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Abstract—Over the past few years the need for early-warning
maritime threat detection systems has dramatically increased.
Our research aims to address this need by tackling three
main problems: 1) classify boat activities into three categories:
random walk, following, and chasing, 2) real-time classification
of boat path trajectories, and 3) designing a novel perception-
based framework for activity detection in the maritime context.
We propose the implementation of an entropy-based detection
algorithm, trained using synthetic data. We assess the viability
of the proposed framework based on accuracy and the number
of time steps required prior to identification. The synthetic data
generated has the potential to spur other research efforts in the
field of maritime detection.

Index Terms—perception, Markov model, entropy, k-means,
maritime threat detection

I. INTRODUCTION

With the rise of illegal maritime activity [1], the need for
artificial intelligence threat detection systems has dramatically
increased. These systems use sensors, images, and videos to
obtain large amounts of data, used to perform control oper-
ations via Computation with Words, as well as Computation
with Numbers [2]. This approach is very promising as it has
the ability to acquire and process enormous amounts of data.
It allows the detection algorithm to behave autonomously. The
main goal of this research is to explore the capability of the
proposed detection algorithms to identify maritime threats in
real-world situations. This goal implies two main problems:
1) given a time series of boat locations (i.e., a trajectory),
identify boat activities such as random walk (representing
a non-threatening activity) following, and chasing, and 2)
classify trajectories under real-time constraints. The proposed
solution is to design a perception-based framework that in-
cludes generating synthetic trajectories then implementing an
entropy-based detection algorithm that employs history buffers
on a given trajectory to find its entropy. Finally, we compare
the entropy to a threshold in order to determine the boat
activity. This method maintains a high level of accuracy while

minimizing the number of time steps required. The evaluation
of the detection algorithms is implemented via time-driven
simulations governed by perception-based Markov models.
For generating data involving movement patterns of “follow-
ing” and “chasing”, we utilize the Bresenham line-drawing
algorithm [3]. The proposed AI-based system allows for an
efficient method of detecting boat activities and maritime
threats. The rest of the paper reviews background knowledge,
provides the methodology and the experimental setup, presents
results, and discusses applications for the research.

II. BACKGROUND

A. Related Work

Obradovic et al., as well as Roy et al., analyze different ways
to detect maritime movements [4-5]. These papers, however,
focus on using neural networks to detect anomalous behavior,
whereas our research aims to classify boat trajectories using an
entropy-based system. Goodarzi et al. use the AIS satellite data
to detect anomalous behavior [6]. In contrast, we use synthetic
data instead of using AIS data. This is because the AIS data
has low time resolution, with some data points occurring more
than a month apart. Consequently, it is hard to accurately
detect trajectories from the AIS data. Xin et al. use entropy
and support vector machines [7]. This is a different method,
introducing notable trade-offs compared to our method. Amir
et al. propose a system for mining vessel trajectories from
AIS data for illegal fishing detection [8]. In contrast, we use
vessel trajectory to classify boats’ activities. Fooladvandi et
al., and Dabrowski et al. employ Bayesian networks to detect
and synthesize boat activities [9-10]. In contrast, we use an
entropy-based detection algorithm. Their method introduces
trade-offs compared to our method.

B. Terminology

In this section, important terms and concepts used in this
paper are defined and explained.
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Bresenham Algorithm: The Bresenham algorithm is used
to draw an approximation of a line in an integer coordinate
system. Given the coordinates of the current point on a line,
this algorithm determines the coordinates of the following
points by selecting points that form the closest approximation
of a line, adjusting the error with each step [3]. Our work
utilizes the Bresenham algorithm to plot trajectories in the
simulations of chasing and following.

Markov Models: Markov models are stochastic models
that assume that future system’s states depend only on k
previous states. The use of these models provides a method
for analyzing dynamic systems, in this case boats, since the
predicted future positional boats’ states depend on the past
positional states [11]. In our work, Markov models are used to
model boat activities, in a way that reflects human perception
of boat activities, and to generate synthetic trajectory data.

Entropy: In Information Theory, first-order entropy is de-
fined as follows [12]:

H = −
∑

i

P (i) log2 P (i) (1)

In our work, the entropy, H , is calculated and aggregated for
many trajectories. Then, an entropy threshold is calculated
for classification of the trajectory activities. The maximum
entropy implies a random trajectory, while the minimal entropy
implies a deterministic trajectory.

History Buffer: The detection algorithm uses multiple
history buffers, which store a set amount of data points for
calculating the entropy through a sliding-window.

K-means Clustering: Traditionally, a cluster is a collection
of data points close together presumably due to key similari-
ties; and the term “centroid” refers to the best representation of
that cluster as a point. “K-means clustering” is an algorithm
which partitions data points into discrete clusters based on
mean-distance calculations [13]. The k-means algorithm ran-
domly assigns k centroids and iteratively updates the centers
and the points assignments in a way that minimizes the sum
of the distances between the points and their corresponding
centroid. In this paper, K-means clustering is used to determine
the unsupervised entropy thresholds.

III. EXPERIMENTS

The experimental setup involves a variety of data synthesis
and detection experiments evaluated for accuracy.

A. Setup

For optimized performance, we synthesized and trained the
classifier in C++ and visualized the data with MATLAB and
Python. Detection and writing data files are implemented with
Python. We divided the experiments into two parts: synthesis
of data to train and execute the detection algorithm, and
detection methodologies.

In this experimental setup, we consider two boats: u, the
malicious boat, and boat v, which might be chased or followed
by u. To ensure that boat u catches v at some point in time,
boat u is capable of having a higher speed than boat v. We
assume that the boats travel in a discrete coordinate system.

B. Data Synthesis Experiments

To train the classifier, we synthesize data for three cate-
gories.

Random Walk (Static Simulation): For each move of
boat u, the simulation randomly selects one of the nine
possible moves representing the current coordinate of boat
u and the eight nearest neighbors of the current coordinate
of boat u. For example, the cardinal direction East - and the
non-cardinal direction Northeast - represent possible nearest
neighbor points. Since the simulation is static, v does not
move. We regard this as a trivial case for the remainder of
the paper.

Dynamic and Static Chasing: In the static chasing sim-
ulation, boat v is static, and boat u moves according to the
Bresenham algorithm towards boat v. In the dynamic chasing
simulation, boat v moves East by one discrete unit every m
time steps, where m is the speed parameter for boat v. Boat u
moves every time step according to the Bresenham algorithm.

Following: Boat u ensures that it is always behind boat v
while randomly choosing one of three movement types: zig-
zag, chasing, and random-walk at random intervals. Boat v
moves in a random predetermined cardinal direction.

C. Detection Experiments

After training the classifier with synthetic data, we utilize
the following methods to find q means, denoted as µi, to
characterize a given data set. From these means, we determine
thresholds, finalizing the training process.

1) Finding Means: We find µi in both supervised and
unsupervised methods.

Supervised Means: This is a method of calculating µi that
best represents each trajectory type. Knowing the trajectory
type of a given entropy data, we find the entropy mean of
the points of that trajectory type. Given q trajectory types to
analyze, we obtain q means for each kind of trajectory.

Unsupervised K-means Clustering: With k-means, we find
representative centroids of the data for a preset parameter- k,
the number of clusters. In this context, k = q to find q means
that best represent the entropy data.

2) Finding Thresholds: Next, we find q − 1 thresholds,
which allows using simple inequality relations to classify a
given trajectory, to finalize the training procedure for the
classifier. We consider the following two methods:

Voronoi Diagram: Voronoi diagrams can be used to par-
tition a multidimensional space for a given data set [14]. In
our experiments, the Voronoi diagrams are used to partition
1-D space, which is entropy, using the midpoints between the
means as follows:

Ti =
µi + µi+1

2
(2)

Weighted Means: To find the thresholds/boundaries of two
entropy data clusters we use the mean values, µi, of the
entropy thresholds, and their standard deviations, σi, we find
the entropy boundaries, Ti, between consecutive data clusters
using the equation:
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Ti = µi +
σi(µi+1 − µi)

σi + σi+1
, 1 ≤ i ≤ q − 1 (3)

With two ways to find means and two ways to calculate Ti,
we analyze and compare a total of four methods to calculate
Ti.

Detection Procedures: In this experiment, the four methods
of detection described above are employed.

1) Supervised Weighted: we train the detection algorithm
with supervised means and weighted thresholds.

2) Supervised Voronoi: we train the detection algorithm
with supervised means and thresholds found with the
Voronoi diagrams.

3) Unsupervised Weighted: we train with k-means and
weighted thresholds.

4) Unsupervised Voronoi: we train with k-means and
thresholds found with the Voronoi diagrams.

IV. TECHNIQUE

A. Synthesis

Random walk: The random walk simulation gives equal
probability to all of the nine possible next locations. At the
beginning of the simulation, boat u starts at (1790, 1790)
and boat v is static at (2047, 2047). For every move of boat
u, a pseudo-random number between 1 and 9 is generated.
These nine numbers correspond to one of nine possible next
locations. Boat u and boat v cannot move outside the bounds
(4096, 4096). The simulation ends either when boat u reaches
boat v or after a set number of time steps.

Chasing: Both the static and dynamic variants utilize the
Bresenham algorithm. For each move of boat u, the Bresen-
ham algorithm uses the positions of both boats to calculate
the approximate line between the two boat positions, and the
first 20 points of the line constitute the next position taken by
boat u.

Following: At the beginning of the simulation of following,
boat u starts at (2047, 1790), and boat v starts at (2047, 2047).
Boat v is preset to move one unit East. The algorithm for
boat u’s movement first determines whether or not boat u is
behind boat v. This is done by drawing a line through boat
v perpendicular to its last move. Checking in which side of
the line boat u’s position is, determines the next movement
type. If boat u is not behind boat v, then boat u performs a
Bresenham circle-drawing algorithm-based circling maneuver
to travel behind boat v. The circling algorithm chooses the
compass direction that takes boat u to a new position where
the change in the distance between boat u and boat v is
minimized. When boat u is behind boat v, a 3-state disguised
chasing algorithm for boat u is performed, in which boat u
alternates between zig-zag, chasing, or random walk patterns.
If boat u is behind boat v, then boat u continues with the
following procedure. The simulation of following ends once
boat u reaches boat v.

B. Detection

The first step of the detection algorithm is finding the
entropy of a given trajectory. To find the entropy mean of
each movement, the detection algorithm is trained with a syn-
thetic data set, which contains a large number of synthesized
trajectories. Given a trajectory of size n and history buffer Hb

of size b, we first calculate the empirical probabilities for each
move. Next, we find the entropy of H by employing equation
(1) we use P ′(i) to denote that this is an estimated probability.
The calculation of entropy relies on the number of time steps
in a given trajectory, where a time step is the time interval for
which the simulation progresses to the next step.

When running the detection, the number of time steps, t,
in a given trajectory should be minimized while maintaining
high accuracy of the given detection, since the goal is to detect
boat activities early in the trajectory.

V. EXPERIMENTS’ RESULTS

A. Data Synthesis Experiments

Random Walk: In this experiment, we have implemented
the following procedure:

1) Generate a pseudo-random integer n ∈ [1, 9].
2) Choose the next movement according to the procedure

for random walk described in section IV part A.
3) Repeat steps 1-2 until boat u catches up to boat v or

until the designated number of time steps.
Figure 1 depicts one instance of random walk.

Figure 1. Static random walk, boat u is represented by the blue dots.

From Figure 1, we can observe that random walk behaves as
expected and resembles random walk reported in the literature
[15].

Chasing: In this experiment we have implemented the
traditional Bresenham line drawing algorithm as described in
section B. Figure 2 depicts one instance of static chasing, and
Figure 3 depicts one instance of dynamic chasing.
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Figure 2. Static chasing: boat u, represented by the red line, starts at the top
and goes towards boat v, which is static and represented by the black dot.

Figure 3. Dynamic chasing: boat u, represented by the red line, starts at the
top and goes towards boat v, which is represented by the black line. Boat v
starts from the right and moves left.

From Figure 2, we can observe that the simulation follows
the Bresenham algorithm. Since boat v is static, the chaser
(boat u) moves in a straight line towards boat v. A human
sitting on boat v would most likely observe that v is being
chased.

From Figure 3, we can observe that boat u follows a
constantly updated Bresenham line drawing algorithm. Since
boat v is moving, the lines drawn are updated in each time
step, and only the first Bresenham step is taken. When the
position of boat v changes, the algorithm redraws the line
according to the Bresenham algorithm.

Following: In this experiment, we have implemented the
following procedure:

1) Verify that boat u is behind boat v (as described in
section A above).

2) When boat u is behind boat v, follow the 3-State
Disguised Chasing algorithm.

3) The simulation ends when boat u catches boat v or when
the designated number of time steps has been reached.

Figure 4 depicts one instance of the pattern of “following”.

Figure 4. Dynamic following with boat v traveling right-to-left along the
black segment and boat u traveling along the blue segment starting from the
leftmost point.

From Figure 4, we can observe that boat u starts in front of
boat v and performs the Bresenham circle drawing algorithm
in order to get behind boat v. After boat u is behind boat v, it
performs a 3-state procedure, where the trajectory alternates
between Bresenham, random, walk, and zig-zag.

B. Detection Experiments

Supervised Means: Given a trajectory of size n and history
buffer of size b, we:

1) Estimate the probabilities of each of the nine moves.
2) Calculate the entropy using a history buffer of size b.
3) Evaluate the average of n− b buffer entropy data points

to get the entropy value for the trajectory.
4) Using these means, identify thresholds as per equations

(2) or (3).
Unsupervised Means: To find unsupervised means we:

1) Estimate the probabilities of each move.
2) Calculate the entropy using a history buffer of size b.
3) Employ k-means clustering to assign q centroids to the

data set.
4) Using these means, identify thresholds as per equations

(2) or (3).

Table 1 provides the means and centroids obtained by running
the detection algorithm on a set of 200 synthetic trajectories.

Table I
MEANS AND CENTROIDS OBTAINED BY RUNNING THE DETECTION

ALGORITHM ON A SET OF 200 SYNTHETIC TRAJECTORIES.

Parameter Random Walk Chasing Following
Supervised Means 3.0629 1.0188 2.5743
K-means Centroids 3.0321 1.0195 2.5999
Standard Deviation 0.1548 0.4539 0.0058

From Table 1 we can see that the k-means centroids are
relatively close to the supervised mean values, presumably
due to the averaging nature of k-means. Because of this
similarity, supervised and unsupervised mean values (and
therefore the thresholds) are similar, signifying that, in this
case, the unsupervised algorithm is almost as robust as
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the supervised algorithm. Next, we find thresholds using
equations (2) and (3). Table 2 provides the resultant threshold
values:

Table II
THRESHOLD VALUES

Supervised
Weighted

Supervised
Voronoi

K-means
Weighted

K-means
Voronoi

T1 0 0 0 0
T2 1.414 1.797 1.421 1.810
T3 3.057 2.819 3.027 2.816

From Table 2, we can observe that the thresholds obtained
through the different methods are quite similar.

Finally, we obtain the thresholds for the four detection
experiments: supervised weighted, supervised Voronoi,
unsupervised (k-means) weighted, and unsupervised Voronoi
thresholds. These, as well as detection accuracy, are shown
in Tables III-VI.

Detection Procedures
We run detection across the array Pi = [0.1, 0.3, 0.5], where
Pi is equal to the proportion of time-steps T used to classify.
In this experiment and in all the others, T = 3000 time-steps.
Thus, Pi equals 300, 900, or 1500 time-steps. For the
classification, we use a new set (different than the training
set) of trajectories with varying boat v speeds, positions, and
trajectories.
The following paragraph provides details of the detection
procedure.

1) Once the detection algorithm has been trained (by using
either supervised or unsupervised means) and entropy
thresholds have been found (by either using weighted
or Voronoi), the algorithm calculates the entropy Hi of
trajectory i via equation (1). This calculation is based
on Pi .

2) The detection algorithm classifies boat trajectories by
comparing Hi to the entropy thresholds. After calculat-
ing the entropy of a given boat trajectory, the algorithm
finds the largest threshold that is less than Hi, which
yields one of the three possible boat activities:

a) If Hi < T1, then the given trajectory is chasing.
b) If T1 < Hi < T2, then the given trajectory is

following.
c) If T2 < Hi, the the given trajectory is random

walk.

Table III
SUPERVISED WEIGHTED THRESHOLD ACCURACY

300 steps True Positive False Positive Accuracy
Chasing 123 77 61.5%

Following 160 40 80.0%
Random-walk 136 64 68.0%

900 steps True Positive False Positive Accuracy
Chasing 129 71 64.5%

Following 137 63 68.5%
Random-walk 177 23 88.5%

1500 steps True Positive False Positive Accuracy
Chasing 137 63 65.8%

Following 141 59 70.5%
Random-walk 196 4 98.0%

Table IV
SUPERVISED VORONOI THRESHOLD ACCURACY

300 steps True Positive False Positive Accuracy
Chasing 200 0 100%

Following 92 108 46.0%
Random-walk 200 0 100%

900 steps True Positive False Positive Accuracy
Chasing 200 0 100%

Following 83 117 41.5%
Random-walk 200 0 100%

1500 steps True Positive False Positive Accuracy
Chasing 200 0 100%

Following 96 104 48.0%
Random-walk 200 0 100%

Table V
UNSUPERVISED WEIGHTED THRESHOLD ACCURACY

300 steps True Positive False Positive Accuracy
Chasing 124 76 62.0%

Following 155 45 77.5%
Random-walk 172 28 86.0%

900 steps True Positive False Positive Accuracy
Chasing 140 70 65.0%

Following 134 66 67.0%
Random-walk 199 1 99.5%

1500 steps True Positive False Positive Accuracy
Chasing 138 62 69.0%

Following 139 61 69.5%
Random-walk 200 0 100%
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Table VI
UNSUPERVISED VORONOI THRESHOLD ACCURACY

300 steps True Positive False Positive Accuracy
Chasing 200 0 100%

Following 90 110 44.9%
Random-walk 200 0 100%

900 steps True Positive False Positive Accuracy
Chasing 200 0 100%

Following 83 117 41.5%
Random-walk 200 0 100%

1500 steps True Positive False Positive Accuracy
Chasing 200 0 100%

Following 95 105 47.5%
Random-walk 200 0 100%

VI. RESULTS EVALUATION

Based on Tables III to VI we can make the following
observations.

• In general, the more time-steps used, the more accurately
the classifier detects the trajectory.

– We can see that this is not completely true when
detecting following trajectories across all the four
detection methods.

– This is due to the difficulty in distinguishing between
chasing and following as opposed to distinguishing
between any of these two activities and random walk.

• Random walk has near 100% accuracy across the board.
• Detecting a following trajectory has the highest accuracy

at 80% for small time-steps with the supervised weighted
thresholds.

• Both of the Voronoi-based methods have perfect chasing
detection; it is often because the chasing threshold is
conservative. Hence, we should evaluate the performance
of our methodology based on the accuracies of following
and chasing. Moreover, following and chasing are the
trajectories of interest.

• Both of the weighted threshold methods detect chasing
and following trajectories with an accuracy of about
70% of the time. Nevertheless, often the unsupervised
threshold method is better.

VII. CONCLUSION & FURTHER RESEARCH

The reported experiments show that using entropy as a
single classification feature has a high potential for accurate
detection of random walk, chasing, and following maritime
vessel activities. Hence, they can provide valuable information
for maritime threat detection.

There are several potential improvements and other con-
siderations to be made regarding this problem. For example,
instead of using a 1-D analysis with entropy, it is possible
to extend to higher dimensions using other relevant factors. In
addition, it would be beneficial to train with both synthetic data
and real data from maritime activities and develop a robust,
practical detection algorithm.

ACKNOWLEDGEMENTS

This material is based in part upon work supported by the
National Science Foundation under Grant Nos. MRI20 CNS-
2018611, MRI CNS-1920182, and DHS E2055778.

REFERENCES

[1] Martı́nez-Zarzoso, Inmaculada; Bensassi, Sami (2010). “How costly is
modern maritime piracy for the international community?” IAI Dis-
cussion Papers, No. 208, Georg-August-Universität Göttingen, Ibero-
America Institute for Economic Research (IAI), Göttingen

[2] Tesic J., Tamir D., Neumann S., Rishe N., Kandel A. (2020). “Com-
puting with Words in Maritime Piracy and Attack Detection Systems.”
In: Schmorrow D., Fidopiastis C. (eds) Augmented Cognition. Human
Cognition and Behavior. HCII 2020. Lecture Notes in Computer Science,
vol 12197. Springer, Cham.

[3] Koopman, P. “Bresenham line-drawing algorithm.” Forth Dimensions
8.6 (1987): 12-16.
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