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Abstract. In this paper, we present a novel method to efficiently pro-
cess top-k spatial queries with conjunctive Boolean constraints on tex-
tual content. Our method combines an R-tree with an inverted index by
the inclusion of spatial references in posting lists. The result is a disk-
resident, dual-index data structure that is used to proactively prune the
search space. R-Tree nodes are visited in best-first order. A node entry
is placed in the priority queue if there exists at least one object that
satisfies the Boolean condition in the subtree pointed by that entry. We
show via extensive experimentation with real spatial databases that our
method has increased performance over alternate techniques while scal-
ing to large number of objects.

1 Introduction

Today’s Internet applications typically offer users the ability to associate geo-
graphical information to Web content, a process known as “geotagging”. For
example, Wikipedia has standardized geotagging of their encyclopedia articles
and images via templates [6]. Furthermore, technological advances in digital
cameras and mobile phones allow users to acquire and associate geospatial co-
ordinates, via built-in GPS devices or Wi-Fi triangulation, to media resources.
Additionally, Web content can be automatically paired with geographical coor-
dinates, for instance, exploiting content features, such as place names or street
addresses, in combination with gazetteers. Thus, the powerful combination of
Internet applications, GPS-enabled devices, and automatic geotagging can po-
tentially generate large amounts of georeferenced content. On the structured end,
spatial databases usually contain rich textual descriptions, stored in non-spatial
attributes. For example, a database of property parcels may store property’s
owner name, description, and street address in addition to its coordinates.

A key problem recently tackled by the academia and industry is spatial
searches with text constraints in geographical collections [3] [7] [11] [9] [10].
For example, in a database of parcels, we may be interested in finding nearby
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houses to Miami Beach (spatial constraint) that have backyard and are located
on Collins Avenue (text constraint). Typically, query keywords are assumed to
be conjunctively connected. That is, records containing all query keywords are
retrieved. In the general case, text constraints may involve complex combina-
tions of keywords with logical connectives beyond the conjunctive semantics.
For instance, in the database of parcels, fire fighters traveling in a truck may
want to quickly determine the nearest parcels that have swimming pool and are
not located in buildings for water replenishment in an emergency.

As geospatial collections increase in size, the demand of efficient processing
of spatial queries with text constraints becomes more prevalent. In this paper,
we propose a method for efficiently processing top-k nearest neighbor queries
with text constraints where keywords are combined with the three basic Boolean
operators AND, OR, and NOT . Our method uses an R-tree to guide the spatial
search and an inverted file for text content retrieval, which are combined in a
novel hybrid spatial–keyword index. The specific contributions of this paper are:

1. We define a top-k spatial Boolean (k-SB) query that finds nearest neighbor
objects satisfying Boolean constraints on keywords combined with conjunc-
tive (∧), disjunctive (∨), and complement (¬) logical operators.

2. We propose a novel hybrid Spatial-Keyword Index (SKI ) to efficiently pro-
cess k-SB queries. A salient feature of SKI is that it only searches subspaces
that do contain objects satisfying the query Boolean predicate.

3. We execute extensive experimentation on an implementation of our method
over large spatial databases. Experimental results show that the proposed
method has excellent performance and scalability.

Section 2 discusses related work to our research. Section 3 formally defines the
problem. Section 4 presents the proposed hybrid indexing approach and query
processing algorithms. Experimental study on an implementation of our hybrid
index is conducted in Section 5. Section 6 presents our concluding remarks.

2 Related Work

The R-tree traversal method in our work is inspired in Hjaltason and Samet’s
[5] incremental top-k nearest neighbor algorithm using R-trees [1]. Performance
improvements on the original R-tree work have been proposed, e.g. R*-tree [13]
, R+-tree [14], and Hilbert R-tree [15]. Any of these variants can replace the R-
tree index used in the proposed hybrid spatial keyword index without modifying
our search algorithms. In information retrieval, inverted files are arguably the
most efficient index structure for free-text search [2] [12].

The problem of retrieving spatial objects satisfying non-spatial constraints
has been studied in the recent past. Park and Kim [10] proposed RS-trees, a com-
bination of R-trees and signature trees for attributes with controlled cardinality;
signature chopping is suggested to mitigate combinatorial errors [8] (database
overrepresentation) of superimposed signatures. Harinharan et al. [9] proposed
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to include a list of terms in every node of an R-tree. De Felipe et al. [11] aug-
mented signature files in R-tree nodes with similar constraints as [10]. Recently,
Cong et al. [3] augmented an inverted file in every node of an R-tree, and used a
ranking function that combines spatial proximity and text relevancy. Our work
differs in that we assume distance as ranking score, and we focus on efficiently
processing Boolean constraints on textual data. Further, none of the previous
works offer efficient processing of the complement logical operator, which lim-
its their applicability to the k-SB queries we considered in this work. Likewise,
modern Web search engines, like Google and Yahoo!, offer Local Search services.
Advanced querying options are provided to include and exclude certain terms
from the search result. These are similar to the k-SB queries we consider. How-
ever, specific search algorithms are kept confidential by their owning companies.

3 Problem Definition

A spatial database D = {o1, o2, ..., oN} is a set of objects such that every o ∈ D
has a pair of attributes < p, T >, where: p ∈ E is a point in a metric space E
with distance dist(p1, p2), and T = {t1, t2, ...} is a document as a set of terms.

A top-k spatial Boolean (k-SB) query Q is a triple < l, k,B >, where: l ∈ E
is the query location (spatial constraint), k is the desired output size, and B
is the conjunctive Boolean predicate (text constraint). B is a set of keywords
prefixed with Boolean operators {∧,∨,¬}, conjunctively connected as follows:

B =
[
∧(A = {a1, a2, ...})

∧
∨(C = {c1, c2, ...})

∧
¬(G = {g1, g2, ...})

]
(1)

A (AND-semantics), C (OR-semantics), G (NOT -semantics) are subsets of terms
prefixed with ∧, ∨, and ¬, respectively. An object o ∈ D satisfies B if:

[(∀a ∈ A : o.T ∩ a 6= ∅) ∧ (∃c ∈ C : o.T ∩ c 6= ∅) ∧ (∀g ∈ G : o.T ∩ g = ∅)] (2)

The result of the k-SB query Q is the list:

L = {oi ∈ D, i = 1, ..., nL|oi satisfies B ∧ nL ≤ k}, such that:
∀o ∈ (D \ L) : [dist(o.p, l) ≥ arg maxr∈Ldist(r.p, l) ∨ ¬(o satisfies B)] (3)

Objects in L are sorted by distance to l in non-decreasing order. In other
words, a k-SB query Q returns the k nearest neighbor objects to the query
location l that satisfy the conjunctive Boolean predicate B. In this work, we
assume E is the Euclidean space. The problem is how to efficiently compute L.

Example: In database D1 of Table 1, the query “Find top-10 houses nearby
Miami that have masterbed with bathtub, have a pool or backyard, and are
not located in a building” translates to the following k-SB query:
Q1 = {Miami, 10, [∧(masterbed, bathtub)

∧∨(pool, backyard)
∧¬(building)]}

and retrieves L = {o3, o8}.
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Table 1. Property parcel database D1 = {o1, o2, ..., o12}. For every textual term (t),
the list of objects containing t is shown.

Term Object List Term Object List

backyard (t1) {o2, o3, o6, o8} collins (t4) {o2, o6, o10}
bathtub (t2) {o3, o5, o8, o9} masterbed (t5) {o3, o8, o11}
building (t3) {o1, o5, o7, o12} miami (t6) {o1, o3, o4, o10}

4 Hybrid Spatial-Keyword Indexing

In designing the hybrid index, we pursue the following objectives. First, we want
to attain fast retrieval even when matching objects are located far away from
one another. Second, we want to efficiently filter objects not satisfying the query
Boolean constraints on keywords. A key challenge is to perform small number of
computations to eliminate as many non-candidate objects possible. In particular,
NOT -semantics constraints may substantially shrink the output size, and lead
to unnecessary scans. Third, we want to maintain low storage requirements while
keeping high query performance. With these objectives in mind, our indexing
approach leverages the strengths of R-trees [1] in spatial search, and modifies an
inverted file [2] for efficient processing of Boolean constraints. The combination
of indexing techniques yields a hybrid data structure: Spatial-Keyword Index
(SKI). We next introduce two important definitions in SKI.

Definition 1. Given an R-tree R with fanout m, a super node s is the list of m
leaf (level-1) nodes that have the same parent node. The universe of super nodes
of R is S(R) = [s1, s2, ...], where s1 references the left-most leaf nodes.

Definition 2. The term bitmap of term t at super node s is a fixed–length bit
sequence I(t, s) of size m2, where the i–th bit is computed as follows:

I(t, s)[i] =
{

1 if s[i] points to object o : t ∈ o.T
0 otherwise (4)

For an R-tree with L levels, a super node s contains O(m) leaf nodes, or
equivalently O(m2) object pointers, and |S(R)| = O(m(L−2)) for L > 1. A
single-level R-tree has no super nodes. Figure 1 shows super node s1 of an R-
tree built on D1, and I(“miami”, s1) term bitmap.

4.1 Spatial Keyword Index

The hybrid spatial keyword index (SKI) is composed of two building blocks:

a) R-tree Index (R): A modified R-tree built with spatial attributes of D.
Entries in R’s inner nodes are augmented with index ranges [a, b], where sa and
sb are the left-most and right-most, respectively, super nodes contained in the
subtree rooted at the node entry. Ranges in leaf-node entries contain a single
value, the index of the super node containing the leaf node.
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Fig. 1. Super node s1 composed of leaf nodes [N1, N2], and term bitmap for “miami”.

b) Spatial Inverted File (SIF ): A modified inverted file constructed on the
vocabulary V =

{⋃
o∈D o.T

}
. The Lexicon contains terms in V and their docu-

ment frequencies (df). Posting lists are modified to include spatial information
from R. The posting of any term t contains a list of all its term bitmaps (rather
than documents) sorted by super node index as follows:

Posting(t) = [I(t, s1), I(t, s2), ...] where si ∈ S(R) (5)

Efficiency Considerations We organize posting elements in a B+tree to allow fast
random and range retrieval. Keys are < t, i > pairs while values are bitmaps
I(t, si). Also, in order to reduce storage requirements, we compress I(t, si) us-
ing the Word-Aligned Hybrid bitmap compression method (WAH ) [4]. WAH
method allows fast bitwise computations with logical operators AND, OR, and
NOT on uncompressed bitmaps, which is capitalized during query processing.

Figure 2 shows R and SIF structures for database D1 of Table 1.

Level 1

(leaves)

Level 2

nullN1 N2

N6

Super node

ranges N8

N3 N4

N7

N5

[1,2]

[1,1] [2,2]

R: R-tree
SIF: Spatial Inverted File

references

t I(t,s ), I(t,s )Level 3

s1 s2

...

...
[ 1 2 ]

Fig. 2. Hybrid Spatial-Keyword Index for database D1 in Table 1.
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4.2 Processing k-SB Queries

In order to process query Q =< l, k,B >, R-tree R is traversed from the root
node following the best-first traversal algorithm proposed in [5]. That is, node
entries are visited in order of proximity of their minimum bounding rectangles
(MBR) to location l. A node entry e is placed in a priority queue, with priority
equal to dist(MBR, l), if at least one object within e’s subtree satisfies Boolean
predicate B. The structure SIF is used to qualify e. A powerful feature of the
previous filter is that unnecessary subtree traversals are eliminated altogether.

Algorithm 1 shows the steps involved in processing k-SB queries using SKI.
The algorithm starts by resorting query keywords by documents frequency (line 1)
in such a way that as many object candidates as possible are eliminated with
few posting list merges. For instance, infrequent terms have large number of 0s
in their term bitmaps, and possibly short Posting() lists, which are adequate to
be processed first for AND-semantics terms. In line 2, the priority queue, result
list, and a globally accessible hash map M are initialized. M caches merged term
bitmaps of previously evaluated super nodes during query execution. Next, R is
traversed in best-first order starting from its root in lines 4–9. Node entries e
are evaluated w.r.t B by the function isSubtreeCandidate (line 8). Only when
e’s subtree has at least one object that satisfies B is it pushed into the queue.

Algorithm 1: Process k-SB Query
Input: k-SB query Q =< l, k, B >
Output: A list of objects satisfying Q (see Equation 3)
begin

1 Sort term subsets in B by document frequency (df) as follows:
A (AND) in ascending order, and C, G (OR, NOT ) in descending order

2 Initialize: priority Queue← R.root; list L← ∅; global hash map M ← ∅
3 r ← 0 /* number of B-satisfying objects retrieved so far */

4 while (Queue 6= ∅ and r < k) do
5 Node n← Queue.pop()
6 if (n is obj. pointer) then r ← r + 1

L.add(getObject(D, n)) /* retrieve o ∈ D */

7 else for (every entry e in node n) do
8 if (isSubtreeCandidate(B, n, [e’s position in n])) then
9 Queue.push(e.ptr) with priority dist(e.MBR, l)

10 return L

isSubtreeCandidate function, described in Algorithm 2, evaluates B predi-
cate by merging query term bitmaps on a range of super nodes, one super node
at a time, until one candidate is found (lines 4–9). This processing style is simi-
lar to Document-At-A-Time processing in inverted files [2], except that postings
are not exhausted. Logical bitwise operations are performed on term bitmaps
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(lines 5–7) according to their semantics. Complement operator requires term
bitmaps to be flipped (converting 1s into 0s and vice versa), which is accom-
plished by the flip function (line 7). Next, if the merged bitmap has at least one
bit set (line 8), meaning there is a candidate, then it is cached in M (line 8),
and the function returns true. Otherwise, B is evaluated at the next super node
in the range until a candidate is found, or the range is exhausted. In the latter
worst case, the subtree is discarded in its entirety. Since a super node references
O(m2) objects, a range [a, b] can potentially filter out O(m2 × |a − b|) objects.
The I/O cost is remarkably only O(|B| × log(|V |) × |a − b|), where |B| is the
number of query terms, |V | the vocabulary size, and log(|V |) the cost of term
bitmap retrievals from a B+tree (see Section 4.1).

Algorithm 2: isSubtreeCandidate
Input: B: query predicate; n: node; i: positional index
Output: True if ∃ o that satisfies B within subtree at n[i], false otherwise
begin

1 if (n is leaf node) then
2 if (The i-th bit in M(n[i].a) is set) then return true
3 else return false

4 else for (j ← n[i].a to n[i].b) do
5 pe← V

t∈B.A I(t, j) /* execute bitwise operations */

6 pe← pe ∧ ˆWt∈B.C I(t, j)
˜

/* on term bitmaps over */

7 pe← pe ∧ ˆVt∈B.G flip(I(t, j))
˜

/* super node range in n[i] */

8 if (cardinality(pe) > 0) then M.add(key = j, value = pe)
9 return true

10 return false

5 Experiments

We conducted a series of querying experiments with three real spatial datasets
explained in Table 2. Records contain geographical coordinates, and between 30
and 80 text attributes (concatenated in a term set). SKI was implemented in
Java, and experiments ran on an Intel Xeon E7340 2.4GHz machine with 8GB
of RAM. We measured average number of random I/Os and response times in
processing k-SB queries and compared performance with two baselines:

Baseline 1 (IFC) An inverted file containing object coordinates in addition to
object pointers. Queries are processed in two phases. First, term postings are
merged according to B semantics. Second, satisfying objects are sorted by prox-
imity to query location. The top-k objects in the sorted list are returned.
Baseline 2 (RIF) An R-tree with every node augmented with an inverted file on
keywords within its subtree. This baseline is inspired by arts [3] [9]. At query
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Table 2. Experimental spatial datasets. Dataset and vocabulary sizes are in millions.

D |D| |V | Subject

FL 10.8 21.2 Property parcels in the Florida state.
YP 20.4 40.8 Yellow pages of businesses in the United States.
RD 23.0 64.8 Road segments in the United States.

time, R-tree nodes are visited in best-first order w.r.t. spatial attributes. B is
evaluated with the inverted file at the node, except for NOT -semantics terms.

Workload Every vocabulary was sorted by document frequency (df) and divided
in three quantiles: S: Terms with df < 1–quantile (infrequent terms), M: Terms
with df < 2–quantile, L: Terms with df < 3–quantile (entire vocabulary). In
each quantile, k-SB queries were composed by randomly picking between 3 and
8 terms and prefixing them with {∧,∨,¬} operators to form B. k was fixed to 20.

Figures 3 shows the average number of I/Os and elapsed time over 50 k-SB
queries of each workload type {S, M, L} on every dataset. IFC shows perfor-
mance advantage when query terms are relatively infrequent (S). Short posting
lists can be quickly evaluated to compute query result, whereas SKI and RIF
spend additional R-tree traversals. When query terms become more frequent (M
and L), IFC incurrs in expensive long posting list merges, which is observed in
peaks of Figure 3.a for L queries. RIF performs acceptably for S queries but
degrades for M and L queries. This may be due to filtering limitations in R-
tree upper levels. Eventually, subtrees known (via inverted file) to contain query
terms are traversed. However, terms may belong to different objects, i.e. no sin-
gle object satisfies B predicate. In the same vein, RIF must wait until objects
are retrieved to apply NOT -semantics filters, which can also degrade its per-
formance. In summary, we observed consistent enhanced retrieval performance
using the proposed hybrid indexing and query processing methods.

6 Conclusions

In this paper, we proposed a disk-resident hybrid index for efficiently answering
k-NN queries with Boolean constraints on textual content. We combined modi-
fied versions of R-trees and inverted files to achieve effective pruning of the search
space. Our experimental study showed increased performance and scalability on
large spatial datasets over alternate methods.
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0837716, CNS-0821345, HRD-0833093, IIP-0829576, IIP-0931517, DGE-0549489,
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