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ABSTRACT 

Currently, achieving high-fidelity sound 
spatialization requires the prospective user to 
undergo lengthy measurements in an anechoic 
chamber using highly specialized equipment. 
This, in turn, has increased the cost and reduced 
the availability of high-fidelity spatialization to 
the general public. An attempt to generalize 3D 
audio has been made using the measurement of a 
KEMAR dummy head or creating a database 
containing a sample of the public. Unfortunately, 
this leads to increased front/back reversals and 
localization errors in the median plane. 
Customizable Head-Related Impulse Responses 
(HRIRs) would reduce the errors caused by 
general HRIRs and remove the limitation of the 
measured HRIRs. This paper reports an initial 
stage in the development of customizable HRIRs. 
The ultimate goal is to develop a compact 
functional model that is equivalent to empirically 
measured HRIRs but requires a smaller number of 
parameters that could be obtained from the 
anatomical characteris tics of the intended listener. 
In order to arrive at such model, the HRIRs must 
be decomposed into multiple scaled and delayed 
damped sinusoids, which would reveal the 
parameters that the compact model needs to have 
an impulse response similar to the measured 
HRIR. Previously this type of HRIR 
decomposition has been accomplished through an 
exhaustive search of the model parameters. A new 
method that approaches the decomposition 
simultaneously in the frequency (Z) and time 
domains is reported here. 

 

INTRODUCTION 
Virtual spatial audio has been applied in many 

areas from computer video games to assistive 
technology for the visually impaired. Spatial 
audio is the ability that allows humans to locate a 
sound source in three-dimensional (3D) space 
(Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Diagram of a sound source in 3D space 

 
 
There are currently two methods for creating 

virtual spatial audio: the multi-channel and the 
two-channel approach. The multi-channel 
approach consists of physically positioning 
speakers around the listener (e.g., Dolby® 5.1 
array). This method is effective but requires 
expensive equipment and relies in the relative 
positions of the listener and the speakers, which 
limits its portability. 
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The two-channel approach uses digital signal 
processing (DSP) techniques to create binaural 
(left and right channel) virtual spatial audio from 
a monaural source that can be delivered to a 
prospective listener through headphones  or 
speakers. The two primary cues for sound 
spatialization are inter-aural time differences 
(ITDs) and inter-aura l intensity differences (IIDs). 
However, ITDs and IIDs are not the only cues 
used by humans for sound localization.  

 It is know that sound is spectrally modified as 
it travels from the sound source to the lis tener’s 
ear by the listener’s anatomical features (torso, 
head, external ear, etc.) and environment (walls, 
floor, etc.) [1, 4]. The two -channel approach tries 
to model this modification. These modifications 
are modeled by means of a pair (Left and Right) 
of Head-Related Transfer Functions (HRTFs) for 
each position around the listener. This modeling 
framework also allows for the assignment of a 
virtual position of a digital sound, i.e., the 
“spatialization” of a digital sound. The 
implementation of this in a computer requires 
convolving a sound signal with the impulse 
responses (HRIRs) of the two HRTFs 
corresponding to the virtual position. When 
playing the left and right signals resulting from 
this convolution to a listener, he/she will perceive 
the sound as if it emanated from the desired 
location in 3D space. 

The effect of the anatomical features on the 
HRTFs implies that these transfer functions will 
be different for every intended listener. 
Originally, this required individually measuring 
the intended listener in an anechoic chamber 
using expensive and cumbersome equipment. A 
solution to this is the utilization of “generic” 
HRTFs (e.g., MIT’s measurements of a KEMAR 
Dummy -Head Microphone [7] and the CIPIC 
Database [1]).  Although this provides a general 
solution, it is known that “generic” HRTFs may 
lead to front/back reversals  and elevation errors in 
the perception of the sound location for a given 
specific subject [8]. Hence, the “best” binaural 
virtual spatial audio is still achieved through 
measured HRTFs, which requires that all 
potential listeners be measured in an anechoic 
chamber or similar facility.  

It would be highly desirable to “customize” 
HRTFs for each listener utilizing relevant 
geometrical measurements of his/her head and 
outer ears (pinnae). Unfortunately, state-of-the-art 
HRTF measurement systems report individual 
HRTFs in terms of long (128, 256, 512) 

sequences of impulse response samples, which 
are not “tunable” according to the geometrical 
characteristics of a different listener (other than 
the one from which they were measured). As a 
result, the overall purpose of our research is to 
develop customizable HRIRs from a generic 
dynamic model that involves a smaller number of 
parameters.  

Using the physical measurements of the 
intended listener, the generic model can be 
customized to provide similar spatialization 
fidelity as measured HRTFs. As mentioned 
earlier, the current representation of the HRTFs is 
not “tunable” using the geometric characteristics 
of a prospective user. Therefore, we believe that 
decomposition of the HRTFs into partial 
components will allow re -generation from a 
reduced number of parameters that are related to 
the geometry of each listener. This would have 
significant impact because it would broaden the 
availability of high fidelity HRTFs to the overall 
computer user population. 

 
METHODOLOGY 

The following subsections will describe the 
methodology used in our study. 

 
A. Pinna Model 

An alternative approach that has been 
suggested is based on the use of customizable 
HRIR “structural” models. Brown and Duda [4] 
have proposed that a “structural” model for 
binaural sound synthesis should “cascade” the 
effects of the listener’s head (e.g., diffraction, 
inter-aural delay, etc.) with the local monaural 
effects of the geometry of the pinna or outer ear. 
Algazi has already proposed a customizable 
model of a listener’s head, which only requires 
three anatomical measurements [2]. Later, in [3] a 
pinna model consisting of a summation of 
multiple delayed and scaled damped sinusoidals 
was proposed. 

In [3], extending upon the models proposed by 
Brown, Duda and Algazi, we proposed a pinna 
model in which the sound entering the ear canal is 
the summation of signals  with different delays. In 
this model the cavities of the ear are modeled as 
resonators. The sound signal is also delayed and 
scaled, which represents the reflection of sounds 
bouncing off the geometrical structures of the ear.  

Figure 2 shows a block diagram for the model 
proposed. The sound is first processed by a 
resonator and then  scaled by a magnitude factor 
ρ i and delayed by a delay factor τi in each of the 
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parallel paths. The vertical line farthest to the left 
represents the direct transmission of sound while 
the other vertical lines represent indirect paths to 
the ear canal. The pinna model shown in Figure 2 
only requires 11 parameters (the resonator is 
represented by two parameters), and could be 
“cascaded” with Algazi’s functional head model 
to represent a complete HRIR. 

 

 

Fig. 2: Block diagram of the pinna model 
 

The parameters in Figure 2 must be obtained 
from empirically measured HRTFs which will 
allow for the creation of a database of these 
parameters (at numerous azimuths and 
elevations). It is expected that, if the data set is 
large enough, a relationship can be established 
between the model parameters and the anatomical 
features. With this database, a new subject’s 
geometric characteristics could be “converted” to 
parameter values which can be used to instantiate 
the model in order to create customized HRTF for 
a desired  source location. 

 
B. Automated Decomposition Method 

The pinna model proposed by [3], as 
mentioned in the previous section, required the 
decomposition of the measured HRTFs in order to 
create customized HRTFs. In [3], the 
decomposition process was achieved by manually 
adjusting a windowed portion of the measured 
HRIR. This window portion was used in an 
attempt to reconstruct the damped sinusoidal 
believed to reside in that window segment. 
Modeling methods like Prony or similar are used 
to try to obtain the entire damped sinusoidal. 

We have developed an iterative method to 
automate the decomposition process in the time 
domain. Windowing the HRIR, in a similar 
fashion to the manual method, the iterative 
method compares the reconstructed HRIR with 
the measured HRIR. The highest fitting 

reconstructed HRIR is considered the best 
approximation to the measured segment. A 
complete description of  this original automated 
method is available in [6]. 

A major drawback of this method is that the 
window sizes are initially unknown. The program 
has to iterate through all possibilities. These 
windows are gradually opened progressively from 
2 to 10 samples for each of the five windows 
studied in each HRIR [6]. Each of the windows 
will approximate a damped sinusoid and each 
possible sequence of second-order 
approximations (considered at the appropriate 
delays) would be summed together resulting in a 
candidate HRIR. All the candidate HRIRs are 
temporarily stored and compared to the measured 
HRIR using Equations 1 and 2 to assess their 
individual similarity to the original measured 
HRIR or “fit” where “MS” is the mean square. 
The candidate HRIR with the highest “fit” is 
considered to be the reconstructed HRIR that 
most accurately portrays the measured HRIR. 
Analysis of the results from this process showed 
that, in general, it approximates the original HRIR 
with re latively high accuracy. Figure 3 shows the 
components extracted from a measured HRIR by 
this process. 

 
 

Error = Original HRIR – Reconstructed HRIR, (1)

Fit = [1 – {MS(Error)/MS(Original HRIR)}]. (2)

 
 

 
 

Fig. 3: Five damped sinusoids obtained from a 
measured HRIR 

 
The results of the iterative process resulted in 

high fits (96% average fit  for the cases studied in 
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[6]). Although this is promising, the iterative 
process is computationally expensive even with 
just five windows processed in this study. A tree 
diagram of this iterative process reveals that, by 
iterating through all possible widow 
combinations, it will generate 9x9x9x9x9=59,049 
leaf nodes. If any other windows are added, they 
multiply the number of combinations by 9 for 
each additional window, which exponentially 
increases the computation time. Unfortunately, to 
obtain the best combination of windows all 
possibilities must be explored and the 
reconstructed HRIR for each combination must be 
compared to the measured HRIR. It became 
apparent that additional windows maybe needed 
to model late components that are not realized 
using only 5 windows. With 5 windows this 
process is already taxing, but the prospective 
addition of more windows further underscored the 
need for a less computationally complex 
approach. 

Another drawback of this method is the 
potential inability to accurately reconstruct 
damped sinusoids when the delay between them 
is small (less than 5 samples). To explore this 
potential limitation, a damped sinusoid (x) was 
created and is shown in Figure 4 (top). Signal x 
was then tested with the iterative decomposition 
method using Prony and Steiglitz-McBride 
(STMCB) function approximations. A small 
window with a 3 sample width was used in an 
attempt to approximate the entire signal. The 
approximation signals resulting from the STMCB 
(xs) and Prony (xp) methods are also shown in 
Figure 4. As can be seen in the results, xs and xp 
fail to properly reconstruct the original signal x. 
This would lead to inaccurate approximations of 
the parameters for the pinna model. These 
drawbacks have prompted us to develop a new, 
faster and potentially more robust method of 
HRIR decomposition into sequential damped 
sinusoids. 
 
C. Inverse Processing Approach 

The purpose of this method is to decrease the 
computation time and to increase the accuracy 
when the delay between the damped sinusoids is 
small. In the iterative approach outlined in the 
previous section, the windowed portion of the 
HRIR was assumed to contain only one second-
order damped sinusoid. Under this assumption, 
the windowed portion of the HRIR can be 
processed with the Prony or STMCB 
decomposition method in order to obtain the 

entire damped sinusoid for that windowed 
portion. Unfortunately, the window size was 
unknown and, to accurately reconstruct the HRIR, 
all possible window combinations had to be 
explored. 

In the new decomposition method, the 
windows do not have to be predefined. Instead, an 
attempt is made to isolate the damped sinusoids 
according to their pole signatures in the Z-
domain. A high-order approximation is used on 
the complete HRIR remnant (at any stage during 
the decomposition) and the candidates for the 
damped sinusoids are isolated by identifying the 
conjugate pole pairs in the resulting high-order 
approximation. This is possible because, in 
general, a single damped sinusoidal is represented 
by conjugate poles within the unit circle and a 
zero at the origin in the Z-domain (Fig. 5). Hence, 
Equation 3 where k is a scalar and p1 and p2 are 
complex poles can describe a damped sinusoid in 
the Z-domain. According to this equation, if the 
scalar k and the poles are known then, using the 
inverse Z-transform, it is possible to characterize 
the corresponding time domain sequence as a 
specific damped sinusoid. 

 

 
 

Fig. 4: x (top) vs. xs (middle) and xp (bottom) 
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This new approach is an iterative approach as 

well, but it differs from the previous approach in 
that it does not try every possible window width 
combination. Instead, each of the viable damped 
sinusoids that can be isolated by their conjugate 
pole pairs in the Z-domain is used as a possible 
candidate. Then each damped sinusoid will be 
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investigated as the approximation of the current 
segment. The end of the segment is not 
predefined. Instead, each candidate sinusoid will 
be subtracted from the previous HRIR and the 
time index at which the remainder surpasses a 
predetermined threshold will be considered the 
beginning of the next segment. The remainder of 
the HRIR will be shifted to this point and the 
process will be repeated with one less modeling 
order than in the previous iteration. 

 

 
 
Fig. 5: Time domain and zero-pole plot of a single 

2nd order damped sinusoidal 
 

In contrast with the window-based method, an 
analysis of the tree diagram of the new iterative 
process reveals a much simpler and compact 
structure. This is due to the decrease in the 
number of possible combinations that need to be 
explored, since at each subsequent node the 
branching factor decreases by one. For example, 
if 5 damped sinusoids are sought in total, then 
only 5x4x3x2x1 = 5! = 120 leaf nodes will exist. 
In order to verify this, an experiment was 
performed. To simplify the explanation, only 
three damped sinusoids were summed together, 
each having different delays and magnitudes. The 
details of the experiment are outlined in the 
following subsection. 

 
D. Simulation of Inverse Processing Approach 

Equation 4 was used to create the three 
damped sinusoids for this simulation. The 
sinusoids were each N points in length, n = 
0,…,N-1, d i is the negative damping factor and ? d 
is the digital frequency. Desired delays (t 2 and t3) 
were applied to x2 and x3 respectively to obtain 
x2s and x3s. Finally x1, x2s and x3s were 
summed point-to-point resulting in the test signal, 

x. In this example N=100, t2=3, t3=6, ? d=0.711, 
d1=-0.1, d2=-0.125 and d3=-0.15. The three 
signals (x1, x2s and x3s) and the resulting signal 
(x) are shown in Figure 6. 

 

( ) ( )nenx d
nd

i
i ⋅⋅⋅= πωsin*  (4)

 

 
 
Fig. 6: Plot of the three damped sinusoids (x1, x2s 
with delay t2 and x3s with delay t 3) and the sum 

of them (x) 
 
The following paragraphs outline the steps for 

the inverse processing algorithm. First, a sixth 
order STMCB approximation process was applied 
to the complete test signal x. In some cases, the 
number of damped sinusoids contained in a signal 
may be unknown but in this case it is known that 
the test signal contains three second order damped 
sinusoids. Therefore, a sixth order STMCB is 
initially used. The result of the sixth order 
STMCB will have the pole structure shown in 
Figure 7.  

 

 
 
Fig. 7: Poles obtained from the 6th order STMCB 

approximation of the complete sequence x 
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As seen in the figure, there are two conjugate 
pole pairs. Those two pairs will be investigated as 
possible candidates for the first damped 
sinusoidal. In this case, since the STMCB order 
was six, the resulting approximation could have 
up to three possible conjugate pole pairs. (To 
clarify further, if the STMCB order was q then 
there would be up to 2q conjugate pole pairs in 
the resulting approximation). 

Once the conjugate pole pairs are isolated, 
their corresponding time domain representations 
are each subtracted from x resulting in a residue 
sequence like the one shown in Figure 8. A 
threshold is then applied to the residue to 
determine the end of the segment and the location 
of the onset of the remaining sinusoids. The 
threshold for this particular example was set to 
25% of the maximum peak of the residue 
sequence. An empirically defined threshold is 
presented later for use with HRIRs. 

In Figure 8, an estimate of t 2 is the time at 
which the residue sequence surpasses the 
threshold. This will be considered the onset of the 
next damped sinusoid and is as the beginning 
point for the second stage of the decomposition. 
As mentioned in the previous section, a damped 
sinusoid is removed at each subsequent stage. 
Therefore, there should be one less damped 
sinusoid in each new remnant. This results in the 
application of a fourth-order STMCB in the 
second stage which yields 4 poles. These four 
poles are used to synthesize up to two candidates 
for the second damped sinusoid which will be 
subtracted from x. This process is repeated until 
the last damped sinusoid is extracted from x. 

 

 
 

Fig. 8: Plot of the first remnant with threshold 
lines (THR) 

 

After M stages of decomposition, all the 
possible combinations must be explored to 
determine which candidate result best 
approximates x. This results in a search tree with 
M! leaf nodes, with each node representing M 
delayed and scaled damped sinusoids that must be 
added together to obtain an approximation to the  
full  original signal x. All the combinations must 
be tested against x using Equations 1 and 2, which 
will yield their individual fits. The combination 
with the highest fit is considered the best 
approximation to the original overall signal. In the 
example described in this subsection, the winning 
combination of candidate damped sinusoids 
achieved a 99.99% fit when compared to the 
original signal x.  Furthermore, the individual 
damped sinusoids matched x1, x2s and x3s very 
closely, as well. 

 
INVERSE PROCESSING OF HRIRS 

The new method described in the previous 
subsection was used to decompose 14 actual 
measured HRIRs recorded, at a sampling rate of 
98 KHz, with the AuSIM HeadZap system at FIU. 
The process was identical to the description in the 
previous section except that the total estimated 
number of damped sinusoids was M = 5 and the 
threshold was empirically defined (18% of the 
signal peak value). Since M = 5, the initial 
STMCB order used was 10. 

The determination of the threshold level was 
achieved by finding the maximum of the average 
fit for the reconstructed HRIRs as the threshold 
was incremented in steps of 0.5% from 0% to 
40% (of the peak amplitude of the remnant)  for 
HRIRs measured from 14 subjects. The sound 
source was at +/-90º azimuth (i.e., directly lateral 
from the ear measured) and elevations from -36º 
to 54º at increments of 18º were considered. 
Figure 9 shows the average fit found at different 
thresholds for an elevation of -36º. As can be 
seen, there is a maximum for a threshold of 18% 
of the peak amplitude (0.18) and very similar 
patterns were observed for other elevations. 
Therefore, 0.18 was selected as the threshold for 
the HRIRs decomposed in this project. 

To assess the potential of the new 
decomposition method in a realistic context, 
HRIRs from 14 subjects for an elevation of 0º and 
azimuths from -150º to 180º at increments of 30º 
(along the horizontal plane) were decomposed 
using the old (window-based)  and the new (pole 
pair-based)  algorithms. The results for each ear 
are displayed in Table 1.  
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Fig. 9: Threshold versus fit for elevation -36º 
 

Table 1: HRIR Decomposition Results 

Method Average Fit  
Left Ear 

Average Fit  
Right Ear 

Exhaustive, variable 
window width (old) 

97.57% 97.57% 

Inverse Processing w/ 
Threshold (new) 

89.40% 88.15% 

 
While the goodness of fit achieved by both 

methods is similar, the pole decomposition 
method has been found to be much faster than the 
old method, as detailed in the next section.  
Figures 10 to 12 show examples of high, average 
and low fit cases for HRIRs using the “new” 
method, respectively. 

 
 

 
 

Fig. 10: Original (top) vs. reconstructed HRIRs 
for the left ear of subject 2 for azimuth 0º and 

elevation 0º - Highest Fit example 
 

 

 
 

Fig. 11: Original (top) vs. reconstructed HRIRs 
for the right ear of subject 6 for azimuth -90º and 

elevation 0º - Average Fit example 
 

 
 

Fig. 12: Original (top) vs. reconstructed HRIRs 
for the left ear of subject 6 for azimuth -120º and 

elevation 0º - Lowest Fit example 
 
 
CONCLUSION 

Although the “old” method achieved higher fit 
than the “new” method (Table 1), there are some 
severe drawbacks to the “old” method. First, 
when the delay is small (less than five samples), 
the second order STMCB modeling method may 
inaccurately approximate the signal. Secondly, 
the average calculation time for the “old” method 
was about 100 times longer than for the “new” 
method when tested with the 14 measured HRIRs , 
using M = 5 (429 seconds compared to 4.2 
seconds). 
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Therefore, according to these observations, it 
would be reasonable to recommend the “new” 
inverse processing method for the creation of a 
large database, based on the separation of damped 
sinusoids according to their pole pair signature in 
the Z-domain, especially if five or more 
components are sought. This  kind of large-scale 
study will be necessary in order to establish a 
relationship between model parameters and the 
anatomical characteristic of the intended listener 
that we ultimately seek. 

 
ACKNOWLEDGMENT 

This work was sponsored by NSF grants IIS-
0308155, CNS-0520811, HRD-0317692 and 
CNS-0426125. 

 
REFERENCES 

1. Algazi, V., Duda, R., Thompson, D. and 
Avendano, C. The Cipic HRTF database 2001 
IEEE Workshop on Applications of Signal 
Processing to Audio and Acoustics New Paltz, 
NY, 2001. 

2. Algazi, V.R., Avendano, C. and Duda, 
R.O. Estimation of a spherical-head model from 
anthropometry. Journal of the Audio Engineering 
Society, 49 (6). 472-479. 

3. Barreto, A. and N. Gupta Dynamic 
Modeling of the Pinna for Audio Spatialization. 
WSEAS Transactions on Acoustics and Music, 1 
(1). 77-82. 

4. Brown, C.P. and Duda, R.O. A structural 
model for binaural sound synthesis. Ieee 
Transactions on Speech and Audio Processing, 6 
(5). 476-488. 

5. Charles, L.P. and Nagle, H.T. Digital 
control system analysis and design (3rd ed.) . 
Prentice-Hall, Inc., 1995. 

6. Faller II, K.J., Barreto, A., Gupta, N. and 
Rishe, N. Decomposition and Modeling of Head-
Related Impulse Responses for Customized 
Spatial Audio. WSEAS Transactions on Signal 
Processing, 1 (3). 354-361. 

7. Gardner, B., Martin, K. and 
Massachusetts Institute of Technology. Media 
Laboratory. Vision and Modeling Group. HRFT 
measurements of a KEMAR dummy-head 
microphone. Vision and Modeling Group, Media 
Laboratory, Massachusetts Institute of 
Technology, Cambridge, Mass., 1994. 

8. Wenzel, E.M., Arruda, M., Kistler, D.J. 
and Wightman, F.L. Localization Using 
Nonindividualized Head-Related Transfer-

Functions. Journal of the Acoustical Society of 
America, 94 (1). 111-123. 

 
 


