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Abstract - Currently, to obtain maximum fidelity 3D 

audio, an intended listener is required to undergo time 
consuming measurements using highly specialized and 
expensive equipment. Customizable Head-Related Impulse 
Responses (HRIRs) would remove this limitation. This 
paper reports our progress in the first stage of the 
development of customizable HRIRs. Our approach is to 
develop compact functional models that could be 
equivalent to empirically measured HRIRs but require a 
much smaller number of parameters, which could 
eventually be derived from the anatomical characteristics 
of a prospective listener.  For this first step, HRIRs must 
be decomposed into multiple delayed and scaled damped 
sinusoids which, in turn, reveal the parameters (delay and 
magnitude) necessary to create an instance of the 
structural model equivalent to the HRIR under analysis. 
Previously this type of HRIR decomposition has been 
accomplished through an exhaustive search of the model 
parameters. A new method that approaches the 
decomposition simultaneously in the frequency (Z) and 
time domains is reported here. 

I. INTRODUCTION 
The emergence of inexpensive and powerful computers has 

expanded virtual spatial audio to many areas. Virtual spatial 
audio is the use of digital signal processing (DSP) techniques 
to assign an artificial sense of directionality to digital sound 
signals.  

Currently, there are two approaches to virtual spatial audio: 
multi-channel and two-channel approaches. The multi-channel 
approach uses multiple (more than two) speakers placed 
around the listener at strategically defined locations (e.g., 
Dolby 5.1 array) to physically reproduce the directionality of 
sounds generated around the listener. This approach produces 
emulated spatial sounds in a limited listening region which are 
then perceived by the listener, much like he/she would 
perceive naturally occurring sounds. However, this relies on 
the proper positioning of the speakers around the listener, 
which limits the use of the approach to stationary uses such as 
a home theater system.  

The two-channel approach uses DSP techniques to create 
binaural sound pairs (Left ear signal, Right ear signal) for 

virtual spatial audio digitally so that they can be delivered to 
the listener through stereo headphones. It is known that sound 
signals are altered by the physical environment (e.g., floor, 
ceiling, walls, listener’s torso, listener’s head, and listener’s 
outer ear) as they travel from the source to the eardrums of the 
listener. The two-channel approach strives to replicate this 
process synthetically, so that  the listener can locate the virtual 
spatial audio source, at the location being emulated. The 
synthetic transformation is performed by application of special 
digital filters that are characterized by their impulse responses, 
called head-related impulse responses (HRIRs). Every position 
around the listener will have a specific HRIR, for each ear, 
associated with it. Convolving a sound signal with each HRIR 
for a desired location modifies the signal in a way that is 
similar to modifications the environment would have produced 
on the signal.  

Logically, HRIRs depend on the anatomical features (outer 
ear, head, and torso) of the listener.  As a result, HRIRs for 
each different location differ from person to person. Ideally, 
the HRIRs of each prospective listener would have to be 
measured empirically, at numerous source locations, in order 
to achieve highly convincing virtual spatial audio.  However, 
this requires specialized personnel and expensive equipment 
that includes a small, wide bandwidth speaker and miniature 
microphones placed in the ear canal of the subject (Fig. 1) 

 
 

 
Fig. 1 Empirical HRIR measurement at FIU. 
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Since it is not possible to provide access to this 
measurement process for every potential user of virtual spatial 
audio, commercial developers have resorted to the use of  
“generic” HRIR pairs obtained experimentally from a 
mannequin of “average anatomical dimensions” (e.g., MIT’s 
measurements of a KEMAR Dummy-Head Microphone [1]) 
or using a limited number of subjects to represent the general 
population (e.g., the CIPIC Database [2]). These databases 
include HRIR pairs for many different positions around the 
listener, defined in terms of their azimuth (θ), elevation (φ) 
and distance (r) in a spherical coordinate system (Fig. 2) 

 

 
Fig. 2 Diagram of spherical coordinate system 

 
Unfortunately, this type of “generic” HRIRs yield only an 

approximate sense of source location in many users, lacking 
the high spatialization fidelity of individual HRIRs [3]. 

The overall purpose of our research is to develop 
customizable HRIRs from a generic dynamic model. The 
generic model can be customized using physical 
measurements of the listener to provide similar spatialization 
fidelity as measured HRIRs. The current representation of 
HRIRs prohibits customization using geometric characteristics 
of the intended listener. Therefore, we believe that 
decomposition of HRIRs into partial components will allow 
their re-generation from a reduced number of parameters that 
are related to the geometry of each intended listener. Efficient 
HRIR customization could have significant practical impact 
because it would extend the benefits of high-fidelity audio 
spatialization to the overall computer user population.  

 
II. METHODOLOGY 

The following subsections describe the methodology used in 
this paper. 
 
A. Structural Pinna Model 

Brown and Duda in [4] proposed a “structural” model for 
binaural sound synthesis. In this approach, effects of the head, 
shoulders and pinna (outer ear) are “cascaded” to create a 
transfer function that contains all the spectral cues necessary 
to generate synthesized binaural sound. However, they did not 
provide a method to define the parameters of their pinna sub-
model. A customizable functional model developed by Algazi 
models a listener’s head with only 3 simple anatomical 
measurements [5].  

In [6] we proposed a pinna model in which the sound 
entering the ear canal is the summation of signals with 
different delays. The delays are a result of waves bouncing off 
of the geometrical structures of the pinna, into the ear canal.  
The effect of the pinna cavities is modeled with a resonator. 
Therefore, the HRIRs were broken down into one direct wave 
and three delayed waves. Recent research by our group has 
achieved improvements in the decomposition of HRIRs 
augmenting the model with an additional delayed wave. A 
block diagram of this augmented model is shown in Figure 3. 

In this model, the parallel paths represent the multiple 
signals entering the ear canal. Each indirect signal will arrive 
at the ear canal after a delay, τi, with respect to the direct 
wave. Additionally, the indirect signal will also have less 
energy, represented by a magnitude factor ρi , in comparison 
with the direct wave. The pinna model shown in Figure 3 only 
requires 11 parameters (the resonator is represented by two 
parameters), and could be “cascaded” with Algazi’s functional 
head model to represent a complete HRIR. 

An efficient method must be found to obtain the parameters 
in the model of Figure 3 from HRIRs obtained empirically as 
long sequences of impulse response samples. This will enable 
the development of databases of these parameters (at 
numerous azimuths and elevations) for subjects whose 
relevant anatomical characteristics will also be measured. Our 
expectation is that once the data set is large enough, empirical 
relationships can be developed between the model parameters 
and the anatomical features. At that point the geometric 
characteristics of a new intended user could be measured and 
“converted” to parameter values to instantiate the model at a 
desired location.  
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Fig.3: Block diagram of the pinna model 

 
B. Iterative Decomposition Method 

The impulse response of the model shown in Figure 3 will 
be the superposition of a damped sinusoidal (i.e., the impulse 
response of the resonator) with other damped sinusoids that 
appear delayed and scaled. Decomposition of a measured 
HRIR into this kind of sinusoidal components will reveal the 
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delays and scaling factors that should be used in the model to 
create an instance that will have a close approximation of the 
HRIR being decomposed as impulse response. 

Time-domain methods for this decomposition have been 
suggested before. In [6-8], two of the these methods, based  on 
the Prony and Steiglitz-McBride (STMCB) signal modeling 
methods, were compared for decomposition of  HRIRs. All 
these methods sought to apply second-order signal modeling 
to windowed sections of the HRIR that could be assumed to 
contain only a single damped sinusoid, which Prony and 
STMCB approximate with reasonable accuracy [9-11]. A full 
description of those methods can be found in [6-8]. 

A major drawback of this approach, however, is that the 
window sizes are not initially known. To discover the 
appropriate window sizes, a program was written to iterate 
through all possibilities. The windows were gradually widened 
starting from 2 to 10 sampling intervals for each window (for 
a total of five windows). In each tentative window the signal 
would be approximated using one of the modeling methods 
(second-order Prony or STMCB) and each possible sequence 
of second-order approximations (considered at the appropriate 
delays) would be summed together resulting in a candidate 
HRIR. All the possible resulting candidate HRIRs would be 
temporarily stored and eventually compared to the original 
measured HRIR using Equations 1 and 2 to assess their 
individual similarity or “fit” to the original HRIR. The 
candidate HRIR with the highest fit at the end of this process 
would be kept as the “reconstructed” HRIR that represents the 
most accurate decomposition achievable for that original 
(measured) HRIR. Analysis of the results from this process 
showed that, in general, it approximates the original HRIR 
with relatively high accuracy. Figure 4 shows the components 
extracted from a measured HRIR by this process. 
 

Error = Original HRIR – Reconstructed HRIR, (1) 
Fit = [1 – {MS(Error)/MS(Original HRIR)}]. (2) 
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Fig.4: Five damped sinusoidal components obtained from a measured HRIR 

 

Although this iterative process resulted in high fits for most 
of the HRIRs explored (about 96% average fit), the iterative 
search approach is extremely computationally intensive, even 
with just the 5 windows processed in those studies. In fact, the 
tree-diagram needed to track all possible width combinations 
of 5 sequential windows has 9x9x9x9x9=59,049 leaf nodes 
and the addition of any subsequent windows with this 
approach will multiply the number of leaf nodes by 9, per 
additional window. To truly select the best of all possible 
alternatives, all the branches of the tree need to be explored 
and the reconstructed HRIR defined at each leaf node 
compared with the measured HRIR to assess its fit. It became 
clear that increasing the number of windows of analysis 
(which may be necessary to model late components in the 
HRIRs) would be impractical using the iterative search 
method.  

Another drawback is that when the delay between sinusoids 
is small (less than 5 samples), the second-order STMCB or 
Prony sequential methods alone tend to inaccurately 
reconstruct the signal. To verify this, a single damped 
sinusoidal (x) was created and tested with the iterative method 
using Prony and STMCB.  A short window containing only 
the first three samples from x was processed by STMCB and 
Prony in an attempt to approximate the original signal. The 
results of STMCB (xs) and Prony (xp) are shown in Figure 5. 
The approximations xs and xp appear to capture the details of 
the beginning part of x but fail to approximate the rest of it. 
This will lead to inaccurate approximation of the parameters 
for the pinna model. These drawbacks have prompted us to 
develop a new, faster and potentially more accurate method of 
HRIR decomposition into sequential damped sinusoids. 
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Fig. 5: x (top) vs. xs (middle) and xp (bottom) 

 
C. Pole-Decomposition Method 

In previous HRIR decomposition approaches the goal was 
always to isolate a segment of the HRIR that could be 
considered constituted by a single damped sinusoid. Under 
that assumption a second-order modeling approach (Prony or 
STMCB) was used to deal with every window along the 
HRIR. However, the correct demarcation of the boundaries for 
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these second-order windows was crucial to the accuracy of the 
process and, therefore, all probable window widths, for each 
of the sequential windows, had to be considered. This resulted 
in a search tree with a branching factor that remained high 
(e.g., 9) from the root node all the way to the leaf nodes.  

In the new decomposition approach the end of the analysis 
windows does not need to be defined in advance. Instead a 
higher-order approximation is used on the complete remnant 
of the HRIR (at any point during the decomposition) to pre-
define multiple damped sinusoids contained in the HRIR 
remnant, and then they are individually isolated according to 
their pole signature in the Z-domain, and pursued as 
candidates for the second-order representation of the particular 
HRIR segment in question.  

In general, a single damped sinusoidal component sequence 
will be represented by a conjugate pair of poles within the unit 
circle and a zero at the origin of the Z-plane (Figure 6) [12]. 
Hence, a damped sinusoid in the Z-domain can be described 
with the following general equation: 

 

( )( )21

)(
pzpz

zkzX
−−

⋅
=  (3) 

 
where k is a scalar and p1 and p2 are complex poles.  
According to Equation 3, if the scalar k and the poles are 
known then, using the inverse Z-transform, it is possible to 
characterize the corresponding time domain sequence as a 
specific damped sinusoid. 

In this new approach, instead of iterating through all 
possible window width combinations, an attempt is made to 
identify multiple delayed and damped sinusoids in the 
complete HRIR remnant available. Each of the viable damped 
sinusoids will be separated according to their conjugate pole 
signatures in the Z-domain. Then each damped sinusoid will 
be investigated as the approximation of that particular 
segment. The end of the segment is not pre-determined, but 
instead will be defined by the time index at which the 
reminder of the previous HRIR remnant minus the second-
order approximation being investigated surpasses a 
predetermined threshold. That point will be considered the 
time at which a new damped sinusoidal contribution starts. 
The origin for analysis will be shifted to that point and the 
process will be repeated, except that using a modeling order 
which is two less than the previous modeling order used.  

This also results in a tree-search approach. However, the 
branching factor of this search tree starts at the amount of 
damped sinusoids being extracted from the whole HRIR but 
decreases by one in every subsequent stage of the 
decomposition, which makes the number of leaf nodes much 
smaller than for the previous algorithm. For example, if 5 
damped sinusoids will be extracted, only 5x4x3x2x1 = 5! = 
120 leaf nodes will exist. An experiment using simulated 
damped sinusoids was performed in order to verify this pole 
decomposition method. Three damped sinusoids with different 
magnitudes and delays where created and summed together, to 
be analyzed by the pole decomposition method.  
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Fig. 6: Time domain and Zero-Pole plot of a single damped sinusoidal 

 
The damped sinusoids used in this example were created 

using equation 4 where N is the length of the signal, n = 
0,…,N-1, di is the negative damping factor and ωd is the 
digital frequency. Once the three sinusoids (x1, x2 and x3) 
were created, the desired delays (τ2 and τ3) were applied to the 
last two sinusoids respectively, resulting in x2s and x3s. 
Finally, the sinusoids were summed point-to-point to produce 
the test signal (x). In this example N=100, τ2=3, τ3=6, 
ωd=0.711, d1=-0.1, d2=-0.125 and d3=-0.15. The three signals 
(x1, x2s and x3s) and the resulting signal (x) are shown in 
Figure 7. 

( ) ( )nenx d
nd

i
i ⋅⋅⋅= πωsin*  (4) 

-1

0

1

x1

-1

0

1

x2s

A
m

pl
itu

d
e

-1

0

1

x3s

5 10 15 20 25 30 35 40 45 50 55 60

-1

0

1

x

Samples  
Fig. 7: Plot of the three damped sinusoids (x1, x2s with delay τ2 and x3s with 

delay τ3) and the sum of them (x) 
 
The process starts by applying a sixth order STMCB 

approximation process to the complete x. Sixth order is used 
initially because the decomposition of x into three second –
order signals (damped sinusoids) is sought. The results from 
the sixth-order STMCB approximation will have the pole 
structure shown in Figure 8. As seen in the figure, there are 
two complex conjugate pairs of poles. Each of these will be 
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investigated as a candidate to represent the first sinusoidal 
present in x (there could be up to three branches at the initial 
node of this search tree, if all the poles were complex).  

 

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
a

gi
na

ry
 P

a
rt

 
Fig. 8: Poles obtained from the sixth-order STMCB approximation of the 

complete sequence x 
 
The investigation of each of these alternatives involves its 

subtraction from x to define a residue sequence, as shown in 
Figure 9, which will then be thresholded. The threshold level 
used for this segmentation was set at 25% of the signal peak, 
in this synthetic example. A slightly different threshold to 
process real HRIRs was found as described in the following 
section. This is the only adjustable parameter in our method 
and the rationale for the value recommended is also presented 
in the following section of the paper. 

The time at which the residual surpasses this threshold will 
be considered the onset of the next damped sinusoidal, i.e., the 
estimate of τ2.  As in the previous method, the decomposition 
process will continue on to a second stage after re-establishing 
the origin of analysis at the estimated τ2. The assumption 
made in every subsequent decomposition stage is that there 
should be one less damped sinusoidal present in the new 
remnant (since one has just been removed in the previous 
stage). As such, a fourth-order STMCB approximation will be 
applied in the second decomposition stage, yielding 4 poles, 
which will then be used to synthesize up to two candidates for 
the second damped sinusoid extracted from x. The same 
pattern of steps will be applied through all subsequent stages 
of the decomposition, until the stage in which a second-order 
STMCB approximation will be applied to the last remnant to 
identify the last damped sinusoid in it. 

After M stages of decomposition there will be M! leaf nodes 
in the search tree, each representing a set of M delayed and 
scaled damped sinusoids that, when added together, form 
candidate approximations to the original signal x. The fit of 
each of those M! candidate approximations with respect to x 
will be evaluated (Equations 1 and 2) and the candidate with 
the highest fit will be selected as the final decomposition of x. 
In our example, the winning candidate approximation had a 
99.99% fit with the original x, and the individual damped 
sinusoids obtained through each stage of decomposition also 
matched x1, x2s and x3s very closely. 
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Fig. 9: Plot of the first remnant with threshold lines (THR) 

 
III. POLE DECOMPOSITION OF MEASURED HRIRS 
The method described in Section II-C was applied to the 

decomposition of 14 actual HRIRs, recorded from 14 subjects 
using the AuSIM HeadZap system at Florida International 
University (Fig. 1). The goal in each case was to obtain M = 5 
damped sinusoidal components. Therefore, the order of the 
first STMCB approximation process was 10. The procedure 
was identical as the one explained for the decomposition of 
the synthetic sequence x, in Section II-C, with the exception 
that an empirically defined threshold level (18% of the signal 
peak value) was applied to each reduced remnant of the HRIR.   

The empirical determination of the best threshold level to 
use in decomposing actual HRIR signals was performed by 
plotting the average fit for the reconstructed HRIR as the 
threshold used changed in increments of 0.005 for HRIRs 
measured from 14 subjects and corresponding to sound 
sources at +/-90º azimuth (i.e., directly lateral from the ear 
measured) and elevations from -36º to 54º at increments of 
18º. For example, Figure 10 shows this plot for φ = -36º. As 
can be seen in this plot, there is a curvature that has a 
maximum at a threshold value of about 0.18. Similar 
observations were made for other elevations. Thus 18% was 
selected as the recommended threshold.  

HRIRs from 14 subjects for an elevation of 0º and azimuths 
from -150º to 180º at increments of 30º (along the horizontal 
plane) were decomposed using the old and the new 
algorithms. The results for each ear are displayed in Table I.  

TABLE I: HRIR DECOMPOSITION RESULTS 

METHOD: Average Fit  
Left Ear 

Average Fit  
Right Ear 

Exhaustive, variable 
window width (old) 97.57% 97.57% 

Pole decomposition w/ 
Threshold (new) 89.40% 88.15% 

 
While the goodness of fit achieved by both methods is 

similar, the pole decomposition method has been found to be 
much faster than the old method, as detailed in the next 
section.  Figures 11 to 13 show the highest, average and 
lowest fits for HRIRs using the “new” method, respectively. 
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Fig.10: Threshold versus fit for elevation -36º 
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Fig.11: Original (top) vs. reconstructed HRIRs for the left ear of subject 2 for 

azimuth 0º and elevation 0º - Highest Fit example 
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Fig.12: Original (top) vs. reconstructed HRIRs for the right ear of subject 6 

for azimuth -90º and elevation 0º - Average Fit example 

20 40 60 80 100 120
-0.2

-0.1

0

0.1

0.2

Original

A
m

pl
itu

de

Original vs. Reconstructed - Subject 6
Left Ear - Azim: -120o Elev:0o

20 40 60 80 100 120
-0.2

-0.1

0

0.1

0.2

Reconstructed

A
m

pl
itu

de

 
Fig.13: Original (top) vs. reconstructed HRIRs for the left ear of subject 6 for 

azimuth -120º and elevation 0º - Lowest Fit example 

IV. CONCLUSION 
The results shown in Table I indicate that the “old” method 

achieved a slightly higher average fit, but exhibited several 
drawbacks. First, the average calculation time was found to be 
about 100 times longer for the “old” method when a test set of 
14 HRIRs were decomposed by both approaches (429 s to 4.2 
s). Secondly, when the delay is small (less than 5 samples 
wide), the second-order STMCB sequential method alone 
tends to inaccurately reconstruct the signal. 

Therefore, according to the observations indicated above, it 
seems that the new HRIR decomposition method, based on the 
separation of damped sinusoids according to their pole pair 
signature in the Z-domain, may be a more practical approach 
to the creation of a large database of decomposed HRIRs 
(particularly if more than 5 components will be sought), which 
is a pre-requisite to the establishment of relationships between 
model parameters and measurable anatomic characteristics of 
the subjects.  
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