
zation likelihood (SL) based on generalized synchronization (Sanz-
Arigita et al., 2010), maximum likelihood (Deneux and Faugeras,
2006), and approximate entropy (ApEn) (Liu C.Y. et al., 2013), that can
be used to overcome the limitations of linear analyses. However, due to
the heavy computational load and the likelihood of not overcoming all
the linear approach limitations, these methods remain limited in their
use. For example, Deneux et al. developed a technique based on the
maximum likelihood to analyze the fMRI signal using the dynamical
model which requires a heavy computational load (Deneux and
Faugeras, 2006). However, they found similar results with linear model
ones indicating that linear models are probably sufficient for detecting
activation in brain regions.

Default Mode

Sensorimotor
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3. Brain connectivity fundamentals

Neuroimaging studies, specifically brain connectivity investigation
is an approach to examine the brain networks including the default
mode network (DMN), control network (CON), sensorimotor network
(SMN), dorsal attention network (DAN), visual and auditory networks,
and salience network (SAN) as shown in Fig. 3 (Barkhof et al., 2014;
Sheline and Raichle, 2013). This mapping can be defined as a set of
nodes and edges which are arranged based on correlation of time
courses related to the nodes (Smith, 2012). The directionality of the
connections defines the flow of the information through the brain
networks which refers to effective connectivity. Therefore, three major
brain connectivity investigations can be identified: (1) structural con-
nectivity which provides the physical connections, (2) effective con-
nectivity which defines the flow of information, and (3) functional
connectivity which defines activation in response to the rest state or to
a specific stimulus or task (Friston, 2011).

The term “functional connectivity” contributes to functional in-
tegration that can be described as an interaction between different
brain regions while functional segregation is defined as localization of
the function in the brain. Segregation shows the distinction of func-
tional activity of cortex that is separated within the cortex. On the other
hand, functional integration can be demonstrated as functional con-
nectivity using statistical associations between time series such as

Executive Control

Dorsal Attention

Auditory

Fig. 3. Functional organization of the main networks in the brain. Reprinted from (Barkhof et al., 2014).
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Effective Connectivity

Fig. 4. Different modes of connectivity using graph theory. Reprinted from (Sporns, 2007).

coherence and correlation, and effective connectivity using parameters
of a model-based approach. Indeed, functional connectivity discovers
the statistical patterns of the brain regions while effective connectivity
shows how brain regions affect each other. Some approaches use the
direction of the connections to illustrate information through brain
networks (Smith et al., 2013). The most basic visualization of the brain
connectivity is a two-dimensional N X N matrix or using graph theory.
Fig. 4 shows different modes of brain connectivity using the graph
model (Sporns, 2007).

Functional connectivity can be investigated through the methods
described in previous sections. On the other hand, Friston proposed
mathematical modeling of the effective connectivity in two main ca-
tegories of DCM and GCM (Friston, 2009). DCM can be expressed as a
state-space model that represents the differential equations which
govern the activity of the hidden neurophysiological states. DCM using
the model of effective connectivity, models the influence of the brain
regions activity. On the other hand, in the brain connectivity literature,
GCM is an autoregressive based modeling approach for fMRI data that
looks for the correlations of the regions. This method tries to test the
effects of the regions on each other using models of functional con-
nectivity. Structural equation modeling (SEM) which assumes the
neural activity has reached its steady states, is useful in modeling non-
time-series data. Friston found out that among these modeling ap-
proaches, DCM is a new approach to overcome the limitations of GCM
and received the most attention. Here, structural connectivity that uses
sMRI or diffusion tensor imaging (DTI) is not discussed since it is out of
this research scope.

4. Clinical AD investigation

Clinical investigation of Alzheimer's disease is defined as a stage of
disease where symptoms emerge. The biological changes can be as-
sessed anatomically and functionally in order to perform classification
of the different stages of AD, with a focus placed on the early phase of
MCI for the early planning of treatment and therapeutic interventions.
Brain changes caused by AD may have begun many years before clinical
symptoms like memory loss and cognitive decline appear; however,
there is no specific criteria to diagnose AD in vivo. Confirmation of the
diagnosis at present can only be made via the presence of amyloid ac-
cumulation and pathological aggregation of tau protein in neuro-
fribillary tangles in pot-mortem brain.
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4.1. Differentiation of neurodegenerative dementias using rs-fMRI

Recently, some clinical applications for fMRI signal have been re-
ported that include presurgical localization for tumor operation, diag-
nosis of schizophrenia, depressive disorder, and neurodegenerative
diseases such as AD. In addition, such applications are beginning to
demonstrate the ability to distinguish variant types of dementias such
as AD and behavioral variant frontotemporal dementia (bvFTD). These
two types of dementia have an overlap of symptoms that makes diag-
nosis challenging specifically in early stage of the disease which proves
the need for early biomarkers. Some studies investigated these two
types of dementia using MRI (Sawyer et al., 2017; Wang et al., 2016;
Canu et al., 2017), motor and cognitive tasks (Rucco et al., 2017), and
social cognition assessments (Bertoux et al., 2012); however, there are
fewer studies investigated the fMRI application.

Zhou and colleagues studied connectivity differences of bvFTD and
AD and found that these two diseases exhibited inverse patterns to each
other (Zhou et al., 2010). They observed attenuation of functional
connectivity in salience network and enhanced functional connectivity
in DMN in the bvFTD group, which is what inversely happened in the
AD group. Applying the intrinsic connectivity network (ICN) fMRI
which detects the changes in the network before brain atrophy, and
using ICA on 36 subjects (12 people in every group of cognitively
normal (CN), AD, and bvFTD) led to 92% of classification accuracy.
However, bvFTD subjects showed decreasing FC between the auditory
network and angular gyrus and also between the lateral visual network
and lateral occipital cortex compared to the AD group (Hafkemeijer
et al., 2015). Furthermore, gray matter atrophy in posterior cingulate,
lateral occipital and frontal medial cortices, temporal gyrus and hip-
pocampus in patients with AD have been observed as well as a reduc-
tion in functional connectivity of AD patients compared to the healthy
participants in DMN, posterior cingulate gyrus, lateral occipital, and
precuneus cortices. Moreover, FC between the lateral occipital cortex
and dorsal visual network, and between dorsal visual and parietal
cortices were perceived in AD patients. Tuovinen et al. observed de-
creasing functional connectivity in the salient network in bvFTD and
posterior DMN in AD group using ICA dual regression (Tuovinen et al.,
2017). In addition, decreasing FC between right frontoparietal network
and precuneus in AD differ from the left frontoparietal network, and
inferior frontal gyrus in bvFTD as observed longitudinally for 20 AD, 22
CN, and 12 bvFTD using network-to-region analysis (Hafkemeijer et al.,
2017). By combining the strengths of key imaging modalities,
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multimodal neuroimaging will certainly improve diagnose of AD pa-
tients in the different stages of the disease from the CN group as well as
differentiating the bvFTD group from AD (Bouts et al., 2018). Bouts
et al. also demonstrated that the combination of fMRI and grey matter
density would be associated with the more accurate diagnosis.

4.2. Functional connectivity investigation using task-based fMRI

Task-based fMRI activation function has been investigated in some
studies as a biomarker for people at risk for developing AD. Enhanced
FC in AD patients has been reported by many researchers. Hamalainen
et al. reported increased fMRI responses in parahippocampus, hippo-
campus, and fusiform areas for MCI patients during the encoding task
(Hamala inen et al., 2007). Machulda et al. tried to discriminate CN,
MCI, and AD groups according to the fMRI memory encoding
(Machulda et al., 2003). In addition, passive sensory fMRI was per-
formed on the subjects as a control parameter to show that subjects
have the potential to have an equivalent response. Then, correlation
coefficients between fMRI signal intensity and activation timing were
obtained using sinusoidal stimulus waveform for both memory and
sensory tasks. Considering medial temporal lobe as ROI for memory
task and hand region of cortical homunculus for sensory task and with
receiver operating characteristic (ROC) analysis, they found that there
was no significant difference in memory region activation for recogni-
tion and free recall name between MCI and AD subjects. Moreover, they
realized that activation in medial temporal lobe was greater in CN
subjects than MCI and AD groups, which could be a reason for dys-
function of the medial temporal region due to neurodegenerative dis-
ease. Donald G. McLaren and his colleagues applied a generalized
psychophysiological interaction method using gPPI toolbox on 24 mild
AD subjects to assess the task-based connectivity of the hippocampus
with the rest of the brain regions (McLaren et al., 2014). They used
face-name pairs encoding task for fMRI data acquisition in 3 conditions
of novel face-name, repeated face-name, and fixation cross. Using
connectivity-behavior regression analysis, they concluded that beha-
vioral and clinical measures of memory and cognition are associated
and found that this relationship is even stronger and more complicated
than the results of previous studies.

In another study, a significantly lower level of functional activity in
the hippocampus, and more level of activity in medial parietal cortex
and posterior cingulate cortex in AD patients have been found by using
face-name encoding task (Sperling et al., 2003). They observed a sig-
nificant attenuation of FC in the left hippocampus and bilateral para-
hippocampal gyrus during the color picture memory encoding. AD
patients have a memory loss due to the fact that the most inclination of
functional activity is observed in the hippocampal formation. Although
most studies focus on the hippocampus and medial temporal lobe
(MTL) to investigate memory task encoding in patients with Alzheimer,
some other studies tried to find the FC patterns of patients during visual
encoding due to the importance of visual function as a neuropsycho-
logical biomarker of Alzheimer (Prvulovic et al., 2002; Kato et al.,
2001). In (Prvulovic et al., 2002), decreasing functional activity is ob-
served in the superior parietal lobe (SPL) which might be explained by
SPL atrophy and increasing activity in the occipitotemporal cortex
(OTC) in AD group during the angle discrimination task. This ab-
normality proved that in the early stages of Alzheimer, the parietal
dysfunction was compensated by using ventral visual stream. However,
they observed a higher magnitude of fMRI signal but not a higher
number of fusiform gyrus (FG) voxels which indicates that the ventral
visual recruitment is supported by only a small section of the FG that
prevents the activation spread in that area. In addition, failure of ac-
tivation in temporal lobe and prefrontal area which is associated with
the visual area have been reported during visual encoding task for mild
AD (Kato et al., 2001).

On the other hand, some studies applied the auditory stimulation in
order to investigate the functional neuroanatomy alternations in an
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auditory scene of CN and AD subjects (Golden et al., 2015). They
proposed four stimulation of naturally and spectrally rotated sounds (NI
and RI, respectively), and naturally and spectrally rotated name su-
perimposed (NS and RS, respectively). Although they observed alter-
nations in right posterior superior temporal cortex in CN and AD sub-
jects using auditory object segregation stimuli, [(NI+ RI)-(NS+RS)],
they could not find any significant differences between these two
groups. However, they noted increasing functional activity in the right
supramarginal gyrus in AD subjects in comparison to the CN group
using the cocktail party effect stimuli, [(NI-RI)-(NS-RS)]. This alterna-
tion of functional neuroanatomy in inferior parietal cortex which is the
main region of the auditory scene in the brain proves that central au-
ditory functions have been impaired in AD group and suggests that they
have difficulty of discovering the auditory information in the noisy
environment.

4.3. Functional connectivity investigation using rs-fMRI

Brain network mapping in patients with Alzheimer's disease is one
of the important applications of fMRI studies, and among the brain
network mapping methods, DMN is one of the most interesting net-
works measured at resting state. DMN consists of several spatially dis-
tinct regions in the cortex lobes which mostly include posterior cingu-
late, medial prefrontal, lateral temporal cortices and the hippocampus
(Buckner et al., 2008). DMN is associated with remembering events of
the past, envisioning events of the future, self-relevant mental proces-
sing, and monitoring of external information (Y. Liu et al., 2013). The
alternation of the functional activity of DMN is found to be associated
with neurological disorders (Damoiseaux et al., 2007; Seeley et al.,
2007; Sheline and Raichle, 2013; Chaovalitwongse et al., 2017).

Decreased functional connectivity in DMN is reported in most stu-
dies. In (Koch et al., 2012), the power of DMN in rs-fMRI was in-
vestigated for three groups of CN, MCI, and AD in order to delineate the
AD and MCI groups from the healthy CN group. They provided the
magnitude of the rs-fMRI signal in DMN for three groups as shown in
Fig. 5 which clearly illustrates the disruption of functional connectivity
in DMN as the disease progresses from healthy controls to MCI and
onward to AD.

Toussaint et al. (2014) used 40 spatial ICA for every fMRI signal and
applied a hierarchical clustering algorithm to individual independent
components to determine group maps. They observed inclination cor-
relations between precuneus posterior cingulate (PPC) and frontal re-
gions and also between PPC and bilateral temporal region of the brain
for aging subjects as compared to younger subjects. In addition, de-
creased correlations between frontal and parietal regions were ob-
served; however, intra-network interactions of the subsystem of DMN in
parietal and frontal regions were increased for the same groups.
Moreover, DMN inter-region and intra-region correlations within the
parietal, temporal, and frontal areas were significantly higher in normal
aging than with the AD group. Liang Wang and colleagues focused on
changes in brain connectivity between the hippocampus and other re-
gions of the brain for mild AD (Wang et al., 2006). This seed-based
study exhibited the disruption of FC between the right hippocampus
and some other regions of DMN such as medial prefrontal cortex and
posterior cingulate cortex in AD patients. Also, disruption was observed
between the right hippocampus and ventral anterior cortex, and be-
tween right and left cuneus as well. Furthermore, they observed in-
creasing FC between the right prefrontal cortex and the left hippo-
campus in AD in comparison to the healthy group.

Zheng et al. studied cerebellar subregions functional connectivity
(Zheng et al., 2017). In order to assess within-group functional con-
nectivity, one sample t tests was performed for each cerebellar sub-
region and between groups. They realized that AD group had disrupted
functional connectivity patterns within DMN, Visual network (VN) and
SMN in comparison to the healthy group. DMN, VN, and SMN are im-
portant regions that are crucially associated with the cognition in the
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Fig. 5. Magnitude of DMN for three groups of healthy controls, MCI and AD. Reprinted from (Koch et al., 2012).

brain which demonstrates cognitive decline as a result of disrupted
functional connectivity in AD patients. Moreover, they found gray
matter atrophy in some regions such as dorsal cortex, medial frontal
cortex, lateral temporal cortex, MTL, posterior cingulate cortex, lateral
parietal regions, and subcortical areas in patients with AD. Badhwar
et al. observed changes in functional connectivity of SAN, limbic net-
work (LIM) including entorhinal cortex and hippocampus, and DMN
including PCC and precuneus in MCI subjects (Badhwar et al., 2017).
The dysfunction of SAN and DMN may lead to deficits in attention in
MCI and AD patients (Zhang et al., 2018).

In (Dai et al., 2014), voxel-based graph theory approach was used to
study the FC patterns of the brain for 75 subjects including 34 AD and
41 healthy. In their research, they used functional connectivity strength
(FCS), a metric that showed what regions were associated with the
abnormality and how they were distributed in the brain. They found
disrupted connectivity distance-dependent in most regions in DMN such
as inferior parietal cortex and medial prefrontal gyrus and in some
other hubs such as insula, thalamus, and supplemental motor area.
Although the functional connectivity strength also decreased in the
healthy group, it showed more significant changes in patients with AD.
In addition, they realized widespread gray matter atrophy specifically

very strong at the inferior parietal cortex, posterior cingulate gyrus,
medial prefrontal gyrus, and insula. In (Cai et al., 2015), authors con-
sidered fusiform left and right gyri as the seed regions and found that
functional connectivity was increased between these regions and re-
gions of left middle occipital gyrus and right anterior cingulate cortex.
Furthermore, they represented altered functional connectivity between
seed regions and some other brain regions such as inferior temporal
gyrus (ITG) which were involved in visual cognition. ITG is known as
the long-term visual memory which is located on the visual stream si-
milar to left and right fusiform gyri. Therefore, volume and functional
connectivity reduction of these areas may lead to visual processing
deficit such as failure to recognize faces. The results revealed that
functional connectivity reduction between two seed regions in amnestic
MCI (aMCI) group may explain why AD or MCI patients are unable to
recognize familiar faces. Brier and colleagues studied intra-network and
inter-network functional connectivity concerning the different amount
of clinical dementia rating (CDR) using PCC as the region of interest
(Brier et al., 2012). They perceived that the FC of three pairs of DMN
with DAN, SMN, and CON were significantly changed with increasing
AD severity (CDR from 0 to 1). The other pairs did not reveal too many
changes which suggested that dysfunction of one abnormal resting state
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network of a pair may lead to dysfunction of another network of that
pair.

Damoiseaux et al. discovered that in early Alzheimer's disease the
connectivity of the anterior and ventral regions of DMN started to be
increased while the posterior regions began to be detached and both
eventually disrupted with disease progression (Damoiseaux et al.,
2012). They used dual regression method which included obtaining
data driven from running ICA, applying the dual regression to the in-
dependent components, and finally performing the voxel-wise analysis.
Wang et al. performed temporal permutation of entropy, a method
based on adjacent data comparison in arbitrary time series, for 4 groups
of CN, early MCI (EMCI), late MCI (LMCI) and AD to study the ab-
normal complexity of resting-state fMRI and observed that the average
permutation entropy decreased from MCI to AD (Wang et al., 2017).
They used whole-brain entropy preprocessing and Gaussian smoothing
which resulted in showing the least complexity of AD group which is
significantly correlated with the neuropsychological measurements
such as mini-mental state examination (MMSE) and CDR. Considering
the same type of EMCI and LMCI groups, Niu et al. found that the
complexity of the BOLD signal associated with the different ROIs sig-
nificantly contributed to identifying cognitive decline in MCI and AD
groups (Niu et al., 2018).

Brier and colleagues demonstrated other forms of brain network
deterioration with cognitive decline (Brier et al., 2014). They observed
that clustering coefficients and modularity reduction contributed to
identifying the degree of cognitive impairment. J. Xiang et al. studied
abnormality in the functional connectivity of 70 subjects with 16 CN,
17 EMCI, 19 LMCI, and 18 AD using graph theory (Xiang et al., 2013).
They represented increasing of shortest path and decreasing of clus-
tering coefficients along with increased cognitive loss. Daianu et al.
used the k-core decomposition method of the anatomical network to
assess brain functional connectivity (Daianu et al., 2013). They ana-
lyzed the diffusion-weighted imaging (DWI) of 111 subjects including
28 CN, 15 AD patients, and 68 MCI. Applying graph theory and com-
paring the connectivity matrices of left and right hemispheres and
considering only edges, more than half of the valid connections were
asymmetric in all groups, which intensified with AD progression. The
left hemisphere showed a lower proportion of fiber density among re-
gions in AD subjects that proved core connection was broken down in
left hemisphere compared to the CN group. They discovered that path
length and efficiency were decreased in AD patients compared to the
CN group; however, normalized small-word was increased in all ana-
lyses of the right hemisphere and whole brain. Y. Zhan et al. indicated
abnormal network components in DMN, SMN, VSN (visual-sensory
network), and VAN (visual-attention network), using a network-based
statistic (NBS) with 264 ROIs (Zhan et al., 2016). They considered NBS
as components of interest (COIs) in order to study the relationship
between the strength of the connectivity and the severity of the disease.
They proved that the increase in the degree of cognitive impairment
was associated with a decrease in FC of the COIs which was distributed
through the several brain networks. Liu et al. investigated long-distance
functional connectivity that led to magnitude and homogeneity re-
duction of fluctuation of low-frequency fMRI data and functional con-
nectivity reduction between farther regions in the brain of the severe
AD subjects (Y. Liu et al., 2013). They observed when comparing results
for MCI and aMCI that the degree of disruption of FC of the areas re-
lated to the physical distance of those regions, e.g., the areas of the
anterior-posterior within the DMN were most affected in these patients.
Also, they realized that the disconnection of connectivity and disrup-
tion of fMRI fluctuations led to the reduction of the efficiency in the
nodal and global networks.

4.3.1. Classification

Recently, there has been a great interest for machine learning ap-
plications in diagnosis of Alzheimer's disease in its different stages.
Graph and topological measures of fMRI data can be used in order to
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classify or predict the early onset of the AD. Variety of machine learning
algorithms have successfully applied to the fMRI data which among
them support vector machine (SVM), random forest (RF), Baysian
network (BN), and neural network are deemed the most powerful
methods. Most machine learning algorithms have been applied to the
rs-fMRI, although recently a developed deep convolution neural net-
work was applied to the task-based fMRI (Huang et al., 2018).

Authors in (Wang et al., 2013) divided the cortex into 1024 regions
and using wavelet transform based statistical analysis, they obtained
the correlation of time courses of those regions. They proved that dis-
ruption of functional connectivity happened at three levels of global,
nodal, and connectional in aMCI subjects that associates with memory
loss. Moreover, the classification of aMCI from the CN group with re-
latively high sensitivity and specificity (86.5% and 85.1%, respectively)
was achieved. Wee et al. used an SVM classifier combined with a
nonlinear radial basis function (RBF) based neural network (NN) to
classify the BOLD signal changes triggered by pathological attacks (Wee
et al., 2012). This classification was used to diagnose the MCIL. In their
technique, they employed times series of ROIs and relations among
clustering coefficients of different ROIs were used as features for clas-
sification. Using this approach, they reached a classification accuracy of
86.5%. In (Zhang et al., 2015), the authors used rs-fMRI data to in-
vestigate the functional connectivity of the brain based on Pearson's
correlation coefficients. The classification was applied on the ROIs time
series using an L2-regularized logistic regression classifier. The Pear-
son's correlation coefficients were defined based on changes between
time series of each pair of ROIs. They demonstrated that functional
connectivity changes can be used as features for MCI classification.
Using this methodology, they obtained the accuracy of 87.5% in the
diagnosis of MCL

Jie et al. introduced a new method of brain connectivity classifi-
cation by integrating a vector-based kernel and a graph-based kernel
corresponding to local network properties and global topological
properties, respectively (Jie et al., 2014). The classification was applied
on the mean time series of each ROI by calculating the average of the
fMRI over all the voxels in the target ROL This integration helped to
reach the accuracy of 91.5% in the diagnosis of MCI. Koch et al. com-
pared two methods of time series correlation with voxel of interest and
ICA, and they found out that the correlation analysis was more accurate
(Koch et al., 2012). Using the combination of two methods, they could
achieve 97% of the accuracy of classification among CN and AD groups.
In another study, an accuracy of 94.4% for CN and AD groups was
achieved applying random SVM to the rs-fMRI (Bi et al., 2018a). Bi
et al. used the random neural network cluster method on 61 subjects
and achieved the classification accuracy of 92.31% between 36 CN and
25 AD besides finding 23 abnormal regions including frontal and pre-
central gyrus (Bi et al., 2018b). Using FC and regional volume atrophy
in 10 subcortical regions of the brain and applying random forest,
53.33% accuracy has been achieved for multiclass of three groups of
MCI, CN, and AD (Son et al., 2017). Khazaee et al. obtained accuracy of
87.29% for classification of CN vs. MCI and AD using abnormalities of
the brain connectivity (Khazaee et al., 2016). They used graph theory
and extracted the graph parameters such as global efficiency and
shortest path length in order to find the functional connectivity pattern
and applied SVM with RBF kernel.

In another study, an accuracy of 97.14% for CN vs. AD classification
has been achieved using SVM and sequential minimal optimization
classifier and using SPM toolbox for statistical analysis of the fMRI
(Arma nanzas et al., 2017). De et al. used the combination of three
different parameters of FC obtained using ICA, dynamic of the FC, and
the amplitude of low-frequency fluctuations and achieved area under
the curve (AUQ) of 0.85 for classification of CN vs. AD using logistic
regression as the classifier (De et al., 2018). They found out that only FC
and dynamic of FC are enough to obtain the optimal accuracy. Recently,
some studies tried to investigate the progression of the disease from
MCI to AD. Hojjati et al. used converter MCI (c-MCI) and non-converter
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MCI (nc-MCI) groups to predict progressed patients. They obtained an
accuracy of 91.4% using SVM for nc-MCI and c-MCI applying rs-fMRI
(Hojjati et al., 2017)

4.4. Effective connectivity investigation

Effective connectivity estimates the directionality of influence of
one region in the brain on the other functionally connected areas. It is
crucial to study how the brain regions, e.g. in DMN interact with each
other and how the Alzheimer affects these patterns of interaction which
reflects the shifting in the cognitive process. In (Rytsar et al., 2011),
effective connectivity using DCM was studied on 14 AD and 16 CN
subjects during a visual task known as interhemispheric integration.
They examined the strength of top-down inhibitory effects of the visual
cortex and discovered that this inhibition attenuated in the early AD.
Impaired deactivation in DMN in both AD and CN groups during the
active task that can be explained by attenuation of inhibitory feedback
connections at least in AD subjects. All the intrinsic connections,
especially at the left hemisphere, were significantly weakened. This
reduction of effective connectivity was in agreement with cortico-cor-
tical connectivity changes of the visual network of AD patients. Indeed,
reduced inhibitory influence of top-down connections was explored in
elderly subjects and more significantly in early AD led to the functional
deactivation in primary visual areas.

(Hampstead et al.,, 2016) applied multivariate GCM using auto-
regressive modeling in order to study effective connectivity pattern of
MCI subjects during memory encoding task and retrieval object location
task. They used GLM to identify the active regions during encoding and
retrieval tasks and found 45 ROIs for effective connectivity analyses.
They observed more significant paths in right hemisphere from anterior
hippocampus during retrieval in CN group that are attenuated in MCI
subjects. During retrieval, the right inferior frontal junction (rIFJ) and
right anterior thalamus were the primary drivers of activation in-
dicating hippocampus dysfunction in MCIL. Moreover, they found fron-
toparietal network including IFJ and PCC drove activation in the left
hemisphere in CN group while it shifted to right frontal eye field (rFEF)
in MCI patients during the encoding task. The CN subjects relied on
parietal eye field while frontal eye field was engaged in MCI patients
during the encoding task which illustrated top-down loss control in this
group. This shift from posterior cingulate cortex to the retrosplenial
cortex in MCI patients was contributed to the memory and learning
impairment. Zhong et al. studied effective connectivity using multi-
variate GCM in the DMN and subregions of DMN to find the casual
interaction changes associated with AD (Zhong et al., 2014). They ap-
plied ICA to identify the DMN core regions and applied signed path
coefficients of GCM to investigate the casual interaction among these
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regions. They found degradation of effective connectivity in both terms
of strength and quantity as illustrated in Fig. 6. It is obvious that PCC
that had more connections in the CN group showed weakening inter-
actions in the AD. They believed that since PCC is the most metabolic
active and most connected region in the CN group, the reduced inter-
action of PCC proportion to the memory decline could be considered as
a clinical index. Furthermore, the inhibited activity of the right inferior
temporal cortex (rITC) in subjects with AD represented the breakdown
of visual networks caused the long-term visual memory decline of AD
patients.

Neufang et al. applied DCM on attention task-based fMRI data of 15
AD and 16 CN subjects (Neufang et al., 2011). They observed that ef-
fective connectivity was significantly decreased in fronto-parietal
pathways (from frontal to parietal cortex) which was a function of gray
matter volume reduction in those areas leading to top-down attentional
control impairment in the early AD. Later in 2014, they found a relation
between rs-fMRI functional connectivity and effective connectivity
using task-based fMRI of CN and early AD within DAN (Neufang et al.,
2014). They used seed-based partial coherence analysis to examine
functional connectivity from rs-fMRI, and DCM to analyze the t-fMRI.
Then, by a combination of these two analyses in regression models, they
explored that rs-fMRI functional connectivity was associated with the
effective connectivity within cingulo-fronto-parietal network in the CN
group. The connections from parietal to frontal lobe and connections
within the parietal were contributed to the higher rs-fMRI frequencies,
and bottom-up effective connectivity was associated with lower fre-
quencies while this pattern was disrupted in the early AD.

Although the effective connectivity studies the casual effects of the
brain regions on each other and provides the possible shifts in learning
and memory process in MCI and AD, there are fewer studies focused on
this field. Most studies relied on functional connectivity investigation
that may not reflect the cognitive process as well as effective con-
nectivity which proves the need for more attention to effective con-
nectivity investigation using task-based fMRI.

5. Preclinical studies

In recent decades, many researchers studied the abnormal amyloid
plaques and neurofibrillary tangles including f-amyloid and tau pro-
teins aggregation proceed to neurodegeneration in the brain of AD
patients (Rathore et al., 2017). This accumulation in the brain generally
includes temporal and hippocampal regions which are detectable be-
fore symptoms onset using fluorodeoxyglucose positron emission to-
mography (FDG-PET) (Pagani et al., 2015; Mosconi et al., 2010). The -
amyloid load is associated with AD; however, sometimes it is observed
in cognitively normal aging prior to symptoms onset that can be
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Fig. 6. T-statistic effective connectivity patterns of default mode network in healthy group (a) and AD -group(b). The thickness of the lines determines the strength of

the connections. Reprinted from (Zhong et al., 2014).
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considered as a biomarker of preclinical pathology which will be de-
veloped to AD. Indeed, increased Af aggregation is contributed to the
greater risk of Alzheimer leads to cognitive decline and gray matter
atrophy (Adamczuk et al., 2014). Fig. 7 illustrates widespread atrophy
most in the frontal region which is overlapped with amyloid burden in
the mild AD. In this section, we reviewed preclinical studies due to the
importance of the events leading up to dementia before clinical symp-
toms (Buckner et al., 2005).

Some studies investigated the relationship of the tau/amyloid de-
position and functional connectivity in MCI and AD patients. The
amyloid deposition is correlated with the increased functional activity
of left posterior temporal and contributed to the language network of
cognitively intact subjects (Adamczuk et al., 2014) Tau and AP load
were also contributed to medial temporal lobe volume reduction and
disrupted functional activity during memory encoding in normal aging
(Marks et al., 2017). Hansson et al. investigated the relationship of the
regional distribution of tau pathology and related pattern to a func-
tional network of the brain in AD using BioFINDER (Hansson et al.,
2017). They corroborated that tau accumulation increased in parts of
DMN, higher visual network, limbic, and DAN that proved tau de-
position effects on the sensory network and motor network.

As mentioned before, since DMN is engaged with memory retrieval,
the focus of studies of the preclinical AD is primarily on DMN (Elman
et al., 2014a). Elman et al. used ICA and dual regression analyses to find
the relationship between functional connectivity disruption and Af load
measured by Pittsburgh compound B-PET (PIB-PET) in cognitively
normal aging. Alternations in FC in parietal and temporal cortices, re-
present dysfunction of the local network, compensatory mechanism,
and impaired control network. Indeed, they found the disrupted FC not
only in DMN but also in the right CON and DAN as well. The changes in
higher PIB-PET associated with FC were observed in the posterior
cortex that could be a compensatory response of the visual system.
Increased neural activity in the hippocampus with A accumulation
during episodic memory task was reported in (Huijbers et al., 2015).
Increased neural activity in the hippocampus may arouse the neural
activity of other connected regions to the hippocampal area and prone
to B-amyloid accumulation. They monitored 33 patients with MCI over
36 months to assess the contribution of AB accumulation and long-
itudinal progression of the disease. At baseline, they observed increased
hippocampal activity along decreased its volume, slightly functional
impairment and higher cognitive decline for Af positive subjects than
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Fig. 7. Convergence and hypothetical re-
lationship of structural, molecular, and func-
tional measurements. Functional activity of
DMN in young adults and amyloid burden in
AD patients, have been represented in first and
second steps. These activities that are highly
similar include anterior and posterior cortex.
Metabolism abnormality and gray matter
atrophy in the next step are strongly observed
in posterior cortical areas more than the ante-
rior areas affected by amyloid burden.
Reprinted from (Buckner et al., 2005).

MEMORY
NETWORK

AP negative patients. Longitudinally, they found the same results but
more significant with faster clinical progression. Kazemifar et al. used
ICA with 30 independent components followed by three steps template
matching approach including goodness of fit calculation to assess the
similarity between 30 components, multiple template matching, and
finally SVM to find the neuronal components (Kazemifar et al., 2017).
Afterward, the brain activity map was created using statistical para-
metric mapping (SPM8) toolbox. They observed overall lower brain
activity and lower glucose standard uptake value ratio (SUVR) meta-
bolism in amygdala and hippocampus in the mild AD which proved
their significant correlation.

However, some other studies failed to find this relationship between
hippocampal activity and high Af burden in cortical during memory
encoding. Huijbers et al. (2014) and Song et al. (2016) explored that
higher cortical A deposition is contributed to the lower hippocampal
activity in normal elderly subjects during the memory encoding task.
This higher Af deposition is a hallmark of functional connectivity
changes in MTL and specifically in the hippocampus. However, this Af
load effect was decreased by increasing the age which may represent
the different results of the relationship of the hippocampal activity and
cortical Ap load.

Seo et al. studied two groups of amnestic MCI with and without A
load and confirmed that memory impairment in these two groups de-
pended on distinct brain areas according to the amyloid deposition
level (Seo and Choo, 2016). In aMCI without amyloid burden, the at-
tentional control network was activated while in the positive amyloid
group, hippocampus, and parahippocampal gyrus were activated for
the episodic memory function as a result of disruption in the memory-
related network. Hyperactivation in occipital and parietal cortices as-
sociated with Af burden played a compensatory role in subjects with
amyloid deposition during memory encoding (Elman et al., 2014b).
They found that subjects with amyloid aggregation illustrated less
neural activity in task-negative regions (regions that are not active
during the memory encoding) and increased neural activity in task-
positive regions (regions that are active during the memory encoding).
Oh et al. (2015) suggested that increasing Af-related hyperactivation
during working memory task in frontoparietal cortex (FPC) support the
fact that this hyperactivation not only occurs in episodic memory (EM)
system but in FPC as well. Some studies are suggesting that hypome-
tabolism in the brain follows the amyloid accumulation; however, its
development is a mixture of events that can not be explained by only
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amyloid deposition (Klupp et al., 2015). They suggested that amyloid
accumulation in remote regions of the brain which are functionally
connected and unaffected by local amyloid accumulation was asso-
ciated with longitudinal hypometabolism in that areas.

DMN consists of several distinct regions in the cortex mostly in-
cludes posterior cingulate, medial prefrontal and lateral temporal cor-
tices and also hippocampus in which its functional activity is associated
with internal tasks such as envisioning events of the future, multimodal
sensory, and level of consciousness. Pathogenic protein deposition
could be the cause of atrophy patterns and neurodegenerative disease
as a result (Georgiadis et al., 2018). DMN as the main network under
investigation in rs-fMRI measurement demonstrates the pathogenic
protein accumulation even in the early stage of AD (Simic et al., 2014).
The subjects with a high value of A in their DMIN show DMN functional
connectivity disruption especially in the hippocampal formation. In
addition, this earliest A burden is contributed to the frontoparietal
network and DMN decreasing connectivity as a result which is exhibited
in preclinical AD (Palmqvist et al., 2017). The DMN cortical neurons
produce more amyloid will result in more Af and tau accumulation as a
consequence in the DMN. However, Warren et al. suggested that in-
teraction of tau and AB as the main two pathogenic proteins causes
difficulty in association between the specific pathology and network
dysfunction (Warren et al., 2012). In addition, some elements of DMN
involve in active cognitive tasks such as visuospatial processing.
Therefore, the incorporation of the cognitive function would be un-
certain and required to more functional connectivity and structural
investigations.

In addition to the AB burden, there is also Apolipoprotein E (APOE)
£4 allele as a genetic factor associated with developing AD in cogni-
tively normal people (Scheller et al., 2018). Cai et al. (2017) proved
that regions contributed to memory and cognitive functions were af-
fected by increasing activity in anterior cingulate cortex (ACC) and
medial prefrontal cortex (mPFC), and decreasing functional activity in
precuneus and middle temporal gyrus (MTG) related to episodic
memory in normal elderly subjects with APOE &4 carrier. Sheline et al.
explored abnormalities of functional connectivity in APOE &4 carriers
within the DMN even in the absence of A accumulation (Sheline et al.,
2010). Fig. 8 exhibits altered functional connectivity in normal APOE
#4 carriers compared to APOE ¢4 noncarriers.

Machulda et al. (2011) observed a reduction of functional con-
nectivity in DMN including bilateral anterior temporal lobe, left middle
temporal gyrus, and left inferior parietal lobe considering the posterior
cingular cortex as the seed. In addition, they observed an increase in
SAN included bilateral insular cortex, medial prefrontal cortex, cingular
gyrus, thalamus and striatum considering the anterior cingulate cortex
as the seed for the APOE ¢4 carrier subjects compared to noncarriers.
They found this changes in rs-fMRI as balance disruption between DMN
and SAN which could be considered as an early hallmark for AD. Ref.
(Wang et al., 2015), exhibited that APOE ¢4 disrupted FC in executive
control network (ECN) and posterior DMN and at the nodal and con-
nectional level that was the reason for disruption at the global level in
AD subjects.

Luo et al. observed that the FC is increased in left middle frontal
gyrus and decreased in left lingual gyrus and medial temporal lobe in
APOE 4 carriers (Luo et al., 2017). Chen et al. demonstrated dysfunc-
tion in white matter (structural disruption) and functional abnormal-
ities are contributed to cognitive and specifically memory network in
APOE ¢4 carriers (Chen et al., 2015). They demonstrated later alter-
nations in functional connectivity in the DMN of precuneus as a pivotal
APOE effect and other regions (Chen et al., 2017). They observed the
increasing FC of precuneus and regions in insula including inferior
parietal lobe and superior temporal gyrus and decreasing FC between
precuneus and anterior areas such as superior frontal gyrus in APOE &4
carriers compared with non-carriers.

McKenna et al. compared the ROI-to-ROI connectivity with the
whole brain ROI functional network in APOE ¢4 carriers and non-
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carries between two groups of CN and EMCI (McKenna et al., 2016).
They observed functional connectivity decreasing in precuneus, visual
cortices, temporal gyrus, PCC, and anterior cingulate cortices in EMCI
subjects with a strong overlap of functional connectivity abnormalities
in APOE ¢4 carriers. However, they found that effect of APOE ¢4 on
EMCI and CN groups is almost similar which opens up the question of
what other important factors lead to developing the APOE ¢4 to EMCI.
A clear evidence reported in many of these studies in this section sug-
gest that alternations of fMRI are detectable before clinical symptoms of
dementia among individuals. There are many studies that prove func-
tional abnormalities of preclinical AD; however, preclinical fMRI still
requires more investigations to understand the relation of these ab-
normalities with AD.

6. Advantages, limitations and future perspective

The fMRI modality is a non-invasive imaging modality which pro-
vides high spatial resolution in comparison to the other modalities such
as PET imaging. Deployment of BOLD-based signal analysis techniques
does provide valuable information through the constructed functional
networks of the brain at rest (or even under anesthesia). FMRI could
also yield more complicated functional connectivity patterns during
tasks such as visual, auditory, and language. Abnormalities in func-
tional networks due to pathological changes can be used for the diag-
nosis of neurodegenerative diseases such as Alzheimer's disease.
Another important advantage of fMRI over the FDG-PET imaging is that
not only it is less costly and easier to administer, although both fMRI
and PET are relatively safe, PET exposes subjects to radiation and in-
jection of radioactive agents (Crosson et al., 2010). In addition, fMRI
which has a higher spatial resolution can be taken simultaneously
during the MRI session for structural imaging. The main advantage of
discovering the functional connectivity abnormalities over the struc-
tural imaging is its great potential for detecting through the functional
activities the early stage of Alzheimer's disease before any structural
damage observed through MRI can be detected. The BOLD signal ab-
normality of the lingual gyrus, precuneus, auditory, prefrontal regions,
and alternations in medial temporal lobe activity could be considered as
clinical biomarkers for mild cognitive impairment. In addition, a great
deal of research in fMRI application in rehabilitation will help gauge
the treatment effect and in evaluating the pharmacologic effect on the
functional cognitive network in Alzheimer's disease.

Although so many studies investigated the white matter and grey
matter atrophy due to neuronal loss, finding the relationship of pa-
thological and biological changes of AD with functional network ab-
normalities still requires a more thorough investigation. One major
deficiency in fMRI studies is the lack of longitudinal data to investigate
progression of the disease and learn about its transtion phases. The
majority of the studies compare the functional connectivity of the
healthy control subjects with those who are diagnosed with AD or MCI;
however, there is not enough knowledge about longitudinal alterna-
tions and the relationship between disease progression and functional
connectivity disruption (Johnson et al., 2012). Furthermore, there is a
crucial need for advanced techniques in fMRI acquisition and analysis.
Using a more powerful magnet to improve the temporal resolution, a
real-time motion correction could overcome the sensitivity to head
motion, and at the same time improve the signal to noise ratio, espe-
cially for the task-based fMRI which is more complicated to administer
than the rs-fMRIL It should be emphasized that because of the lack of
large datasets, many of the reviewed studies have relied on a limited
number of subjects.

As we discussed before, fMRI can also serve as a helpful tool for
differentiating AD from other neurodegenerative diseases; however,
more investigations are necessary to distinguish the brain connectivity
disruption in AD and other forms of dementia. Recently, many studies
demonstrated that multimodal neuroimaging provides more insightful
and integrated information about human brain mapping and
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Fig. 8. Disrupted FC of the precuneus in healthy elderly APOE4 carriers (APOE4 +) compared to the APOE4 noncarriers (APOE4-) participants. It shows the

correlation magnitudes for these two groups. Reprinted from (Sheline et al., 2010).

Alzheimer’s disease which is bound to help clinicians plan for subject-
specific therapies (Whitwell, 2018). For example, Jacobs et al. observed
increased functional activity in parietal and temporal regions which
have increased diffusion and decreased activation in orbitofrontal with
decreased diffusion in MCI subjects (Jacobs et al., 2015). They showed
structural evidence from diffusion MRI as a functional reorganization to
reflect a compensatory process which may be associated with cingulum
connectivity loss. Rahimi et al. demonstrated that prediction and clas-
sification results of MCI and AD from CN group can be improved due to
the consolidation of fMRI and FDG-PET imaging (Rahim et al., 2016).

Although the fMRI is a non-invasive tool to assess brain function and
connectivity, there are some limitations for using this imaging tech-
nique. The fMRI modality does not associate directly to the neural ac-
tivity but indirectly to the blood flow, and this makes it challenging
because of the limited spatial resolution, and the low temporal re-
solution for observing the hemodynamic response (Glover, 2011). Most
fMRI analysis techniques consider the resting state networks constant
while they can be changed voluntarily (Haller et al.,, 2013) or by
learning (Bassett et al., 2011). The fMRI analysis techniques have been
poorly investigated for correlating the neurovascular BOLD signal with
disease, age, and medication which may cause changes in the BOLD
response due to impaired vascular response. Disrupted functional con-
nectivity even in DMN could be associated with other diseases such as
migraines, depression, addiction, or with other types of dementia
(Barkhof et al., 2014). For example, subjects with subcortical vascular
dementia and AD exhibited similar cortical activation regions (Li et al.,
2011). Also, the BOLD fMRI signal is associated with the neurovascular
coupling which means the hemodynamic properties and the neural
activations during fMRI procedures can be altered by natural aging or
disease (Asemani et al., 2017). Therefore interpretation of this signal
for investigating subjects with different pathologies could be extremely
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challenging.

7. Conclusion

In this paper, we reviewed several research and survey articles that
study brain functional connectivity, with focus placed on Alzheimer's
disease (AD). Resting state fMRI and task-based fMRI are non-invasive
methods that provide functional mapping of the brain with significant
implications on early detection, classification and prediction for both
cross-sectional and longitudinal data. All the studies in this review
demonstrate disruptions in brain connectivity patterns in AD and MCI
as compared to the cognitively normal (CN) group. These studies also
prove that brain network disconnections could be associated with
cognitive deficits in AD in its different prodromal stages.

The DMN, which is a large scale brain network of interacting brain
regions that reflects brain behavior of a subject at rest with no external
stimuli, is seen as the primary network capable of elucidating the subtle
changes of cognitive deficit in the earliest stage of the disease. AD in-
vestigations typically include decreasing functional connectivity in
posterior DMN and sometimes increasing FC in frontal areas. However,
other networks of the brain are affected by AD progression as well in-
cluding dorsal attention network, control network, salience network,
and sensorimotor networks. Furthermore, some areas of the brain that
exhibit increased functional connectivity at an early stage of the disease
like the salience network, tend to decline in the later stages, which may
indicate a form of compensatory mechanism of the brain. Moreover,
interneuron dysfunction in fMRI could be considered as a potential
biomarker for cognitive decline in AD. Perhaps a limitation of fMRI
could be in its use in mostly cross-sectional studies. Diseases like AD
which is progressive in nature require the use of longitudinal data. It
seems that deployment of fMRI in the study of longitudinal data
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remains limited in scope. In longitudinal fMRI analysis we are con-
fronted by the notion that in order to gauge the functional changes and
disruptions in the resting state fMRI or task-induced fMRI, we must first
understand changes that could be related to disease in relation to those
that emanate from natural evolution due to aging or through brain
neuroplasticity and brain reorganization to overcome deficit. Moreover,
the cause of the pathophysiological effects in functional network ab-
normality remains unresolved. All these uncertainties obviously em-
phasize the need for multimodal imaging. In addition, we reviewed
main data-driven and model-based approaches that analyze fMRI data.
Among all these methods, graph theory has attracted more interest due
to its ability to perform complex network analysis and still provide both
functional and effective connectivity information. The graph-based
network hence provides the means for both visualizing the overall
functional connectivity patterns and for characterizing the organization
of such patterns quantitatively. Different graph-based parameters such
as small-word and modularity demonstrated a great potential to eval-
uate the subtle changes in brain connectivity at the different stages of
AD.

Moreover, multimodal neuroimaging provides more meaningful
clinical applications of brain functional and structural mapping speci-
fically for prediction and classification of AD. Gray matter and white
matter atrophy, amyloid deposition, and reduced level of glucose me-
tabolism were reported in multimodal neuroimaging. Since early de-
tection of cognitive decline is very important for early diagnosis of AD
and for the planning of treatment and therapeutic protocols, more re-
search needs to be done to fully understand this complex neurological
disorder especially in detecting the subtle changes in preclinical AD.
The fMRI modality through changes in its functional connectivity pat-
terns in concert with other modalities could augment the prospects for
an early diagnosis.
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