Proceedings Of

- . The1 Dt
" International
- Conference

on Software Engineering

' & Knowledge Engineering

SEKE ‘98
STITUTE GRADUATE SCHOOL

JUNE 18 - 20, 1998
California

KNOWLEDGE SYSTEMS IN

L San Francisco Bay,




SEKE ’98

Integrated Architectural Modeling of Real-Time Concurrent Systems
with Applications in FMS'

Yi Deng, Jiacun Wang and Rakesh Sinha
School of Computer Science
Florida International University
{deng, wangji, sinha} @cs.fiu.edu

ABSTRACT — A Real-time Architectural Specification
(RAS) model and its application in the modeling of
flexible manufacturing system (FMS) are presented. An
FMS is a typical real-time concurrent system composed of
a number of computer-controlled machine tools,
automated material handling and storage systems that
operate as an integrated system under the control of host
computer(s). The growing demand for higher performance
and flexibility in these systems and the interlocking factors
of concurrency, deadline-driven activities, and real-time
decision making pose a significant challenge in FMS
design, especially in terms of control and scheduling. *A
formal engineering approach that helps handle the
complexity and dynamics of FMS modeling, design and
analysis is needed. RAS combines mature operational and
descriptive formal methods, in particular Time Petri nets
(TPN) and Real-Time Computational Tree Logic
(RTCTL), to form an integrated system model for
architectural specification and analysis of real-time
concurrent systems such as FMS. The contribution of RAS
is twofold: First, it provides a formal system to
systematically maintain a strong correlation between (real-
time) requirements and design and to verify the
conformance of the design to the requirements, which
helps enhance traceability and thus to help us to achieve
high assurance in design. Second, it offers better
scalability in modeling and analysis, which provides an
effectively way to deal with complexity in the application
of formal methods. These two features together make RAS
a suitable model for the design of FMS.

Keywords: Flexible manufacturing systems, formal
system design, real-time systems, time Petri nets, real-time
computational tree logic.
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1. Introduction

Flexible manufacturing systems (FMS) provide a means to
achieve better quality, lower cost, and smaller lead-time in
manufacturing. An FMS is a typical real-time concurrent
system composed of a number of computer-controlled
machine tools, actomated material handling and storage
systems that operate as an integrated system under the
control of host computer(s). The growing demand for
higher performar:ze and flexibility in these systems and the
interlocking factors of concurrency, deadline-driven
activities, and real-time decision making pose a significant
challenge in FMS design, especially in terms of control and
scheduling. Moreover, uncertainty in product demand
knowledge, finite manufacturing capacity, random machine
failures and repair rates further make the system behavior
more dynamic and hard to predict. Given the complexity of
the FMS design, an ad hoc method is clearly inadequate
and a more rigorous approach addressing the complexity
and dynamics in FMS modeling, design and analysis is
needed [11].

In recent years, formal techniques such as Petri nets
have been increasingly used in FMS modeling (see Section
2). As a popular modeling tool for concurrent and
distributed systems, Petri nets provide a rigorous and
operational way to describe and analyze system properties.
In addition to its rigor and analytic. capability, Petri net
models are executable, and thus can be used as a system
prototype for simulation. Furthermore, Petri nets are
capable of describing both software and hardware, system
and environment, at different levels of abstraction. These
strengths make Petri nets a powerful modeling tool for
FMS.

While offering many advantages, however, ordinary
Petri net models suffer from some problems that limit their
usability and application as a design model for complex
FMS. Petri net-based models tend to become too large even
for a modest-sized problem [21]. The primary concern of
Petri nets, like many other formal techniques, is behavior
modeling and analysis. They, however, lack of mechanisms
to structure complex designs in such a way that both helps
enforce design integrity and provide a systematic and
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incremental way for design and analysis. For example, in
an FMS, the physical configuration and the functional
behavior of its hardware components, e.g., machine tools
and AGVs, are quite stable and static. The central issues of
design are the coordination, control and scheduling of
these components. For a complex FMS, it is necessary to
experiment with different alternatives of control and
scheduling policies against the same hardware
configuration. It is therefore highly desirable to be able to
“plug-in” the specifications of various control modules to
a FMS model without having to make major changes or re-
construct the entire system model each time. Most of Petri
net-based models do not provide explicit or adequate
support to this task.

In this paper, we go beyond conventional Petri net
modeling and present an integrated formal method to
support scalable and evolutionary design of real-time
concurrent systems from the perspective of time-
dependent architectural modeling and analysis. Our
approach is based on two basic hypotheses: (1) The ability
to systematically maintain a strong correlation between
requirement and design at every design level is the basis to
achieve quality design. An effective way to achieve such
strong design traceability is to incorporate (real-time)
requirement constraints as an integral part of design
modeling. (2) Constraint-driven compositional analysis
sensibly integrated as a part of design process is a
powerful means to control complexity and cost in analysis.
Based on these principles, we have developed the Real-
time Architectural Specification (RAS) model [9]. RAS is
built on top of Time Petri nets (TPN) [4] and Real-Time
*Computational Tree Logic (RTCTL) [12]. Petri nets are a
‘well-known operational model best suited for modeling
‘the control of distributed systems but cumbersome for
“specifying rules and constraints. By contrast, temporal
~logxc, a popular descriptive formalism, is best suited for
descnbmg rules and constraints but not control and
composmon of systems. By integrating them into one
coherent architectural model, RAS establishes two
desu'able features: First, it provides a formal system to
systemancally maintain a strong correlation between (real-
‘ime) requirements and design and to verify the
conformance of the design to the requirements. Second, it
Offers better scalability in modeling and analysis and
Pl'ov1des an effective way to deal with complexity in the
a{-’plu.:atxon of formal methods. These two features together
e RAS a suitable model for the design of FMS.

3 " The rest of the paper is arranged as following: Related
A°rk is discussed in Section 2. An overview of RAS
e el, including an example and formal definition, is
Elvcn in Section 3. In section 4, we illustrate the use of
BAS to give an incremental modeling of an FMS. Finally,
I Section 5, we briefly describe an incremental timing
ga]}'Sis technique based on the RAS model. The formal

description of RAS model and the rules for the use of RAS
model are given in Appendix I and II, respectively.

2. Related Worl_(

Petri nets have been applied to the specification,
verification, performance analysis, real-time control and
simulation of FMS. Net-based models have also been used
to obtain production rates, throughput, delays, capacity,
resource utilization, and reliability measures and deadlock
avoidance for FMS. The details of these applications can be
found in surveys in [10, 24]. Some typical uses of Petri nets
in FMS modeling can be found in [5, 7, 13, 14, 16, 20, 23,
26-28].

Those studies deal with the issue of how to use Petri
nets to address specific modeling and analysis problems in
FMS. We address a different issue. Our goal is to develop
an engineering practice to systematically and cost-
effectively apply Petri net theory in complex FMS
modeling, design and analysis.

Related to our approach, several structural Petri net
models are proposed both to provide a mechanism for
system composition and to manage complexity in
modeling. These include PROTOB [1], OBJSA nets [3], the
Cooperative Objects Language [2], and OPNets [12]. An
application of OPNets in FMS modeling and analysis is
presented in [27], where they are used to represent part of
an object-oriented Petri net cell control model. Each of
these models provides certain object-based structure for
system composition. However, none of these models has a
formal semantics for modeling timing and timed behavior.
A more recent model, Communicating Time Petri Nets
(CmTPN) [6], has a formal semantics about time, and
supports reachability-based compositional verification.

On the opposite side of Petri nets are various logic-
based models. Logic provides a more abstract approach to
the description and analysis of FMS. In temporal logic,
various temporal operators are provided to describe and
reason about how the truth-value of assertions varies over
time. It has proven to be a very useful formalism for
reactive systems [22]. RTCTL ([12], a real time
propositional branching time logic, has been a popular
choice for describing real time systems like FMS. It allows
us to express various desired types of behavior, including
safety, liveness, and bounded-fairness.

As an operational model, Petri nets (with structural
extensions) are well suited to model FMS as abstract
programs, which can be formulated as the parallel
composition of subsystems. However, it is cambersome for
describing system requirements. As a descriptive model,
temporal logic is appropriate for specifying rules and
constraints. However, it does mnot reflect the
component/interaction view relevant for design level
specification of FMS. So, when used alone, neither of these
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two methods is sufficient for architecture modeling of an
FMS. In Mandrioli et al. [19], the advantage of using the
TRIO logic and TPN together for system specification and
verification are suggested and explored. Unlike our work
on RAS, however, it is unclear to us what the concrete
objective of the suggested integration would be. Moreover,
a formal framework was yet to be developed to show how
to integrate TRIO with Petri nets.

3. Overview of RAS Model

Complex system design is an evolutionary process. A
good design model should be flexible enough to allow
frequent changes to the design and to support the
exploration of various design alternatives, while
simultaneously maintaining the integrity of design and
minimizing the affect of such changes to the overall
design. The RAS model was motivatec by these concerns.
RAS models a distributed system as a multi-leveled
composition of components and real-time constraints that
the components and their compositions must satisfy at
every design level. A strong correlation between system
constraints and design is maintained at every level.

An RAS model consists of three basic elements:
operational component models, connections, and
architectural constraints (constraints in brief). The
operational component models describe the real-time
behavior and communication interface of the components
or subsystems; the connections specify how the
components interact with each other and, in turn, form an
operational system composition model; and finally, the
constraints define real-time system requirements imposed
on the components and connections. All connections are
defined using only communication interfaces, which gives
us the flexibility to change the design of individual
components without a need to void the analysis of the
entire system.

Figure 1 shows an example of a two-level RAS
model. The top-level design has three components — A, B,
and C. Component C is further refined at the lower level
design into the composition of components E, F, and G.
The design at any level must satisfy the constraints
specified at that level. The operational component model
has two parts: (1) communication ports (denoted
graphically by half circles), including input ports (e.g.,
port6) and output ports (e.g., port7), and (2) a TPN that
describes the time-dependent, operational behavior of the
component, that is, it defines the semantics associated with
the ports. The communication between a component and
its environment is solely through the ports. A connection
represents a channel of interaction between components. It
is modeled by a simple TPN and defines the direction of
message flow and delay in the channel. For example,
components A and B have a request-reply relationship that

is modeled by the bi-directional channel. The basic -
communication model supported by RAS is asynchronous - f§
message passing; that is, the sending component does not 3
suspend itself if there is a concurrent activity available. At-J§
any .given design level, ports can also be divided into;{ i
external ports (e.g. port] in the high level design, port6 and -§
port] in the low level design) and internal ports (e.g. port3 3
and port4). An internal port is defined to communicate with -
other componeiits, while an external port is used to describe s
the inputs and outputs from and to the environment of the !

system. |

c3: A flow initisted from B.portS

¢s: For roquest issocd from
must reach A.por8 in 20 -

A.port2, roply must be received
A port3 witkin 20 time wnits.

Figure 1 Framework of the RAS model

In addition to serving as a component’s communication
interface, the ports also provide the linkage between the
operational design (components and connections) and the
descriptive  architectural  constraints. The resource
constraints of the design are modeled by Petri nets (marked
places). The timing constraints are specified by RTCTL
formulas defined over ports. Each port represents an atomic
proposition, which is satisfied by an arriving token (an
incoming message at the port). These ports constitute the
alphabet (atomic propositions) of the RTCTL formulas that
define the constraints. All constraints are specified using
ports only, no internal information about the components is
revealed. For example, constraint ¢; limits the time taken in
a request-reply interaction with B, and constraint c;
specifies the required synchronization between components
A, B, and C. The set of constraints can be logically divided
into three classes: component constraints, environmental
constraints, and path constraints. A component constraint
describes the timing properties of a component that its
environment expects from it, an environmental constraint
describes the timing properties that a component expects
from its environment, and a path constraint describes the
timing constraint for message transmission among
components.
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4. Incremental Modeling of an FMS

In this section, we illustrate the use of RAS to model a
hypothetical FMS. This will further explain the RAS
framework as well as illustrate the benefits of using the
RAS framework.

4.1 Overview of the System

The manufacturing system is composed of three
subsystems: processing, checking, and repairing
subsystems. These three subsystems run concurrently. The
processing subsystem is composed of 5 machines,
indicated as M1-5. Two types of workpieces, indicated as
W1 and W2, are processed and then assembled into a new
one, indicated as W3. The processing flow is shown in
Figure 2. That is, W1 and W2 are first processed by M1
and M2, which results in W1 and w2t respectively.
Next, wi1Pis processed by either M3 or M5, which results
in W1®, then by either M4 or M6, which results in W1?,
W2 is processed by either M3 or M4, which results in
W29, then by either M5 or M6, which results in W2?,
Finally, W1 and W2 are further assembled by M7 into
W3. W3 is the product of the processing subsystem.

wi®

wi wi® wi%)
M3, M5 M4, M6
— M g
| w3
o
—Pp M2 P M3, M4 MS, M6 w20
w2 w2 w2@

Figure 2. The processing flow of the processing subsystems.

After receiving a product from the processing
subsystem, the checking subsystem examines whether the
product satisfies quality control conditions. If it does, then
the product will be sealed and output as the final product
of the whole system. If it doesn’t, it will be sent to the
repairing subsystem for repair. When the repairing activity
is finished, it will be returned to the checking subsystem
and sealed. :

Wlm M9 wi®
s /' \ -

—P M8 Mll

\ M10 /WZ‘:

w20

Figure 3. The processing flow of the repairing subsystems.

The repairing subsystem is composed of 4 machines,
indicated by M8-11. An unqualified product W3 of the
processing subsystem is first disassembled by M8 into two
workpieces, W1® and W2®. W1® and W2® are processed
by M9 and MI10, which results in Ww1% and w2
respectively. Then, W1 and W2® are assembled by Ml11
into W3, which is then returned to the checking
subsystem.

In addition, there are two vehicles, vehicle 1 and
vehicle 2, responsible for the transfer of products between
processing and checking subsystems and between checking
and repairing subsystems, respectively.

The requirements for this FMS design include:

(1) The processing time of the processing subsystem
for each pair of workpieces is not longer than 20
time units.

(2) The processing time of the checking subsystem for
each product of the processing subsystem is not
longer than § time units.

(3) After the checking subsystem sends an unqualified
product to the repairing subsystem, it must receive
the repaired product within 10 time units.

All these requirements are applied in the case that no
waiting time exists for any workpiece at any processing
stage.

4.2 RAS Interface of the System

In order to capture the profile of the operational mode! of
the manufacturing system, we first present the interaction
interface of system’s components (each component is
corresponding to a subsystem, namely the processing
subsystem is viewed as component PS, the checking
subsystem as CS, and the repairing subsystem as RS),
which is shown as in Figure 4. Table 1 and Table 2 show
the meanings of all ports and connection transitions.

4.3 Architectaral Constraints Imposed on the System

In this section, we give the RTCTL formulae for the three
constraints of the FMS design. The first constraint, ¢y, is

¢y: portl — AF <% port2,
which is a component constraint and states that the
processing time of the processing subsystem for each pair
of workpieces ic not longer than 25 time units. The second
constraint, ¢,, is

¢5: port3 — AF 2 port4,
which is also a component constraint and states that the

processing time of the checking subsystem for each product
is not longer than 12 time units. The third constraint, c3, is
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port1)

Processing
Subsystem
(PS)

T Checking
}_"l’_’P Subsystem Dport4
por2 por8f  (cs)

ports port6
Tz Py Ta
Ps o P
T Ts
port? t8
Repairing
Subsystem
(RS)

Figure 4. RAS interface of the FMS.

Table 1. Legends of ports in Figure 4.

which is an environmental constraint and states that after
the checking subsystem sends an unqualified product to the
repairing subsystem, it must receive the repaired product
within 20 time units.

4.4 Operational Model of Components (Subsystems)

The operational model of component CS (Checking
Subsystem) is shown as in Figure 5 and the legends of
places and transitions involved in this model are listed in
Tables 3. Here, we use a thin bar to represent an immediate.
transition, and we use a thick bar to model timed transition,
t32 and t33 form a random switch. We assume that the
probabilities for these two transitions are 0.9 and 0.1,
respectively. This information is necessary when we verify:
the system’s constraints. Due to the space limitation, the
operational models of components PS and RS are omitted
here, which can be found in [9].

PORT TYPE DESCRIPTION
portl Input A pair of workpieces are ready for processing 32 p32 134
1 por2 | Output | The processing of a product at the processing D
subsystem is finished 31 p3 portd
port3 Input A product of the processing subsystem is port3
ready for quality checking t33 pl0
port4 Output | A product of the whole system is available
portS Output | An unqualified product of the processing 36
subsystem is ready to be transferred to the t35
repairing subsystem. A
port6 Input A repaired product is ready for processing by
the checking subsystem port5 port6
7 t ualified f i .
port g :nr:)s;sntg:n is mdyp;':fd:ec;ai:in gthc processing Figure 5. The operational model of the checking subsystem.
port8 Output ;I.'he repairing °,£ an unqualified product is Table 3 Legends of places and transitions in Figure 5.
inished -~ - %
e R P_Set DESCRIPTION
Table 2. Legends of places and traqsigons in Figure 4. b3l Chesking resiit is available
P_Set DESCRIPTION " p32 Ready for sealing
Py Vehicle 2 is available p33 Ready for being loaded onto the vehicle
P, | Vehicle 2 is transferring an unqualified product to the T_Set | DESCRITION TIME
repairing system 131 Checking the product [1.3]
P; Vehicle 2 is transferring a repaired product back to the 132 The product passes the test --
checking system t33 The product doesn’t pass the test - -
T_Set DESCRMIOI: . TIME 134 The subsystem seals the product [2, 4)
Ti Vehicle 1 transfers a pmduct of the (1,2
processing subsystem to the checking system 35 ;I,':;i zlt;bsystcm loads the product onto the [1,2]
T2 Vehicle 2 begins transferring an unqualified --
product to the repairing system 36 ;Ih'ize vs:hlz{s:{eslem unloads the product from [1,2]
T; Vehicle 2 ends transferring an unqualified | [1, 2)
oduct to the repairing system
£ - . ferri : So far, we have presented the top-level RAS model of
T Vehicle 2 begins transfemng a repaired = th P ; Next d h
prodllCl back to the checking system € manu acturmg system. ext, we consider the
T Vehicle 2 ends tansfeming a repaired | [1,2] refinement of the model.

product back to the checking system

c3: ports — AF < port6,

38

4.5 Model Refinement

In this section, we illustrate the refinement of component of

checking-subsystem (CS) into a sub-architecture which is |

composed of four components.
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Figure 6 shows the RAS interface of the refined
checking subsystem, which is composed of four
components: Checking Center, Analysis Unit I, Analysis
Unit II, and Sealing Unit. After receiving a product from
the processing subsystem, the checking center does some
checking operations and then sends the resulting data to
the two analysis units for analysis (T11 and TI3 fire).
After the data analysis, the two analysis units return the
analysis results to the checking center (T12 and T14 fires).
The checking center then fuses the analysis results and
determines if the product satisfies quality control
conditions. If it does (T15 fires), then the product will be
sealed and output as the final product of the whole system.
If it doesn’t (T16 fires), it will be sent to the repairing
subsystem for repair. When the repairing activity is
finished, it will be returned to the sealing unit and sealed.
Notice that the connection transitions T15 and T16 forms a
random switch, and they have the same meanings as t32
and t33 in Figure 5, respectively.

Analysis
Unit
[-\ -
Checking
Ti1 TIi2
N
Checking
Pt ) Center
? Ti3 Ti4 Ti5 D
A Sealing
Analysis Unit D port4
Unit P
Ti6 T
N\
ports  port6

Figure 6. Refinement of the checking subsystem.

In order to be consistent, this refined model must
satisfy all constraints that the old component design shown
in Figure 6 satisfies. Otherwise, we cannot safely plug the
new component into the system’s RAS model. From the
top-level RAS model we know that component CS is
subject to a component constraint ¢, and has a requirement
of environmental constraint c;. Therefore, this refined
design must satisfy ¢, whenever the environmental
constraint cj is satisfied.

4.6 Summary

Based on the above discussion, we may find that compared
with other formal methods, such as ordinary Petri nets, our
model has the following advantages:

(1) The modular structure of RAS helps conquer the

complexity of the design of FMS. If we want to change the
design of a particular component of the FMS, then we only
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need to change the representation of this component and
make sure that it satisfies all the necessary constraints,
without a need to redesign the entire model.

(2) The linkage between design and requirements helps
achieve a high-assurance design of FMS. When we
redesign or refine a component of the manufacturing
system, all the ports of the component will be inherited in
the new design, and some constraints related to the
component are also decomposed and added to the new
design, which ensures the consistency of requirements
between the sub-system and the system.

5. Constraint-Driven Compositional Analysis

The process of verification is driven by showing that the
components and their composition satisfy  their
corresponding constraints at every design level. The
modular nature of RAS and its emphasis on maintaining a
strong correlation between design and requirements provide
a natural support for incremental verification and for
enforcing conformance of the design to the requirements.
We have developed a verification technique that helps to
achieve these benefits. We cut down the verification
complexity by supporting horizontal as well as vertical
composition-ability. Due to the space limitation, we only
present the basic ideas of our verification algorithm and
illustrate its working on the FMS described in Section 4. A
detailed description of the algorithm is given in [9].

Our technique works by verifying designs
independently at each level — starting from the very top
level. At any given level, verification proceeds by
analyzing the components against their corresponding
component constraints one at a time and then composing
these results to deduce system-wide properties at that level.
Thus, the complexity of analysis is proportional to the size
and number of components, rather than the size of the entire
model. After a design has been verified at a given level, it is
further refined into lower level design. The high level
constraints are propagated to the lower level. Then the
design at the lower level is checked against the lower level
constraints, and the refinement process continues. At every
level, we make sure that the constraints are consistent with
the constraints at the parent level so that a verified lower-
level design can be safely plugged into its parent level
architecture without having to reverify the entire model.

We first describe the verification algorithm for a given
level of design. Then we describe verification across design
levels.

5.1. Incremental Verification at a Given Design Level

Our main technical tool is a set of reduction rules that lets
us replace many types of RAS components by simple TPN
of constant size, while preserving the ports and the time-
dependent properties of the component as specified by the
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constraints. In [9], we introduced a set of component-level
reduction rules to support such closure. It should be
pointed out that unlike other reduction methods of TPN,
such as given in [25], which work at individual transition
level, our reduction rules are constraint-oriented and work
at the component level. Consequently, our method works
at a much coarser level than the reduction rules given in
[25], and we need fewer applications of our rules to reduce
the size of the model being analyzed. Our reduction rules
assume that the underlying (untimed) net corresponding to
the TPN of a RAS model is safe. ([25] makes a similar
assumption.)

Our algorithm works in two stages. In the first stage,
we order the components so that the timing behavior of
any component depends only on the coinponents which are
lower in this order. This stage assumes that the underlying
dependency-graph of components is acyclic. In the next
stage, we consider components one at a time in the order
computed in the previous stage. Each component is
verified against its component constraints and then
reduced to a simple TPN by one or more applications of
reduction rules.

We ordered the components in such a way that the
first component does not depend on any other components
so it can be verified and reduced to a simple TPN. The
second component depends only on the first one, which
has already been reduced, and so on, Suppose that there
are m components, which are linked together by inter-
related connection structures to form the system or
subsystem. Then our incremental verification method has
three steps: '

(1) For each component, list the reduction rule that can be
applied to it; and

(2) Build the dependency graph on components and
perform a topological sort. If the sorted order is CP,,
CPy, ..., CPq, then we know that V i > j, CP; doesn’t
depend on CP;.

(3) Reduce each component according to the sorted order,
and verify constraints at the same time, until all
constraints are checked.

We now illustrate the incremental verification on the
FMS described in Section 4. The assumption that all three
constraints are applied in the case that no waiting time
exists for any workpiece at any processing stage ensures
that we may use the net with only one input from p;ortl to
.verify the system constraints, which implies that the
underlying untimed Petri net of the FMS is safe and our
component-level reduction rules can be used. The FMS
consists of three components: PS, CS and RS. There is one
dependency edge: CS—RS, so we can order these
components as

PS, RS, CS.

40

Applying reduction rules to components PS and RS results ‘

in Figures 7(a) and (b). Suppose that applying simple
reachability analysis [4] to the operational models of
-components PS and RS we conclude

SI(ty,2)) = [11, 22], and

SI(£(7. 8)) = [7’ 13]9
where SI(t;) represents the static firing time interval of
transition ;. Then, the constraint ¢;: portl — AF ¥ port2 is -
verified. Next, we consider the component CS. Figure 7(c)
shows CS and its interaction with simplified PS and RS,

L.y

porll( )———4—’1 ) port2

(a)

| |
| ta.s "

Figure 7 (a) Reduction of component PS.
(b) Reduction of component RS.
‘(c) The simple but equivalent model of the system.

and we use it to verify other constraints. Based on Figure
7(c) and the fact that the switch probabilities for transition
t32 and t33 are 0.9 and 0.1, respectively, we obtain

D_(port5, port6) = SI(T3) + SI(t7, 5)) + SI(Ts) = [9, 17],
and
D_(port3, portd)
= 0.9 x [ SI(ts31) + SI(t34)]
+ 0.1 X [ SI(t35) + D_(port3, port4) + SI(t3s) + SI(t4)]
=[4.1,9.1].

where D_(A, B) represents the message transferring time
delay between A and B. Based on these values, we have

OO0 sam~anToa
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verified c¢;: portS — AF =20 port6 and c;: port3 — AF
sxzport4. Therefore, all constraints have been verified.

5.2. Constraints Decomposition and Incremental
Verification across Design Levels

Our technique for constraint decomposition
incremental verification across design levels consists of
three basic elements: 1) We automatically derive
constraints for the lower-level design that is consistent
with the higher-level constraints. Z) The lower-level
design is verified using the technique discussed in the last
section. 3) The sub-architecture is plugged into the parent-
level architecture to form a more detailed architectural
model.

In fact, when we refine an RAS component into a sub-
architecture, the RAS model mandates that it inherit all the
ports from the high-level component to ensure interface
consistency. During the verification of the high-level
design, we compute time delays for certain port pairs of
(input port, output port). Correctness of the high-level
design is contingent on the values of these time delays. So
for the lower level design, we add these delays as
constraints that must be satisfied. As‘long as these
constraints are satisfied, we can ensure that the lower-level
designs is consistent with the high-level design. If on all
these port-pairs there are component constraints defined,
then the lower-level design is just required to obey these
component constraints.

Let’s take the analysis of the FMS as an example. In
the last subsection, we finished the verification of its high-
level design. Figure 6 shows ports port3, port4, port5 and
port6 are inherited from Figure 5, the high-level (top-level
in fact) design model for CS. From the top-level RAS
model we know that component CS is only subject to a
component constraint c¢;. Therefore, c¢;; port3 —
AF*'port4 is used as the constraint of the lower-level

design.

and

6. Conclusion

Based on the requirement of the modeling, design, and
analysis of FMS, we have presented an RAS-based
incremental approach to architectural modeling and
verification of real-time distributed systems. The
contribution of this paper is twofold: First, it provides a
systematic way to link real-time system constraints to the
process of formal modeling and analysis to ensure that the
constraints are met at any given design level. Second, our
approach is scalable in both modeling and analysis. As an
application example, we illustrate the use of RAS to
incrementally model a given FMS. It further explains the
RAS framework as well as shows the benefits of using the

RAS framework.
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Appendix I. Formal Description of RAS Model

The most important part of the formal description of RAS
model is a recursive method of combining lower-level RAS :
models into a higher level model. We will describe this
recursive method later. First, we describe the elements of -
the RAS model. An RAS model of a system consists of: (1)
its externally observable and operational behavior (modeled -
by TPN), (2) its ports of interaction with its environment
(modeled by a specific subset of places of the TPN), and (3) :
the constraints it needs to satisfy and the assumptions about
its environment (modeled by a set of RTCTL formulas). In

other words, an RAS model RAS is defined as a triple RAS -

= (OPMODEL, PORT, CONSTRAINTS), where:

(1) OPMODEL is the operational model of the system,
described by a time Petri net, i.e., OPMODEL = (P, T,

B, F, My, SI) [4].

(2) PORT denotes the communication ports of the model.

All constraints and connections are defined on PORT.
That is, the internal details of the design are hidden. :
These communication ports are a subset of the places
in time Petri net used to describe the OPMODEL.

(3) CONSTRAINTS defines the behavior that the design
should exhibit as well as the assumptions about its
environment. They are modeled by a set of RTCTL
formulas. CONSTRAINTS is divided into three groups:
component constraints, environmental constraints, and
path constraints.

Now we give a recursive procedure for combining
lower level RAS models into a higher level model. A set of
RAS models, RAS;, RAS,, ..., RAS,, can be combined to
form a higher level RAS model RAS as follows (In this
case, RAS;, RAS,, ..., RAS, are viewed as components or
sub-architecture models):

(1) RAS.PORT is a subset of U RAS.PORT. The
remaining ports in components, U%.,RAS.PORT -
RAS.PORT, are called the internal ports of RAS.

(2) RAS.OPMODEL has two parts: one is operational
models from all components, and the other is a new
time Petri net (called CONNECT) describing
connections between individual components. Formally,
RAS.OPMODEL = X', RAS.OPMODEL y
CONNECT, where CONNECT = (P, T, B, F, My, SI) is
a time Petri net describing the connections between the
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lower level models RAS;, RAS,,
satisfies the following rules:

ceey RASk, that

i. CONNECT can use any port from a component as
a place. It can also introduce new places, but it
can not use an internal place from a component.
That is, " -(RAS.OPMODEL.P — RAS.PORT)
N CONNECT.P=(.

ii. The set of transitions of CONNECT are disjoint

from the (ransitions in components, i.e.,
u",-=,RAS,-. OPMODEL.T n CONNECT.T=(.

iti. Every internal port must be connected to at least
one transition in CONNECT through an incoming
or outgoing arc.

CONSTRAINTS is a set of RTCTL formulas

describing the constraints of RAS.

Appendix II. Rules for the Use of RAS Model

The aim of RAS is to provide a formal approach to
systematically maintain a strong correlation between (real-

time)

requirements and design and to verify the

conformance of design to the requirements, and to offer
better scalability in modeling and analysis. In order to
achieve this goal, it is necessary for an RAS user to obey
the following two rules on the proposing of constraints:

)

Each component of a system must be subject to some
constraints directly (there are some component
constraints defined on it) or indirectly (there are some
constraints that do not deal with its ports, but affect its
design, i.e., the operational property is affected by
these constraints). In other words, the operational
property of a component must satisfy some
requirements. Only in this way can we ensure the
combination of designs and requirements.

M1 begins M1 ends
processing processing
piecel. piecel.
piecel
M2 processes
workpiece.
D piece3
piece2
M1 begins M1 cods
processing processing
piece2.

Figure 8. A simple manufacturing system.
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(2) If there exists a synchronization activity for messages

from some external input ports, then an environmental
constraint which state the maximum and/or minimum
distance among the arrival of messages to these ports is
often needed. Otherwise, some constraints may make
no sense. Let’s consider a simple example. Consider a
simple manufacturing system, which is composed of
two machines, MA and MB. Two types of work-
pieces, corresponding to piecel and piece2, are
assembled by MA and then processed by MB, and a
new product, corresponding to piece3, is produced in
turn. The Petri net model of such a simple system is
shown in Figure 8, with three ports: piecel, pieceZ and
piece3. If we only propose a constraint as

piecel — AF =" piece3,

it is not enough to describe the requirement on the
system, because we don’t know if piece2 is available or
when piece2 is available after the arrival of piecel.
But, it will make sense if we give a second constraint
as

piecel — AF =3 piece2.

In addition, in order to maintain consistency, when

replacing a component design (indicated as an old
component design) with an alternative component design,
or decomposing it into a sub-architecture which is
composed of several new components, we must obey the
following two rules:

(1) Same ports, i.e., the alternative component design has

(2)

exactly the same ports as the old component design, or
the sub-architecture takes all ports of the old
component design as all its external ports.

Conform to the same constraints, i.e., the alternative
component design or the decomposed sub-architecture
must conform to all constraints which the old
component design are subject to.



