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ABSTRACT 
- 

A Real-time Architectural Specification
(RAS) model and its application in the modeling of
flexible rnanufacturing system (FMS) are presented. An
FMS is a typical real-time concurrent system composed of
a number of computer-controlled machine tools,
automated material handling and storage systems that
operate as an integrated system under the control of host
computer(s). The growing demand for higher performance
and flexibility in these systems and the interlocking factors
of concurrency, deadline-driven activities, and real-time
decision making pose a significant challenge in FMS
design, especially in terms of control and scheduling. .A
formal engineering approach that helps handle the
complexity and dynamics of FMS modeling, design and
analysis is needed. RAS combines mature operational and
descriptive formal methods, in particular Time Petri nets

CIPN) and Real-Time Computational Tree Logic
(RTCTL), to form an integrated system model for
architectural specification and analysis of real-time
concurrent systems such as FMS. The contribution of RAS
is twofold: First, it provides a formal system to
systematically maintain a strong correlation between (real-
time) requirements and design and to verify the
conformance of the dcsign to the requirements, which
helps enhance traceability and thus to help us to achieve
high assurance in design. Second, it offers bener
scalability in modeling and analysis, which provides an
effectively way to deal with complexity in the application
of formal methods. These two features together make RAS
a suitable model for the design of FMS.

Keywords: Flexible manufacturing systems, formal
system design, real-time systems, time Petri nets, real-time
computational tree logic.
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1. Introduction

Flexible manufacturing systems (FMS) provide a means to

achieve better quality, lower cost, and smaller lead-time in

manufacturing. An FMS is a typical real-time concurrent

system composed of a number of computer-controlled

machine tools, automated material handling and storage

systenrs that operate as an integrated system under the

control of host computer(s). The growing demand for
higher performar:e and flexibility in these systems and the

interlocking factors of concurrency, deadline-driven

activities, and real-time decision making pose a significant
challenge in FMS design, especially in terms of control and

scheduling. Moreover, uncertainty in product demand

knowledge, finite manufacturing capacity, random machine

failures and repair rates further make the system behavior

more dynamic and hard to predict. Given the complexity of
the FMS design, tn ad hoc method is clearly inadequate

and a more rigorous approach addressing the complexity

and dynamics in FMS modeling, design and analysis is
needed I l].

In recent years, formal techniques such as Petri nets

have been increasingly used in FMS modeling (see Section

2). As a popular modeling tool for concurrent and

distributed systems, Petri nets provide a rigorous and

operational way to describe and analyze system properties.

In addition to its rigor and anall'tic. capability, Petri net

models are execulable, and thus can be used as a system

prototype for simulation. Furthermore, Petri nets are

capable of describing both software and hardware, system

and environment, at different levels of abstraction' These

strengths make Petri nets a powerful modeling tool for
FMS.

While offering many advantages, however, ordinary

Petri net models suffer from some problems that limit their
usability and application as a design model for complex

FMS. Petri net-based models tend to become too large even

for a modest-sized problem [21]. The primary concern of
Petri nets, like many other formal techniques, is behavior

modeling and analysis. They, however, lack of mechanisms

to structure complex designs in such a way that both helps

enforce design integrity and provide a systematic and
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incremental way for design and analysis. For example, in

an FMS, the physical configuration and the functional

behavior of its hardware components, e.g., machine tools

and AGVs, are quite stable and static. The central issues of
design are the coordination, control and scheduling of
these components. For a complex FMS, it is necessary to

experiment with different alternatives of control and

scheduling policies against the same hardware

configuration. It is therefore highly desirable to be able to

"plug-in" the specifications of various control modules to

a FMS model without having to make major changes or re-

construct the entire system model each time. Most of Petri

net-based models do not provide explicit or adequate

support to this task.

In this paper, we go beyond conventional Petri net

modeling and present an integrated formal method to

support scalable and evoluqionary design of real-time

concurrent systems from the perspective of time-

dependent architectural modeling and analysis. Our

approach is based on two basic hypotheses: (1) The ability
to systematically mainuin a sftong correlation between

requirement and design at every design level is the basis to

achieve quality design. An effective way to achieve such

strong design traceability is to incorporate (real-time)

requirement constraints as an integral p*t of design

modeling. (2) Constraint-driven compositional analysis

sensibly integrated as a part of design process is a

powerful means to control complexity and cost in analysis.

Based on these principles, we have developed the Real-

time Architectural Specification (RAS) model [9]. RAS is
built on top of Time Petri nets (TPN) t4l and Real-Time

'Computational Tree Logic (RTCTL) [12]. Petri nets are a
lwell-known operational model best suited for modeling
tthe confiol of distributed systems but cumbersome for

\ecifying rules and constraints. By contrast, temporal
logic, a popular descriptive formalism, is best suited for
'describing rules and constraints but not control and
rcomposition of systems. By integrating them into one

iboherent architectural model, RAS establishes two

litesirable features: First, it provides a formal system to
hlstematicatly maintain a strong correlation between (real-

I*") requirements and design and to verify the

Fonformance of the design to the requirements. Second, it
'offers better scalability in modeling and analysis and
up'rovides 

an effective way to deal with complexity in the

lppfication of formal methods. These two features together
lirake RAS a suitable model for the design of FMS.

ffi . tn. rest of the paper is arranged as following: Related

fork is discussed in Section 2. An overview of RAS
podel, including an example and formal definition, is
Brven in Section 3. In section 4, we illustrate the use of
$eS to give an incremental modeling of an FMS. Finally,
b Section 5, we briefly describe an incremental timing

f;alftis technique based on the RAS model. The formal
F
F:1tn
GAF.*a-
Fg
Ep'

description of RAS model and the rules for the use of RAS

model are given in Appendix I and II, respectively.

2. Related Work

Petri nets have been applied to the specification,
verification, performance analysis, real-time control and

simulation of FMS. Net-based models have also been used

to obtain production rates, throughput, delays, capacity,

resource utilization, and reliability measures and deadlock

avoidance for FMS. The details of these applications can be

found in surveys in [0,24]. Some typical uses of Petri nes

in FMS modeling can be found in [5,7, 13, 14, 16,20,23,
26281.

Those studies deal with the issue of how to use Petri

nets to address specific modeling and analysis problems in

FMS. We address a different issue. Our goal is to develop

an engineering practice to systematically and cost-

effectively apply Petri net theory in complex FMS

modeling, design and analysis.

Related to our approach, several structural Petri net

models are proposed both to provide a mechanism for
system composition and to murnage complexity in
modeling. These include PROTOB [1], OBJSA nets [3], the

Cooperative Objects Language [2], and OPNets [12]. An
application of OPNes in FMS modeling and analysis is

presented in [27], where they are used to represent part of
an object-oriented Petri net cell control model. Each of
these models provides certain object-based structure for
system composition. However, none of these models has a

formal semantics for modeling timing and timed behavior.

A more recent model, Communicating Time Petri Nes
(CmTPN) [6], has a formal semantics about time, and

supports reachability-based compositional verification.

On the opposite side of Petri nets are various logic-

based models. Logic provides a more abstract approach to

the description and analysis of FMS. In temporal logic,

various temporal operators are provided to describe and

reason about how the truth-value of assertions varies over

time. It has proven to be a very useful formaiism for

reactive systems t22]. RTCTL UZ), a real time

propositional branching time logic, has been a popular

choice for describing real time systems like FMS. It allows

us to express various desired types of behavior, including

safety, liveness, and bounded-fairness.

As an operational model, Petri nets (with structural

extensions) are well suited to model FMS as abstract

programs, which can be formulated as the parallel

composition of subsystems. However, it is cumbersome for
describing system requirements. As a descriptive model,

temporal logic is appropriate for specifying rules and

constraints. However, it does not reflect the

component/interaction view relevant for design level

specification of FMS. So, when used alone, neither of these
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two methods is sufftcient for architecture modeling of an

FMS. In Mandrioli et al- tl9}, the advantage of using the

TRIO logic and TPN together for system specification and

verification are suggested and explored. Unlike our work
on RAS, however, it is unclear to us what the concrete

objective of the suggested integration would be. Moreover,
a formal framework was yet to be developed to show how
to integrate TRIO with Petri nets.

3. Overview of RAS Model

Complex system design is an evolutionary process. A
good design model should be flexible enough to allow
frequent changes to the design and to support the

exploration of various design alternatives, while
simultaneously maintaining the integrity of design and

minimizing the affect of such changes to the overall
design. The RAS model was motivatei by these concerns.

RAS models a distributed system as a multi-leveled
composition of components and real-time constraints that

the components and their compositions must satisfy at
every design level. A strong correlation between system
constraints and design is maintained at every level.

An RAS model consists of three basic elements:

operational component models, cortnections, and

architectural constraints (constraints in brief). The
operational component models describe the real-time
behavior and communication interface of the components

or subsystems; the connections specify how the

components interact with each other and, in turn, form an

operational system composition model: and finally, the
constraints define real-time system requirements imposed
on the components and connections. All connections are

defined using only communication intc'rfaces, which gives

us the flexibility to change the design of individual
componenb without a need to void the analysis of the

entire system.

Figure 1 shows an example of a two-level RAS
model. The topJevel design has three components - A, B,
and C. Component C is further refined at the lower level
design into the composition of components E, F, and G.

The design at any level must satisfy the constraints
specified at that level. The operational component model
has two parts: (t) communication ports (denoted

graphically by half circles), including input ports (e.9.,

port6) and output ports (e.9., portT), nd (2) a TPN that
describes the time-dependent, operational behavior of the
componen! that is, it defines the semantics associated with
the pors. The communication between a component and

its environment is solely through the ports. A connection
represents a channel of interaction between components. It
is modeled by a simple TPN and defines the direction of
message flow and delay in the channel. For example,
components A and B have a request-reply relationship that

is modeled by the bi-directionai channel. The basic

communication model supported by RAS is asynchronous

message passing; that is, the sending component does not

suspend ieelf if there is a concurrent activity available. ,{1

any .given design level, ports can also be divided into

external ports (e.g. portl in the high level design, pon6 and

portT in the low level design) and internal ports (e.9. port3

and port4). An internal pofl is defined to communicate with

other componerits, while an external port is used to describe

the inpus and outputs from and to the environment of the

system.

Figure I Framework of the RAS model

In addition to serving as a component's communication
interface, the p;rts also provide the linkage between the

operational design (components and connections) and the

descriptive architectural constraints. The resource

constraints of the design are modeled by Petri nets (marked

places). The timing consftaints are specified by RTCTL
formulas defined over ports. Each port represents an atomic
proposition, wtrich is satisfied by_ an arriving token (an

incoming message at the port). These pors constitute the

alphabet (atomic propositions) of the RTCTL formulas that

define the constraints. All constraints are specified using

ports only, no internal information about the comPonents is

revealed. For example, constraint c1 limits the time taken in
a reguest-reply interaction with B, and constraint c2

specifi es the required synchronization between comPonents

A, B, and C. The set of constraints can be logically divided
into three classes: component constraints, environmental

constraints, and path constraints. A component constraint

describes the timing properties of a component that its
environment expects from it, an environmental constraint

describes the timing properties that a component expects

from its envitonment, and a path constraint describes the

timing constraint for message transmission among

components.
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4. Incremental Modeling of an FMS

In this section, we illustraie the use of RAS to model a
hypothetical FMS. This will further explain the RAS

ftamework as well as illustrate the benefits of using the

RAS framework.

4.1 Overview of the System

The manufacturing system is composed of three

subsystems: processing, checking, and repairing
subsystems. These three subsystems run concurrently. The
processing subsystem is composed of 5 machines,
indicated as M1-5. Two types of workpieces, indicated as

Wl and W2, arc processed and then assembled into a new
one, indicated as W3. The processing flow is shown in
Figure 2. That is, Wl and W2 are first processed by Ml
and M2, which results in Wl(r) and W2(t), respectively.
Next, Wl(r) is procesled by either M3 or M5, which results
in Wlo), then by either M4 or M6, which results in Wl(3);
W2 is processed by either M3 or M4, which results in
W2(3), then by either M5 or M6, which results in W2(3).

Finally, Wl(3) and W26) are further assembled by M7 into
W3. W3 is the product of the processing subsystem.

Figure 2. The processing flow of the processing subsystems.

After receiving a product from the processing
subsystem, the checking subsystem examines whether the
product satisfies quality control conditions. If it does, then
the product will be sealed and output as the final product
of the whole system. If it doesn't, it will be sent to the
repairing subsystem for repair. When the repairing activity
is finished, it will be returned to the checking subsystem
and sealed.

The repairing subsystem is composed of 4 machines,
indicated by M8-l l. An unqualified product W3 of the
processing subsystem is first disassembled by M8 into two
workpieces, Wl(3) and W2(3). Wl€) and W2(3) are processed

by M9 and M10, which results in Wl(a) and W2(a),

respectively. Then, Wl(a) and W2(a) are assembled by Mll
into W3(l), which is then returned to the checking
subsystem.

In addition, there are two vehicles, vehicle I and

vehicle 2, responsible for the transfer of products between
processing and checking subsystems and between checking
and repairing subsystems, respectively.

The requirements for this FMS design include:

(1) The processing time of the processing subsystem
for each pair of workpieces is not longer than 20
time units.

(2) The processing time of the checking subsystem for
each product of the processing subsystem is not
longer than 8 time units.

(3) After the checking subsystem sends an unqualified
product to the repairing subsystem, it must receive
the repaired product within 1O time units.

All these requirements are applied in the case that no
waiting time exists for any workpiece at any processing
stage.

4.2 RAS Interface of the System

In order to capture &e profile of the operational model of
the manufacturing system, we first present the interaction
interface of system's components (each component is

corresponding to a subsystem, namely the processing

subsystem is viewed as component PS, the checking
subsystem as CS, and the repairing subsystem as RS),
which is shown as in Figure 4. Table I and Tabie 2 show
the meanings of all ports and connection kansitions.

4.3 Architectural Constraints Imposed on the System

In this section, we give the RTCTL formulae for the three

constraints of the Flr4S design. The first constraint, c1, is

c1: portl --> AF# porA,

which is a component constraint and states that the

processing time of the processing subsystem for each pair
of workpieces is not longer than 25 time units. The second

constraint, cz, is

c2: ponj -+ AFsl2 port4,

which is also a component constraint and states that the

processing time ofthe checking subsystem for each product

is not longer than 12 time units. The third constraint, ca, is
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Figure 3. The processing flow of the repairing subsystems.
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Figure 4. RAS intcrfacc of thc Fl,lS.

'' l ,

Tablel.fegends of placcs and transltions in Figure 4.

P Set DESCRIPTION''

Pr Vchiclc 2 is availablc

Pz Vehiclc 2 is transfcning rn-unquslificd produa to thc
rcoairins s\6tem

Pr Vehiclc 2 is transfcrring r rcpaLcd product back to thc
checkins svstem

T Set PTION TIME

Tr Vehicle I traosfcrs r Pmducr of thc

.rmssing subsyscm to Qq !tEc!i!g slrtcm
TL,2)

Tz Vchiclc 2 bcgirs trarsfcrring m nEualificd

nroduct to the reoairbg rYncm

T3 Vehicle 2 cnds transfctri4 n uqualitrcd

nroduct to thc rep?l4s-@---
lr.2l

Tr Vehicle 2 begits transfcdiog r EpaitEd

.mduct back to rhc 4c'tig5tsh----
T5 vehicle 2 ends trusfcrring r lePaitEd

-'ryluct back to the cbccling tl6lco
I1,2l
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which is an environmental constraint and states that after

the checking subsystem sends an unqualified product to thg

repairing subsystem, it must receive the repaired product

within 20 time units.

4.4 Operational Model of Components (Subsysterns)

The operational model of component CS (Checking

Subsystem) is shown as in Figure 5 and the legends of
places and transitions involved in this model are listed in
Tables 3. Here, we use a thin bar to represent an immediate

transition, and we use a thick bar to model timed transition.

82 and t33 form a random switch. We assume that the

probabilities for these two transitions are 0-9 and 0.1,

respectively. Ti,!s information is necessary when we verify

the system's constraints. Due to the space limiution, the

operational models of components PS and RS are omitted

here, which can be found in [9].

PorL5 I'erru

Figure 5. The operational model of the checking subsystem.

Table 3 lrgends of places and transitions in Figure 5.

P Set DESCRIPTION

o3l Che.:kins result is available

e32 Readv for sealine

p33 Rariv for beins loaded onto the vehicle

T Set DESCRITION TIME

t3t Checking the Droduct l. 3t

a2 The oroduct passes the test

a3 The nmduct doesn't Dass the test

t34 The subsvstem seals the product |'2.41

135 The sr.bsystem loads the product onto the
vehicle

u,2l

a6 The subsystem unloads the product from
the vehicle

tl,2l

So far, we have presented the top-level RAS model of
the manufacturing system. Next, we consider the

refinement of the model.

45 Model Relinement

ca: por|5 -> AFilPort6' In this section, we illustrate the refinement of component of
checking-subsystem (CS) into a sub-architecture which is

composed of four components.

Table 1. Legcnds of portsin ngur€ +.

PORT TYPE

oortl Input A neir of wortoicccs arc rcadv for orocessing

Poa2 Ouput Tbc proccssing'of a produa at the Processing
rubsvstcm ls nnkhcd

port3 Input A'product of ttr proccssing subsystem is
arlv far anjiru ah*l.iao

oort4 OutDut A omduct of thc wholc svstcm is available

pon5 OuFut An uaqualificd producr of dre proccssing
rubqntcrn ir rcrdy to bc ransfcrrcd to tlre
rcnairint rubrvrrcrn-

port6 Input A rtpoitd prcdsct b rcsdy for proccssing by
the checlinr rubrv:tcnr

portT lnpur An urqualifcd : product of thc processing
subsr*tcrn L nadv for rcoairing

PortS OuPut thc rcpriring of an urqualificd product is
finisH "':'t:

t33 ptO
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Figure 6 shows the RAS interface of the refined

checking subsystem, which is composed of four
components: Checking Center, Analysis Unit I, Analysis

Unit II, and Sealing Unit. After receiving a product from
the processing subsystem, the checking center does some

checking operations and then sends the resulting data to

the two analysis units for analysis (Tll and Tl3 fire).

After the data analysis, the two analysis units return the

analysis results to the checking center CIl2 and Tl4 fires).

The checking center then fuses the analysis results and

determines if the product satisfies quality control

conditions. if it does (fi5 fires), then the product will be

sealed and output as the final product of the whole system.

If it doesn't (T16 fires), it will be sent to the repairing

subsystem for repair. When the repairing activity is
finished, it will be returned to the sealing unit and sealed.

Notice that the connection transitions Tl5 and T16 forms a

random switch, and they have the same meanings as t32

and t33 in Figure 5, respectively.

ports port6

Figure 6. Refinement of the checking subsystem.

In order to be consistent, this ref,tned model must

satisfy all constraints that the old component design shown
in Figure 6 satisf,res. Otherwise, we cannot safely plug the

new component into the system's RAS model. From the

top-level RAS model we know that component CS is
subject to a component constraint c2 and has a requirement
of environmental constraint ca. T'herefore, this refined
design must satisfy c2 whenever the environmental
constraint ca is satisfied.

4.6 Summary

Based on the above discussion, we may find that compared

with other formal methods, such as ordinary Petri nets, our
model has the following advantages:

(1) The modular structure of RAS helps conquer the

complexity of the design of FtvIS. If we want to change the

design of a particular component of the FMS, then we only

need to change the representation of this component and

make sure that it satisfies all the necessary constraints,

without a need to redesign the entire model.

(2) The linkage between design and requirements helps

achieve a high-assurance design of FMS. When we

redesign or refine a component of the manufacturing

system, all the ports of the component will be inherited in

the new design, and some constraints related to the

component are also decomposed and added to the new

design, which ensures the consistency of requirements

between the sub-system and the system.

5. Constraint-Driven Compositional Analysis

The process of verification is driven by showing that the

components and their composition satisfy their

corresponding constraints at every design level. The

modular nature of RAS and its emphasis on maintaining a

sftong correlation between design and requirements provide

a natural support for incremental verification and for
enforcing conformance of the design to the requirements.

We have developed a verification technique that helps to

achieve these benefits. We cut down the verification
complexity by supporting horizontal as well as vertical

composition-ability. Due to the space limitation, we only
present the basic ideas of our verification algorithm and

illustrate its working on the FMS described in Section 4. A
detailed description ofthe algorithm is given in [9].

Our technique works by verifying designs

independently at each level - starting from the very top

level. At any given level, verification proceeds by

analyzing the components against their corresponding
component constrain8 one at a time and then composing

these results to deduce system-wide properties at that level.
Thus, the complexity of analysis is proportional to the size

and number of components, rather than the size of the entire
model. After a design has been verified at a given level, it is
further refined into lower level design. The high level

constraints are propagated to the lower level. Then the

design at the lower level is checked against the lower level

constraints, and the refinement process continues. At every

level, we make sure that the constraints are consistent with

the constraints at the parent level so that a verified lower-

level design can be safely plugged into its parent level

architecture without having to reverify the entire model-

We lust describe the verification algorithm for a given

level ofdesign. Then we describe verification across design

levels-

5.1. Incremental Verification at a Given Design Level

Our main technical tool is a set of reduction rules that lets

us replace many types of RAS comPonents by simple TPN

of constant size, while preserving the ports and the time-

dependent properties of the component as specified by the

1t
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constraints. In [9], we introduced a set of component-level
reduction rules to support such closure. It should be

pointed out that unlike other reduction methods of TPN,
such as given in [25], which work at individual transition
level, our reduction rules are constraint-oriented and work
at the component level. Consequently, our method work
at a much coarser level than the reduction rules given in
[25], and we need fewer applications of our rules to reduce

the size of the model being analyzed. Our reduction rules
assume that the underlying (untimed) net corresponding to
the TPN of a RAS model is safe. ([25] makes a similar
assumption.)

Our algorithm works in two stages. In the first stage,
we order the components so that the timing behavior of
any component depends only on the coinponents which are

lower in this order. This stage assumes that the underlying
dependency-graph of components is acyclic. In the next
sl.age, we consider components one at a time in the order
computed in the previous stage. Each component is
verified against its component constraints and then
reduced to a simple TPN by one or more applications of
reduction rules.

We ordered the components in such a way that the
first component does not depend on zrny other components
so it can be verified and reduced to a simple TPN. The
second component depends only on the fust one, which
has already been reduced, and so on. Suppose that there
are rrr components, which are.linked together by inter-
related connection structures to form the system or
subsystem. Then ow incremental verification method has
three steps:

(1) For each component, list the reduction rule that can be
applied to it; and

(2) Build the dependency graph on components and
perform a topological sort. If the.sorted order is CP1,
CPz, ..., CP., then we know that V i > j, CP; doesn'r
depend on CP;.

(3) Reduce each component according to the sorted order,
and verify constraints at the same time, until all
constraints are checked.

We now illustrate the incremental verification on the
FMS described in Section 4- The assumption that all three
constraints are applied in the case that no waiting time
exists for any workpiece at au,;ty processing stage ensures
that we may use the net with only one input from iortl to
verify the system constraints, which implies that the
underlying untimed Petri net of the FMS is safe and our
component-level reduction rules can be used. The Flr{S
consists of three components: PS, CS and RS. There is one
dependency edge: CS-+RS, so we can order these
components as

PS, RS, CS.

Applying reduction rules to components PS and RS results

in Figures 7(a) and (b). Suppose that applying simple
reachability analysis [4] to the operational models of
components PS and RS we conclude

s(kr,z) =[11,22J, and

s(kz. s) = [7, t3],

where S(q) represents the static fring time interval of
transition !. Then, the cons8aint c1: portl + AF 325 port2 is
verified. Next, we consider the component CS. Figure 7(c)
shows CS and its interaction with simplified PS and RS,

Qr.a

ponr $--+f--+Q nonz

(a)

!c rl

no,! p,{-+Qpnr

(b)

pon5

Tt

Figure 7 (a) Reduction of component PS.
(b) Reduction of component RS.
'(c) The simple but equivalent model of the system.

and we use it to verify other constraints. Based on Figure
7(c) and the fact that the switch probabilities for transition
rj2 and 83 are 0.9 and 0. I , respectively, we obtain

D_(por6, port6) - .S/Cfr) + S(kz. s)) + S(-Is) = [9, 17],
and

D_(port3, port4)

= 0.9 x I s(rgr) +sfty)]
+ 0.1 x I S(tss) + D_(port3, port4) + S(t36) + S(tx)]

= [4.],9.1].
where D_(A, B) represents the message transferring time
delay between A and B. Based on these values, we have

I
I

r---
I

I Qr,rt

T,

pon?

l *" i
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verified ca: port5 I AF s port6 and c2: por8 + AF
<tzport4.Therefore, all constraints have been verified.

5.2 Constraints Decomposition and Incremental
Yerification across Design Levels

Our technique for constraint decomposition and

incremental verification across design levels consists of
three basic elements: l) We automatically derive

constraints for the lower-level design that is consistent
with the higher-level constraints. 2) T}tre lowerlevel
design is verified using the technique discussed in the last
section. 3) The sub-architecture is plugged into the parent-

level architecture to form a more detailed architectural
model.

In fact, when we refine an RAS component into a sub.
architecture, the RAS model mandates that it inherit all the

ports from the high-lev-el component to ensure interface
consistency. During thd verification of the highJevel
design, we compute time delays for certain port pairs of
(input port, output port). Correctness of the highJevel
design is contingent on the values of these time delays. So
for the lower level design, we add these delays as

constraints that must be satisfied. As :long as these
constraints are satisfied, we can ensure that the lower-level
designs is consistent with the high-level design. If on all
these port-pairs there are component constraints defined,
then the lower-level design is just required to obey these
component constraints.

Let's take the analysis of the FMS as an example. In
the last subsection, we irnished the verification of its high-
Ievel design. Figure 6 shows ports port3, port4, por6 and
port6 are inherited from Figure 5, the highJevel (top-level
in facQ design model for CS. From the topJevel RAS
model we know that component CS is only subject to a
component constraint c2. Therefore, czi port3 -)
AFlzport+ is used as the constraint of the lower-level
design.

6. Conclusion

Based on the requirement of the modeling, design, and
analysis of FMS, we have presented an RAS-based
incremental approach to architectural modeling and
verification of real-time distributed systems. The
contribution of this paper is twofold: First, it provides a

systematic way to link real-time system constraints to the
process of formal modeling and analysis to ensure that the

cons8aints are met at any given design level. Second, our
approach is scalable in both modeling and analysis. As an

application example, we illusuate the use of RAS to
incrementally model a given FMS. It further explains the

MS framework as well as shows the benefits of using the
RAS framework.
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Appendix I. Formal Description of ttAS Model

The most important part of the formal description of RAS
model is a recursive method of combining lowerlevel RAS
models into a higher level model. We will describe this
recursive method later. First, we describe the elements of .
the RAS model. An RAS model of a system consisrs of: (l) ,

its externally observable and operational behavior (modeled
by TP|Q, (2) its poru of interacrion with its environment
(modeled by a specific subset of places of rhe TPN), and (3)
the constraints it needs to satisfy and the assumptions about
its environment (modeled by a set of RTCTL formulas). In
other words, an RAS model lll{S is defined as a triple RAS i
= (APMODEI. PORT, CONSTRAINTS, where:

(l) OPMODEL is the operarional model of rhe system,
described by a time Petri ne! i.e., OPMODEL = (P, T,

B, F, Mo, SO t4l.
(2) PORT denotes the communication ports of the model.

AII constraints and connections are defined on PORT_
That is, the internal details of the design are hidden.
These communication pofts are a subset of the places
in time Petri net used to describe the OPMODEL.

(3) CONSTRNNTS defines the behavior that the design
should exhibit as well as the assumptions about is
environment. They are modeled by a set of RTCTL
formulas. CONSTRAINTS is divided into rhree groups:
component constraints, environmental constraints, and
path constraints.

Now we give a recursive procedure for combining
lower level RAS models into a higher, level model. A set of
RAS models, RAS1, P#.Sz, ..., R.4S1, can be combined to
form a higher level RAS model r?{S as follows (In this
case, RAS1, MSz, ..., RASI are viewed as components or
sub-architecture models) :

(l) RAJ.PORI is a subset of ur1=1RAS;.pORT. The
remaining ports in components, tj*rMSrpORT -
MS.PORT, are called the internal ports of RAS.

(2) MS-OPMODEL has two par8: one is operational
models from all components, and the other is a new
time Petri net (called CONNECI) describing
connections between individual components. Formally,
MS.OPMODEL = I'-, RAST.OPMODEL 1.,

CONNECT,where CONNECT = (P,7, B, F, Mo, SO is
a time Petri net describing the connections between the
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lower level models RA.S1, RA.S2, ..., &,1S1, that
satisfies the following rules:

i. CONNECT can use any port from a component as

a place. It can also introduce new places, but it
can not use an internal place frorn a componenl
That is, rf*rlnlsoorMoDELp - /L1'St-poRn
r\ CONNECT.P =4.

ii. The set of Fansitions of CONNECT are disjoint
from the transitions in components, i-e.,
tl.'MS.)PM1DELT n c)NNECT.T = @.

iii. Every internal port must be connected to at least

one transition in CONNECT through an incoming
or outgoing arc.

(3) CONSTRAINTS is a set of RTCTL formulas
describing the constraints of RA.S.

Appendix If. Rules for the Use of RAS Model

The aim of RAS is to provide a formal approach to
systematically maintain a strong correlation between (real-

time) requirements and design and to verify the

conformance of design to the requirements, and to offer
better scalability in modeling and analysis. In order to
achieve this goal, it is necessary for an RAS user to obey
the following two rules on the proposing of constraints:

(1) Each component of a system must be subject to some
constraints directly (there are some component
constraints defined on it) or indirectly (there are some
constraints that do not deal with its ports, but affect its
design, i.e., the operational property is affected by
these constraints). In other words, the operational
property of a component must satisfy some
requirements. Only in this way can we ensure the

combination of designs and requirements.

(2) If there exists a synchronization activity for messages

from some external input ports, then an environmental
constraint which state the maximum and/or minimum
distance among the arrival of messages to these ports is

often needed. Otherwise, some constraints may make

no sense. Let's consider a simple example. Consider a

simple manufacturing system, which is composed of
two machines, MA and MB. Two types of work-
pieces, corresponding to piecel and piece2, are

assembled by MA and then processed by MB, and a
new product, corresponding to piece3, is produced in
turn. The Petri net model of such a simple system is

shown in Figure 8, with three ports: piecel, piece2 and

piece3 . If we only propose a constraint as

piecel -+ AFsto piece3,

it is not enough to describe the requirement on the

system, because we don't know if piece2 is available or
when piece2 is available after the arrival of piecel.
But, it will make sense if we give a second constraint
as

piecel -+ AFs3 piece2.

In addition, in order to maintain consistency, when
replacing a component design (indicated as an oA
component design) with an alternative component design,

or decomposing it into a sub-architecture which is

composed of several new components, we must obey the

following two rules:

(1) Same ports, i.e., the alternative component design has

exactly the same ports as the old component design, or
the sub-architecture takes all ports of the old
component design as all its external ports.

(7) Conform to the same constraints, i.e., the alternative
component design or the decomposed sub-architecture
must conform to all constraints which the old
component design are subject to.

I'

Ml bcti!. Ml d
F6irt F6i!t
pacl. tiEl.
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Figure 8. A simple manufacturing systerl
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