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This paper describes a plpelined processing lechnique for clueries involve data from dis-
tributed, autonomous reiational databases. We highlight the basic idea. present a prelim-
inary result, and sketches the planned work towards the ievelopment of a more conrplere
multi-database query processor based on the proposed idea.

Accessing Distributed Autonomous Databases The advance of reiational
database technology in the past decade has made elicient storage and manipularion of
massive data easier than ever. .\ccompanied rvith the n,ide adoption of reiationai database
managernent svstems (DBNIS) is the diverse choices in commercial DB\lS products. Due to
certain technical or strategic consicierations. a companl,'mav need to llse several DB\lSs from
di.fferent vendors. These DBtrISs are often installed on separace rnachines (servers) rrhich
are connected through a LAN. This results in a loosell'-coupled multi-database environment:
mosr of the time the DB\lS ser\:ers operate on their orvn. but from tiine to tinre thel- have

to cooperate rvith each other to irandle queries that require data frorrr nrore tiran (lne server
(such queries are knorvn as glohuL qu.eries'1 . Efficient global querv processing has been one

of the kev research areas in muiti-databases.

-{utonomous database servers in a multi-database ertvironment can onil' communica[e
rvirh each other through a high-level querf interface: SQL (Structured Queri-Language). rhe
stanciarcl querl' language for relational databases. The implication is that to evaluate a global
querv. the query must be first translated into a sequence of sr-rb-queries in SQL formar.',vhicir
are rhen scheduled and submitted to respective database servers for execution. Consider for
example a 1or,n query Rr X R: where tabies Rr ancl R.: reside at database servers D81 and
DB2 respectivell'. To perform the join. \lre must first retrieve R1 from D81. send it to the
site of DBt, and import it into a temp()rarv table. sav T.in DBz (or the other rval'around
by moving R2). Since all operations must be carried out at the SQL levei. the local join
querl'7 x fi2 can not be issued until B1 is complet,ely' imported into T. Thus. the total
turnaround time is the sum of t'rvo sequentiai steps: table staging L (denoted T <- R1) and
local join (? x R2). The sequential delav could become intolerable rvhen the join querv
involves large or many tables.

Pipelining Join Queries with Double Buffers \\:e claim that a giobal join
query can be sped up bv overlapping the table staging and Iocai .join operations. Thrs is

based on the follorving observations: (1) table st,aging is usualll'communicat,ion and CPU
rntensive lciue to the overheaci of nerwork prot,ocoi st,acks, ciat,a ibrrrrau t:otrver'$i.utt. arrti Lhe

repetative SQL INSERT comrnands needed to populace the temporary table 7 rvith the
records received from Rr), and (2) Iocal join is disk IO intensive. Thus, in a sequential
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execution, the disk is partly idle during table staging, while the CPU is mostl""- idle during
Iocal join. If we manage to overlap these two steps, better resource utilization and thus
shorter query turnaround time can be achieved. However. since all operations must be

handied at the SQL level, applying pipeline at the granularity of tuples (records) requires
the execution of an INSERT and a JOIN command at the D 82 sen'er for each tuple received
from R1 . The excessive SQL statement processing and database access costs ma)'rvell offset
the time saved by pipelined processing.

To make pipeline processing beneficial, we have devised a pipelined algorithm called

fragmented 1o'in which avoids excessive SQL and database access overhead. The idea is to
divide €r into a number of smaller, fixed-size tables (called fragrnents) . and pipeline data
staging and local join at the granuiarity of fragments. To achieve parallelism, subsequent
fragments are imported, in turn, into two temporary tables, T and T' (the double buffers).
While a buffer is engaged in the locai join operation with R2, the other buffer can be used

to import the next fragment from -R1 . These two buffers exchange roles alternatell' for
subsequent fragments. Thus, if .R1 is divided into n fragrlrents as ft1 : Ul' 1,R1 ;, and at a
certain point of time buffer T is hoiding fragment ft1.;, then the Iocal join querl' T x E.: and
the staging of next fragment T' <- Ry;a1 are performed simuitaneousi;-. The final result is

simply the union of all the sub-results since R1 p4 fi.: = UL,(ftt.' x R.2).

The totai turnaround time of a fragmented join depends on the fragment size. To
determine a good fragment size, we have devised a constant-time heuristic algorithm that
compures a fragment size based on certain table statistics (rvhich are attainabie from most
database servers) and a calibrat,ed linear cost model for both insert and join operations.
\&'e have implemented the fragmented join algorithm in a muiti-database en"'ironment that
contains trvo autonomous OR.LCLE 7 servers. A sample experimental result is shorvn in
lhe table beiow rvhich compares query turnaround time (in seconds) of the fragmented join
and a sequential algorithm. at different sizes of Rr (in unit of 1.000 tuples). Each Rl tuple
occupies -10 bytes. Table ft2 conrains 12.000 tuples, rvith a tuple size of 150 b1'tes. Using a

self-computed fragment size, rhe fragmented join algorithm is able to shorten the turnaround
lime of the sequential algorirhm by 30--10% in most cases. The last row shorvs the fragment
size (in unit of 1,000 tuples) calcuiated and used by the fragmented join algorithm.

Rr size 0.8 1.6 :.+ 3.2 4.0 4.8 5.6 6.4 .2

fragmented 16 2L 39 61 70 76 90 99 1i2
sequential 18 1t .{8 68 86 104 120 r45 i69 1;9

firag. size 0.27 A =a 0.60 0.64 0.80 t_r.9b 0.93 1 ,07 1.02 L.r-1

Summary In this paper we have described the basic idea of the fragmented join algo-

rithm rvhich is aimed to reduce turnaround time for globai queries in a distributed multi-
database environment. In addition to shorter query turnaround time, the fragmented join
has tlvo other advantages. First, it takes much shorter time than the sequential strategy
to produce the first tuple. The improvement is about lRrl/lfir,rl times faster. Second,

the fragmented join algorithm requires only a temporary disk space of trvice the fragment
size. This could be a significanr save over the sequential strategy which requires a tempo-
rary disk space for the entire table Ri. Presently, we are undergoing the implementation
of a first proof-of-concept multi-database prototype that incorporates the pipeiined tech-

niqii,: ,ies,'ril-r,'r'l alr,rve. T,-, nrai:e rne iragmen'"ed.join ai6orithrn practicall;v i:setul. we a,r'e

expanding the algorithm to handle join queries that involve more than two tabies. This
requires formation of a muiti-levei pipeline tree and determination of the fragment size at

each join node. We are also exploring adaptive techniques that would adjust the fragment

sizes dynamically during long query execution based on reai-time feedback.
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