
A Delay-Optimal Quorum-Based Mutual Exclusion Scheme with-:""5#'
Tlult-Tolerance capability *

dramat
to exci
tual ex

to hant

s* (fi
comes I

becaus,
messag,
a reply
serial n

site anr

Sin5
achieve

,: rithm I

exchan;
solve d,

, delay ir
type al
creases

Inf
each si

other -s

of sites
quests
'numbe.

Ithough
icomple

.r Thr
&veras'

Guohong Cao and N,{ukesh Singhal
Computer and Information Science

The Ohio-State University
Columbus. OH,13201

{ gcao.singhal } @cis.ohio-state. edu

Abstract
The perforrnance of a mutual exclusion algorithm is
measured by the number of messages exchanged per
critical section erecution and the delau betueen suc-
cessiue executions of the cri,tical section. There is a
message complexity and synchronization delay trade-
off in mutual erclusion algorithms. Lamport's algo-
rithm and Ricart-Agrautal algorith"m both haue a syrl-
chronization delay oJ T, but their message compler-
ity is O(N). Maekawa's algorithm reduces Trlessage

complexity to O(JN); howeuer, 'it increases the syn-
chronization delay to 27. AJter Maekawa's algorithm,
manA qu,orum-based mutual erclusion algorithms haue
been proposed to red'uce message complerity or increase
the resiliency to site and communicat'ion link failures.
Since these algorithms are Maekawa-type algorithms,
they also suffer t'rom long synchron,ization delay 2T . In
this paper, we propose a delay-opt,imal quorum-based
mutual erclusion algorithm which reduces the sgnchro-
nization delay to T and still has the low message com-
plerity O(K) (K is the size of the quorum, which can
be as low os log,n{) . A correctness pror,tf and detailed
performance analysis are prouided.

Key words: Quorum, synchronization deiay, dis-
tributed mutual exclusion. fauit-tolerance.

1 Introduction
In distributed system, man)' applications invoh'-
ing replicated data, atomic commitment, distributed
shared memory, and others require that a resource
be allocated to a single process at a time. This is
called the problem of mutual exclusion. The problem
of mutual exclusion becomes much more complex in
distributed s]'stems (as compared to single-computer

* This research was supported in part b;, NASA (under
grants NAGW-1080, NAG5-5095, and NRA-97-ltlTPE-05),
NSF (CDA-931362,1, CDA-9711582, IRI-9409661, and HRD-
9707076), ARO (DAAH04-96-1-0049 and DA.A.H04-96-1-0278).

Yi Deng, Naphtali Rishe, and \\rci Surr
Schooi of Computer Sciencre

Florida International Universit)'
\,{iami, FL 33199

{deng,rishen,weisun } @fi u.edu

s1'stems) because of the lack of both a shared tnenlory
and a common physical clock and due to unpredictablq
message dela1.'s.

Since a shared resource is expensive and processq5
that can not get the shared resource must *'ait, t.hc
performance of the mutual exclusion algorithrn is crit.
ical to the design of high perforrnance distributed s1's.

tems. The performarrce of mutual exclusion algoritlrrrrs
is generally measured b1'message complexitl.and s1'u.
chronization delay. The message compiexitf is nrca-
sured in terms of the number of messages exchangccl
per Critical Section (CS) execution. The svnclilonizil.
tion delay is the time required after a site exits t,he

CS and before the next site enters the CS, ancl it is

measured in terms of the average message delav (?),
Or,er the last decade, many mutuai exciusion algo-

rithms [17] have been proposed to improve the pcrfor-
mance of distributed systems, but thet' cither rcduce
the message complexity at the cost of long s1'nchro-
nization delay or reduce the synchronization delay at
the cost of message complexity.

Lamport uses logical timestamp [6] to implenicnt
distributed mutual exclusion. For each CS executiont
each site needs to get permissions from all other (.V *
1) sites. The rnessage complexity of this algorithn is

3 x (Ar - 1) and the synchronization delay is 7.
Ricart-Agrawai algorithm 113] is an optilnization

of Lamport's algorithm that reduces the releosc nles'

sage by cieverly merging them u'ith replg messages'
This merging is achier"ed by deferring the lower prt'
ority request. Iu this algorithm, the messagcs pel YJ
execution is reduced to"2 * (l{ - 1) messag-es and.the ',

synchronization delay is still 7. The d1,'nanric al$o' :

rithm in [16] on the average requires ly' - I messages,.',;

per cS
"*".,,tion "t

rs;;i;;i;;;t; (,v - 1) at hearT i!

thr
rit
thr

tree
r alr

8d,
s pr,

Re<

lms
ithr
orit
)rur

a

In

0-8186-8292-2/99 $10.00 o 1998 IEEE
444

t

s
d:.

'3,

Yl

6amatically reduced. At light load, a site needs

to exchange 3 * (y'lf - 1) messages to achieve mu-

iual exclusion. At heavy load, because of the need

io handle deadlocks, the message complexity becomes

s* (.//f - 1). However, the synchronization delay be-

iomes 2T as opposed to 7 in other algorithms. This is

b.ruur" a site exiting the CS must first send a release

message to unlock the arbiter site which in turn sends

rreply message to the next site to enter the CS (two

serial message delays between the exit of the CS by a

site and enter irrto the CS by the next site).

Singhal uses the concepts of mutable locks to
achieve an optimal deadlock-free Maekawa-type algo-

rithm [15] which is free from deadlocks and does not
exchange messages l\ke inquire, fail, and yield lo re-
solve deadlocks. In this algorithm, the synchronization
delay is reduced to ? as opposed to 2? in Nlaekarva-

type algorithms; however, the message complexity in-
creases to O(l/).

In Singhal's token-based heuristic algorithm [14],
each site maintains information about the state of
other sites in the system and uses it to select a set
of sites that are likely to have the token. The site re-
quests the token only from these sites, reducing the
number of messages required to execute the CS. Al-
though the synchronization delay is ?, the message
complexity varies between 0 and ly'.

The mutual exclusion algorithms in [9, 12] on the
average require only O(log l{) messages to execute the
critical sectionl however, the average delay in these al-
gorithms is also O(1og,^{). The worst case delay of the
algorithm in [9] can be as much as O(A-). These al-
gorithms have long delays because they impose some
logical structure on the system topology (like a graph
or tree) and a token request message must travei seri-
ally along the edges of the graph or tree. Besides the
long delay, token-based algorithms suffer from token
loss problem [1].

Recently, quorum-based mutual exclusion algo-
rithms, which are a generalization of Nlaekawa's al-
gorithm, have attracted considerable attention. lv{any
algorirhms 11,2, 4,5, 7, 8, 10, 11] exist to construct
quorums that can reduce the message complexity or
increase the resiliency to site and communication fail-
ttres. However, not much work lias been done on mini-
ntizing the synchronization delay. Because all quorum-
based algorithms are lvlaekawa-type aigorithms [8] ,

tltcy all have a high synchronization delay (2?).

, In this paperr we present a delay-optimal quorum-
llased algoritlim which reduces the synchronization de-
lay to ?]and still has a lorv message complexity c* 1{,
wherc c is a constant between 3 and 6, and ,I{ is the ar'-
erage size of the quorum. The basic idea is as follorvs:
lrrsteat] of first senciing a release message to unlock
the arbiter site which ln turn sends a "rply n,essage
to the next site to enter the CS, a site exiting the CS

directly sends a reply message to the site which will
enter the CS. This reduces the synchronization delay
from 2T to ?. However, this change brings some com-
plications and we discuss how to deal with them in this
paper.

Our scheme is independent of the quorum being
used. K is r,/tV if we use lVlaekawa's quorum con-
struction algorithm [8] and K becomes log N when we
use Agrawai-Abbadi quorum construction algorithm
[1]. lvloreover, the redundancy in the quorum can in-
crease the resiliency to site and communication iink
failures.

The rest of the paper is organized as foliows. Sec-
tion 2 describes the system model. In Section 3, we
present the algorithm. The correctness proof and the
performance analysis are provided in Section 4 and
Section 5 respectively. In Section 6, we explain how to
make this aigorithm fault tolerant. Section 7 concludes
this paper.

2 System Model
A distributed system we consider consists of N pro-
cesses. The term siie is used to refer to a process
as well as the computer that the process is executing
on. Sites are fully connected and communicate asyn-
chronously by message passing. There are no global
memory and no global clock. The underlying commu-
nication medium is reiiable and sites do not crash. (If
we use fault tolerant quorum construction algorithm,
our algorithm can handle site and communication fail-
ures.) Nlessage propagation delay is unpredictable, but
it has an upper bound and the messages between two
sites are delivered in the order sent. A site executes
its CS request sequentially one by one.

Let [/ denotes a non-empty set of N sites. A coterie
C is a set of sets, where each set g in C is called a
quorum. The following conditions hold for quorums in
a coterie C under t/ [3]:

1.(vgeC)lsld^seU);
2. Llinimality Properta : (Vs,h e C)ls I h]; and

3. Intersection Property : (Yg,h e C)lSah + O).

For example, g:{{a,b},{b,.}} is a coterie under
1i-{a,b,c}, and g:{a,b} is a quorum.

The concept of intersecting quorum captures the
essence of mutual exclusion in distributed systems. For
example, to obtain mutually exclusive access to a re-
source in the network, a site, say,S;, is required to
receive perrnissions from a cluorum of Si in the sys-
tem. If all sites in the quorum of S; grant permissions
to,5;, S; is allorved to access the resource. Since any
pair of quorums has at least one site in common (by
the Intersection Property), nrutual exclusion is guar-
anteed. The I'linimality Property is not necessary for
correctness but is useful for efficiency.

445

3 A Delay-Optimal Quorum
Based Algorithm

Our algorithm reduces the s1,'nchronization delay to ?
as follows: When a site exists the CS, instead of first
sending a release message to unlock the arbiter site
rvhich in turn sends a reply message to the next site
to errter the CS. the site directll' sends a replg message
to the site to enter the CS next. Although the idea may
sound simple, its implementation is difficult in order
to ensure mutual exclusion and to avoid deadlocks.
For example, there are two rvays for a site 5i to get
permission to enter the CS from a site Sr: First is to
get the permission from Si directly; the other is to
get the permission from a site 56 which has gotten
the permission from S3 and works as the proxy of 57.
Then, after ,9n exists the CS, if .96 has senL a reply to
Sl on behalf of Sr, Si can not send reply to any other
site to ensure mutual exciusion. If 56 has not sent a
reply to any site on behalf of Sr, S, should send a
reply to 51 to avoid deadlock. Also, to deal with out-
of-order request messages, N'faekawa assumes that a
channel is FIFO. Consequentl .v, an inquire message
always arrives at a site later than the reply from the
same sender. In our algorithm, a reply message from
a site S; may come from different channels: from ,9; or
S;'s proxy'- Then, FIFO assumption is not enough to
ensure that an inquire arrives later than the reply. If
this situation is not properly dealt with, it may resuit
in a violation of the mutual exclusion. There are many
other issues that must be dealt *'ith. Before presenting
the algorithm, we first introduce control messages and
data structures used in our algorithm.

3.1 Control Messages and Data Struc-
tures

Every site 5t has a req-set(i) which is determined
by the quorum algorithm. In order to enter the CS,
each site must get permissions from all the sites in
req-set(i).

Every request message is assigned a timestamp (the
sequence number and the site number) according to
Lamport's scheme [6]. The sequence number assigned
is greater than tliat of any request message sent, re-
ceived, or observed at that site. The site with lou'er
timestamp has higher priority'which is determined as
follorl.s:

1. The massage n'ith smaller sequence number has
higher priority.

If the massages have equal sequence numbers,
the massage u,'ith smaller site number has higher
priority.

There are seven types of control messages used in our
scireme:

reque.st: A request(sn,i)^message from a site g, 1,6 nsite S, indicates that 51 with sequenc. n,rub,,,i
'"u

is asking for .9i's permission to enter the CS.

reply: A. reply(i) message to a site Si indicates that
^Sr grants ,Si's request to enter the CS.

release A, release(i,j)_mgssage to 56 indicates thlt
S; has exited the CS. If j # mar, Si has trarrs.
ferred,Sp's permission to a site Si which is in Siis
tr an -stack (defined }ater).

inquirez An inquire(i) m^ess.age ffgry {n to S; irrdi.
cates that 51 wants to find out if Si has succcctletl
in getting reply messages from all sites in reg_sel(j),

f ail: L f ail(i) message from S; to Si indicates that 51
can not grant ,Sr's request because it has currcrrtlv
granted permission to a site with a higher priority
request.

yieldt I yield(i) message from S; to S; indicates thnt
51 yields the right to enter the CS io a higher pri.
ority request, and is u'aiting for Si's permission to
enter the CS.

transf ert A transf er(i, j) message from site 5; to
site Sn indicates that Si asks Sr to send a rcply
message to Si on behalf of Si after Sr exits thc CS,

A node ,5r maintains the foliowing data structures: j

lock: L tuple (sn, j) maintained by each node, whero

3 is the site number of the request site to which .91'

has granted a reply, and sn is the sequence lrum.
ber of the request message. Iock is initializcd to
(mar , mar) , where rnar is a number more than any,
site number and sequence number.

f aiLedt A boolean which is initialized to zero each '

time a ne$' CS request .is sent.-)!h.en S, reccivelr l

a fail or sends a yield,itsets faileditol.

of quorums

replied; A boolean vector of size m (m is the sit€
'of quorum). The vector is initialized to zero each

time a new CS request is sent. When Sr receiveg &

reply(j), it sets replied{j) to L. i

req-queue. To queue the received request messaS€t l1'Each entry in ttris queue is a tuple (sn, j) whic\r
is the timestamp of i request. Tie req-queue is q'l

friority-queu "
(it e r"qu"lt

":ittt
itt" nigh"it priorit{1r

i'':t
is on the top of the queue).)i',!,

inq-queuer To queue the inquire(j) messages whiclq

arrive at ,91 earlier than reply(j). ',1

tran-stack: To save all the transJer messages Si rq
Lf L-:tl Ucfri IU SaVe all LIIe LI UILJ J trt rrrsooob"- -,', -'\
ceives. Every entry in this stick is a pair (f'J'
which represents a iransf er(k, j) message' :1\\,'nlcn represents a transJer\K,J/ rllessdSc' ';t

The algorithm does not depend on any particulrt
quorum construction ;;;"J;t; works for any typel

otherwise, i;

those sites.

' When a
g; (Si has s

5r. 5j Put'
request has
sends a tro
reqlA messi,

tion. Note t

message, it
5i even thor
may send sr'

to out-of-or
CS, site S1

is the top e

lowing entr,
,This proces

a site
it has sent i

anoth,
1; otheru

and should
When a

iit first dete
.0r not on i
tieleose me:
palled S1, ,

56 is
'i sends a

-queue(.
-queue(.
Since th
site sin:

sitt
of the
S1 an

S1, Si s

S1

from
reply rr:
sent a

ield me:
completr
reduce i:
site senrl

request
nsfer.
If an ir

sent r(
The foll

same s

ttre inqr
g arriv,
any in
of thr
eor

3.2 The Algorithm
To enter the CS, a site Si requests permission-frot{'1

446

JJll;:lli""il3.lil,li;JiiiX'J"ffi _t"::tf 'Ati
from all members in its quorum, it can ente

hicl-
io

ii re
rk, i)

gtherwise, it continues to wait for the permission of all
those sites'

lVhen a site Si, which has already been locked by
g; (5; has sent a reply to,9;), receives a request from
So S; puts ,S6's request in its reg-queue(j). If St's
request has the highest priority in req-queue(j), Si
sends a transf er message to S;, which forwards a

Tsply message to 56 after it completes its CS execu-

tion. Note that when ,Sr receives the forwardedreply
nessage, it gets the perrnission to enter the CS from
g; even though the reply is not directly sent by Sy. 51

n1ay send several transf er messages to S; in response

to out-of-order request messages. Upon exiting the
CS, site S; only sends reply to the site whose request
is the top entry in tran-stack(i), and deletes the fol-
lowing entries in tran-stack(f) from the same sender.

This process is repeated until the tran-stack is empty.
Since a site only sends a transf er to the site to which
it has sent a reply, when a site Sl receives a trans f er
from another site, say Si, repliedilj] should be equal
to 1; otherwise, the transf er is an outdatedtransf er
and should be discarded.

When a site S; receives arelease message from .9i,

it first determines rvhether S; has transferred a reply
or not on its behalf based on the parameters of the
release message. If Si has transferred a reply to a site
called 51, .9; saves Sp's request to lock(j) to reflect
that Sr is locking Sj. If req-queue(j) is not empty,
S; sends atransf er to Sp based on the top entry in
req-queue(j). S; sends a reply to the top entry site in
req-queue(j) if S; has not transfered the reply.

Since there is a danger of deadlock w'hen more than
one site simultaneously request the CS, a site yields to
another site if the priority of its request is lower than
that of the other site. If a request with high priority
from S1 arrives at S; such that S; has sent a reply
to ,91 , S, sends an inquire message to S1 to inquire
whether 56 has succeeded in getting the replg mes-
sages from all sites in its quorum. If Sr is unable to
$et repltl messages from all sites in its quorum; e.g., it
has sent a yield or it has received a f ai,l,,5A returns
a yield message. Otherwise, it returns a release after
it conipletes its CS execution. We use piggybacking
to reduce message complexit""-. For example, whenever
a site sends an inquire in response to a high prior-
ily request, lhe inquire is always piggybacked with a
trons f er.

If an inqui,re arrives earlier than the reply fron
thc same sencler, the receiving site defers responding
to tlre inq'uire by putting it into inqLlueue. When a
relg arrives, the algorithm first checks to see if there
are an.\' inqiire that came from the same sender as
tlrat of the reply. If so, process Lhis inquire. If an
trtqu[re or f ail fronr a site S; arrives at S, after Si
l\iis sent release to 5,, 5, just ignores it.

The follorving is the formal description of our delay-

optimal quorum-based mutual exclusion algorithm.

A: Requesting the Critical Section:
1. /* For a site S; wishes to enter CS */

5; sends request(sn,f) to every site Sj € req-set(i);
clear tr an -st ack (i), inq -queze (i), and tr an -s et (i) ;

f ailed; ::0; replied; := 0; /ock(i) :- (mar,mar);

2. Actions when ^9; receives a request(sn,i):
if lock(j) - (mar,mar)
then loc,h(j) ;= (sn,i); send areplg(j) message to,S,;
else (sn, k) :: I66lq(i)'

f
* Let (sn,,k) represent the contents of lock(j) * I

case (req-queue(j) = d)A ((sn, i) <Iock(j)):
,S; sends inquire(j) and transter(i, j) to Sr;

case (req-queue(j) = /) n ((sn, i) > lock(j)):
.9; sends transfer(i,j) to 5r, sends /oil(j) to S;;

case (req-queue(j) t' g)n
((sn, i)) head(req-queue(j)))

S1 sends fail(j) to S;;
case (req-queue(j) I Q)n

((sn, i) t head(req-queue(j)) < Iock(j)):
5j sends fail(j) to head (req-queue(j));
5; sends transfer(i,j) to 5r;

case (req-queue(j) t' S)n
((sn, i) < lock(j) t head(req4ueue(j))):

5; sends inquire(j) and transfer(i,j) to .91;

case (req-queue(j) I Q)n
(lock(j) < (sn, i) t head(req4ueue(j))):

5; sends transfer(i,j) to 56;
enqueue (req-queue(j), (sn, i)) ;

3. Actions rvhen a site ,Si receives an, inquire(j):
it (replied;ljl = l) A (failed; = l)

/* 5i has received a fail or sent a yield + f
t}nen replied,;[j] :: 0; f ailedi :: l;

send a yield(i) to 51;
delete all entries sent by Si in tran-stack(i);

else enqueue (in q -queue(i), j)
;

4. Actions rvhen a site ,S; receives a yield(k):
enqueue (r eq -queue (j), lock (j)) ;

(sn,i) := dequeue (req-queue(j)); lock(j) ;: (sn,i);
(sn, p) := head(r eq -queue(j)) ;

send reply(j) piggybacked with transfer(p,j) to S;;

5. Actions 'rvhen a site ,9i receives a transJer(k, j):
if repla;ljl : t
then push (tran-stack(i), (n,j));
else ignore this transfer;

6. Actions rvhen a site ,Sr receives a reply(j):
replied;lj) :: 7;

if j e inq-queue(i)
then delete j from inq-queue(i);

Execute A.3 as if .9r receives inquire(j);
7. Actions when a site S; receives a /afl(i):

f ailed; :=)';
for any j €inq-queue(i)

delete j from inq-queue(i);
Execute A.3 as if .9i receives inquire(j);

B: Executing the Critical Section:

.{ site Si can accesses t}re CS only when for all ,9t in
r eq -set(i), r eplied;lkl : 1.

C: Releasing the Critical Section:

447

.{ctions rvhen ^9r exits thc CS:
while frarr-stack(i) I $

(j, A) := pop(tran,stac:k(i));
,S; sends reply(k) to Si;
tran-set(i) := tran-set(i) U U, A),
delete other entries sent by 56 in fran_.sl ack(i);

For each 5r. € req-set(i):
if 3(j, k) e tran-set(i):

/* there exists an entrv sent by 51 in tran_set(i) * f
then send release(i,j) to Ss;
else send release(i,nror) to 51;

'. .{ctions vvhen a site 51 receives a release(i,j):
ifjlmar
then loc,t(,k) :: (sn, j);

delete (sn,j) from req-queue(k);
if req-queue(k) + 0
then (sn,p) :: head(req-gueue(k))

if (sn.p) < (s", j)
then send inqu.ire(k) and transf er(p, k) to .9;;
else send transfer(p,k) to S;;

else if re.q-queue(k) = g
then lock(k) :- (mar,rnax);
else (sn, p) :: dequeue(req4ueue(k));

lock(k):= (sn,p);
if req-queue(k) : d
then send reply(k) to Sr
else (sn, Q) :: head(req-queue(k));

send replg(k) and transfer(q, k) to 5o.

4 Correctness Proof
Theorern 1 N,Iutual exclusion is achieved.

Prool. Assume the contrary that two sitcs ,S; and S,
are executing the CS simultaneousl;'. From the Co-
terie Intersection Propertl':

VG,He.Q:G.H*0,
\l'e know that the quorums (req-set) of Si and S, at
least have one common site, sav S;r. From step B of
tire aigorithm, if Si and ,9; are executing the CS simul-
taneously, both of them must have locked Sii's reply
at the same time. \!'e prove that this is impossible.

Case 1: Both 51 and S, obtain reply messages from
S;i directly (w'ithout the transfer of another site).
Assume 5i, sends a reply to S; after it has sent a
reply to S;. From the algorithm, after S1, has sent
a reply to S;, the lock is changed to (sn,i). There
are t$'o possible situations:
Case 1.1: Si does not send a yield to ,9;; after
it gets lhe replg. In this case, ,9; r'ill not release
the reply until it gets out of the CS (release can
only happen in step C), rvhich means that the lock
is not equal t,o (max,nrar) until S; gets out of the
CS. Therefor€, Sy can not get a reply directly from
51, before 51 gets out of the CS.

Case 1.2: S; serrds a yield to S,7. According to
A.3, S, sends yield to 51, only when it is iocking
Siis reply. After sending the yield,,Si assumes it
has not received tlrc repl u from Si, and releases the

Iock. -{s a result, u,}ren 5, obtaits areply frorrr S;r,
51 is not locking S;i's reply.

Case 2: Site Sr obtain .the r.eply .fr9y Slr dircctl-v,
while S, gets the reply indirectly (b1' the trarrslcr
of another site). There are t\vo possible situ;iriorrs:

Case 2.1: S; gets a reply directly from S;; bcfu.r
,S,; sends replA to 3ny other site, then S; is lockirrg
S;i's reply. In order to get a replg indirectly. fr.orii
Sij, Sj can only be in the tran-stack(i) or in a site,
say 51 's tran-stack(k). From step C, a site (.ir1

only transfer a reply on behalf of other site rvhcrr it
gets out of the CS. Therefore, 5, can only get rclly
indirectly after ,9i releases the CS.

Case 2.2: S; gets a reply direc_tly' from Si; after S1i
sends replg to a site, say 56. In this situatiou, S;;
is locked b)' ,Sr, and sends transf er to S1., then S;
is in tran-slack(k). From the algorithm, a site can
only transfer a replg in C.1. In C.1, after sending n
reply on behalf of Sii, Sr also sends a release rvhiclr
asks 51; to change its lock to be (sn, j) according to
C.2. Then, S, is locking Sii's reply. Since 51 can
onll' directll' obtain S;i's reply, from the result of
Case 1, it can not get S1i's replg rnlrl ,Si releases
its lock on Sii's reply.

Case 3: Both S; and S; obtain replg messages fronr
Sly indirectll'. When our algorithm starts, a site
can only get S1i's reply direcLly, and later by thc
transfer of other sites. Based on Case 1 and Casc 2,

before 5i; asks the site which is locking Siis reply
to transfer a replg to more than one site, thcre is

only one site locking Sii's reply. Suppose a site'
sa1' 51 , Iocks S;1's reply. Then, the only possibility
of Case 3 is that S1i asks Sr to transfer a reply Lo

both S, and S;. According to C.1, when 51 exits
its CS, it responses to at most one transf er fiom
an1' sender. Therefore Sn can not send two reply
messages to S; and Sr. A contradiction. O

Theorem 2 A deadlock is impossible.

Proo/. Assume that a deadlock is possible. Then, nonc

of the sites in a set of requesting sites be able to execut0

the CS because each is u,aiti.t! fot one or more replY

messages. After a sufficient p"iiod of time, there nrusi

exist i u'aiting cycle among the sites requesting the

CS. Every' site"is u,aiting for"another one in the cycle'

In this cycle, there must exist a site ^9r rvhose re'

quest has the highest prioritl'. Suppose S; is rvaitinS

for Sr's repl1', arri Si has sent"a replg to 51. Accordin8
to algorithm A..2, i.2,5; sends in inquire to S*'

Case 1: Site 56 ,.id, u yietcl to 51. Then, 51

sends a reply to Sr iccording to -A..S andi.4, and tho

$j gets a fail
f .3. For the s

replY of a lou'

CS or sends gi
continues to o
either enters t
for its reply a

Theorem 3

Prool. Starva
to enter its (

peatedly ente'

1 is a starving :

I site enterin
,9; must hal'e
req-set(i), an
the destinati<
reliable. In cr

assigned a ser

quence numb
will have the
messages rec
each site in
asked other :

5; receives a'
time. A cont

APr
fhe perform
ten studied r

Iight load ar
prgt

one mess;
SIZ(

vely la:
l^lJ.

by,
itse

contr(
cost r

I Per
rh

, ttre i
tention
requires

me
executir
The syr
ningles
val timt
is the r

rnutua

Pe:
a

448

has seni

h6

ri,*
l8

rel,l
rtv ::

t0
rtS

)m.'
,,ly'
Or

.ti

r,ri
:

tll0,'

rte!
rtl

'rst
I ,r;

i hc'
:lc,

r0-.
ing
ing

5j'
the

eIlr

Lits

r.nd

ise,

q" qets a f ail and replies a yir:ld according to A.2 and
i.i fot the sanre reason, ,5, must be waiting for the
irply of a lower priority site. Otherwise, it enters the

bS or sends yield Lo break the cycle. The waiting chain

continues to one site with the lowest priority. This site

either enters the CS or sends ayield to the site wa,iting

;sr its rePll and breaks the cycle. A contradiction. D

Theorem 3 Starvation is impossible.

proof . Stawation occurs when a site waits indefinitely
to enter its critical section while other sites are re-

oeatedly entering and exiting their CS. Assume there

i5 a starving site ,S;. From Theorem 2, there is always

4 site entering and exiting the CS. The starving site

Si must have sent request messages to all the sites in
req-set(i), and these request messages have arrived at
the destination sites since communication channels are

reliable. In our algorithm, any subsequent request is

assigned a sequence number larger than all known se-

quence numbers. After a period of time, Sis request
will have the highest priority among all the request
messages received by each site in req-set(i). Then,
each site in req-set(i) has sent a reply to S;, or has

asked other site to transfer a reply to ,9;. Therefore,
.9i receives all the replies and enters the CS in a finite
time. A contradiction. D

5 A Performance Analysis
The performance of a mutual exclusion algorithm is of-
ten studied under two special loading conditions; i.e.,
light load and heauy load, In the analysis, a control
nressage piggybacked with another message is counted
as one message. The reason is as follows: The control
message size is very small, but the message header is
relativel,v large due to the requirements of the network
protocols. Thus, the communication cost is mainly
decided by the message header instead of the control
message itself; that is, piggybacking one message with
other control message will not increase the communi-
cation cost significantly.

5.1 Performance Under Low Load
Suppose the average quorum size is K. Under light
loads, the demand for the CS is low. Therefore, the
contention for the CS is rare and the execution of the
CS requires (lf -1) request, (1(-1) reply, and, (i(-1)
release messages, resulting in 3(K - 1) messages per
CS execution.

The synchronization delay in light load becomes
tneaningless because it depends upon the inter-request
irrrival time. The response time in light load is 2T * E
(E is the CS execution time) which is necessary for
atiy mutual exciusion algorithms in light traffic load.

5.2 Performance lJnder Heavy Load
Srrppose zr site S, receives arequest(sn, i) from S; after
5; ltas sent a reply to St. When the demand is heavy,

there are several situations to consider:

Case 1: (re(t-queugU) = d)n ((sn,i) > /ock(j)): The
execution of a CS requires (1{ - 1) request, (l(- 1)
f ail, (K - l) transf er, (K -I) reply, and (K - l)
release messages) which results in 5(K - 1) mes-
sages.

Case 2: (req-queue(j) : d) A ((sn,z) < lock(j))
OR (req-queue(j) + d A ((sn,f) < lock(j) 1
head(rer1-queue(j))): There are two cases depend-
ing on whether the inquired site has replied yield
or not.
Case 2.1: Has not replied a yield: The execution
of a CS requires (1(- 1) request, (1(- 1) inquire
piggybacked with lransler, (K - 7) reply, (/(- 1)
release messages, (I(-1) transf er messages, which
results in 5(1{ - 1) messages to enter the CS.

Case 2.2: Has replied a yield: The execution of a
CS requires (l(- 1) request, (1(- 1) 'inquire piCCy-
backed n'ith transler, (K -l) yield, (K -l) reply
piggybacked with trans/er, and (1(- 1) release
messages, which results in 5(1{ - 1) messages per
CS execution.

CaseS: (req-queue(j) + il n ((sn,i)
head(req-queue(j))): The execution of a CS re-
quires (/{ - 1) request, (1{ - 1) f ail, (K - l) reply,
(1(- 1) release and (K - I) transfer messages,
which results in 5(K - 1) messages.

Case4: (req-queue(j) + il n ((sn,i)
head(req-queue(j)) < lock(j)): There are two cases
to consider depending on whether the inquired site
has replied a yield or not.
Case 4.1: Has not replied a yield: The execution
of a CS requires (1{ - 1) request, (K - I) fail,
(1{ - 1) transJer, (1{ - 1) release, and (K - 1)
reply messages, which results in 5(1{ - 1) messages
per CS execution.
Case 4.2: Has replied a gield: The execution of a
CS requires (1{-1) request, (1{-1) fail,(K -l)
transf er, (1{ - 1) yield, (K -\) reply piggybacked
n'ith lronsler, and (1(-1) release messages, which
results in 6(K - 1) messages per CS execution.

Case 5: (req-queue(j) + 6) n (lock(j) < (sn,i) <
head(req-queue(j))): The execution of a CS re-
quires (1(- 1) request, (1{ - i) transfer, (1(- 1)
release, (7(- 1) reply, and (If - 1) transf er mes-
sages. rvhich results in 5(K - 1) messages per CS
execution.

Based on this analysis, the proposed algorithm re-
quires 5(1i - 1) or 6(K - 1) rnessages per CS access
under heavy load. Note that, only in Case 4.2, our
algorithm requires 6(1{ - 1) messages per CS access.

In onr algorithm, instead of first sending a release
message to unlock the arbiter site u'hich in turn sends
a reply message to tire next site to enter the CS, the
site exiting the CS clirectly sends a reply message to
the site to enter the CS ncxt. Thus, after one site exits
the CS, it only needs one message delay for the next

449

SYnc Dela\'{hl)

3(N - I)
R rcart- Agrawal :(N - 1)

3(N - l)/2
3{VN - r) s(y'N - tl

Ours (K: VN) T 3(y'N - l] 6(VN))
Ours {K : loq N) 7 r(roa N - t) O(los N - l

1'O K EN
ir'rrrkr-Kdsam

7' \ /2
l(losN)/:

Table 1: A comparison of performance(/l:light
load, hl:heavy load)

site to obtain lhe reply message from the site lock-
ing the arbiter site. Under heavy load, a site that is
waiting to excute the CS has enough time to obtain
all reply messages except the reply from the site in
the CS before the site in the CS exists the CS. Thus,
the synchronization delay is mainly determined by the
site in the CS (not other sites). Therefore, our algo-
rithm reduces the synchronization delay from 2I in
Maekawa's algorithm to ?. This has tu'o very bene-
ficial implications: First, at hg61'y loads, the rate of
CS execution (i.e., throughput) is doubled. Second, at
heavy ioads, the waiting time of requests is neariy re-
duced to half because tlie CS executions proceed \f ith
twice the rate.

Since the slte that exists the CS needs at least one
message delay to notifl.'the next site to enter the CS,
the minimum synchronization delay is 7. Thus, our
algorithm is a delay-optimal quorum-based mutual ex-
clusion algorithm.

5.3 Comparison With Other AIgo-
rithms

The proposed algorithm is independent of the type
of quorum being used. K becomes r/F if we use
Maekawa's quorum construction algorithm [8], and
1{ is log l{ when we use Agrawal-Abbadi quorum
construction'algorithm [1]. Table 1 sho*'s the mes-
sage complexity and the s1'nchronization delay for the
proposed and various existing mutual exclusion algo-
rithms. We observe that orrr algorithm has the lou''-
est synchronization delay and still has a loir message
compiexity. Although Raymond's algorithm has lower
message compiexity, it has Iong synchronization delay'
and suffers from the token loss problem.

6 Adding Fault-tolerance
N'Iany quorum-based algorithms 1I,2,4,5, 7, 8, f 0, 11]
have been proposed for mutual exclusion ln distributed
system. In gencral, there is a trade-off between the
message complexity and the degree of the resilienc,v of
arr algorithm. For example, majoritl'voting [18] u'hich
has high resiliency has relatively high message com-
plexity O(A'), whereas tv'Iaekarva's algorithm which has

low rnessiige complexity O(u4Nt) has relativell' Iou' re-

siliency to failures. \'Iuch progress has been mntlt, t6
increase the resiliency of mutual exclusion algoritlrrrrs.
\!'e consider four rvell knor','n fault-tolerant quorunr
construction algorithms.

The tree algorithm [l] is based on organizing a s1r
of ly' sites as nodes of a binary tree. A quorulr is
formed by inciuding all sites along any path that starts
at the root and terminates at a leaf. If a site in u
path is unavailable, a quorum can still be formecl llv
substituting that site with sites along a path startilg
from a child node of the unavailabie site to a leaf of thir
tree. The quorum size in the tree aigorithm is log A'
in the best case and becomes ry# i" the w'orst casc.

In HQC or Hierarchical Voting Consensus [4], sitcs
are organized in a multilevel hierarchy and voting is
performed at each level of the hierarchy. The lo*'cst
level in the hierarchy contains groups of sites. In this
construction, the quorum size becomet ,rtto 83.

TIie Grid-set algorithm [2] has two levels. A major-
ity voting scheme is used at the upper level to incrcausc
the resiliency, u'hile a llaekarva-like grid structurc is
used at the lower level to reduce message overhead.

The quorum size is g#Ve, where G is the gloup
size.

,iti::
ti

:t::r'
'.:i:1,

:'*

2.Si cht
req-qu(
Case l
entry i
than or
and ser

the sitt
from r,
Case
from lr
Case
ing 5,
sends ,

whose
formal
if req-
then 1

else (r
Loc

ifr
tht
els

Quorum
tual excl
massage
first quc
Jt4aekawi,

1t,2, 4, :

different
ity or in
tion faih
towards

t;:),i
'i*i:

,:i'i?i
{t::.:ti*ii

The Rangarajan-Setia-Tripathi algorithm [11] irr

some sense is a dual of the Grid-set algorithm [2].
Specifically, they use majority voting at the lower (sub.
group) Ievel and a N{aekawa-like grid structure at tlle
higher level. With this change, the quorum size in tlris

algorithm recluces ,o uP/#, *h.r" G is the sub-

group size.
If our algorithm uses the fault tolerant quorunl

coustructed by at y of these algorithms 11, 2, 4, 11]' it
becomes a fault tolerant mutual exclusion algorithrn'
Since ali these quorums satisfy the intersection prop'
erty', the correctness of the algorithm is maintained'

There is a clifference between Rangarajan-Setia'
Tripathi algc;rithm [11] (or the Grid-set[2]) and the

tree algorithm [1] (or ilQC algorithm [a]). When a

site faJs, the former can ioletite the failure without
any recovery scheme (this is achieved by niajurity vot'

in[in the subgroup), but the latter needs a recovery

scheme because a ne$' quorum must be constructed'
Note that, even in the former, a recovery schen)e ln"

creases the failure resiliency. We enhance our muttlal

exclusion algorithm in the following uray to make it

resilent to failures.
When a site finds out that asite, say 5i, has failed'

it broadcasts (Based on known quorurn information'
muiticast is entugh) a f ailure(i)h"rrug"' A site' sal

,9;. on receiving i f ailure(i) *.rrug" ..tt ut follorvs:

1. Si checks whether S,; € recl,set(j). If so,
"'uLts

5l j:

iriaccessible, ."1"ur"1'ui tLJl".*lii..t it has gotten' irrraLLsorlulc: rclcorEr a;hrn to
and executes the quorum construction alSorll

Cr

cause all
1 ,'i

I have
'Inth

usl0l
to

9(rr) (,
as lt
a Te,

turn
CS,

site
befc,

!e SJ'nr

ithm
uorum

algc
nicat
tuai
usedlt!select another quorum. ,::.

m

lid
[2]:

subi
thd

, thit

sub:

red.

)ru
1l
^l t

thm;
ProP.'.ii

Setia-
d rhe
hen a;i;
rthout

, S, cheCI(S wnetner J;'S reQ'uest(sn, ?) rS ln lts
"' ,r,l-qurur(j), Lrart -stur,k(j) or Iocklj):

Case 1: (sn, i) € req-queue(j): If (sn,i) is the top
entry in rerl-queue(j) and req-queue(j) has more
than one entry, ,9, deletes (sn,i) from req-queue(j)
and sends tr an s f er (tail (head(r eq -queue(j))), j) to
the site in lock(j). Otherwise, S; just deletes (sn, i)
from req-queue(j).
Case 2: (sn,i) € tran-stack(j): Delete (sn,i)
from tran-stock(j)r
Case 3: (sn,i) € lockr: In this case, S; is lock-
ing Sr. Therefore, ,5, releases itself from ,St, and

seids-reply piggybacked rvith a trans f er to the site
whose requesi is the top entry in req-queue(j). The

formal descriPtion is as follows:
if req-queue(j) =-- d
lhen lock(j) :: (mat,max);
else (sn, p) := dequeue(req -queue(j)) ;

Iock(j) :- (sn,p);
if req-queue(j) == Q

then send reply(j) lo Sr;
else (sn, q) := head(r eq-queue(j));

send reply(j) and transfer(q,j) to So;

7 Conclusions
Quorum is an attractive approach to provide mu-

tual exclusion in distributed systems since it has lorv

massage complexity and high reslliency. After the

first quorum-based algorithm [8] was proposed by
Nlaekan'a more than a decade ago, man)' algorithms

[], 2. -1, 5, 7, 10, 11] have been proposed to construct
ilifferent quorums. which reduce the message complex-

ity or increase the resiliency to site and comnrttnica-

tion failures. However, not much rvork has been done
torvards minimizing the synchronization delay. Be-

cause all existing quorum-based algorithrns depend on

i\laekarva's algorithm to ensure mutual exciusion, they
all have high synchronization delay (27).

In this paper, u'e presented a quorum-based mutual
exclusion algorithm which reduces the synchronization
dcla1' to ? and still has the lorv message complexity of
O(Ir) (1{ is the size of the quorum, rvhich can be as

lorv as log.N). In our algorithm, instead of first send-
ing a releose message to unlock the arbiter site which
in turn sends a replg message to the next site to enter
tlte CS, a sile exiting the CS directly sends a reply
Inessage to the site to enter the CS next. Thus' after
otte site exits the CS, it oniv takes one message de-
lay before the next site enters the CS, which reciuces
tlte svnchronization delay from 2T in \laekawa's al-
gorithm to ?. Our algorithrn is independent of the
(lllomnl being used. By using a fault-tolerant quorum,
tire algorithrn increases the resillency to site and cotn-
tttunication failures. Even though rve mainly discussed
ttttttual exclusion in this paper, the proposed idea can
bc usecl inreplicated data management, as long as the
(luorulli being used supports replica control.

ILgf Er cll\-sr)

Ill D. Agrarval arrd .A,.E. Abbadi. "An Efficient and Fault-' Tolerant Solution for Distributed i{utual Exclusion".
ACM Trans. on Computer Systems, Feb. 1991.

I2l S.Y. Cheung, Ivl.H. Ammar, and l\{. Ahamad. "The' ' Grid Protocol: A high performance scheme for main-
taining Replicated data" . IEEE Tlans. knowl. Data
Eng., Jtr'e 1992.

[3] H. Garcia and D. Barbara. "Horv to assign Votes in a' Distributed System" . J. ACM. \lay t985.

[+1 .\. Kumar. "Hierarchical Quorum Consensus: A new' ' .\lgorithm for managing Replicated Data". IEEE
Trans. Compulers, pages 996 1004, September 1991.

f5l \-. Kuo and S. Huang. "A Geometric Approach for
Constructing Coteries and k-Coteries". IEEE Trans.
on Parallel and Distributed Systems,8:402*411, April
1997.

[6] L. Lamport. "Time, Clocks and Ordering of Events' - in Distributed Systems". Comm. of the ACM, Ju]y
1978.

[7] W. Luk and T. lVong. "Two New Quorum Based Al--
gorithms for Distributed Nlutual Exclusion" . Proc.
of the 17th Intl. Conf . on Distributed Computing Sys-
lems, lvlay 1997.

[8] \I. \laekau'a. "A l/N Algorithm for lvlutual Exclusion
in Decentralized Systems" . ACM Trans. on Computer
Systerns. NIay 1985.

[9] ili. Naimi and NI. Trehel. "An Improvement of the
Log(n) Distributed Algorithm for Nlutual Exclusion".
Proc. of the 7th IntI. Conf . on Distributed Computing
Systems, pages 371-375, 1987.

i10l D Peleg and A. Wool. "Crumbling Walls: A Class
of Practical and Efficient Quorum Systems" . Proc. of
1.1th ACM Symp. on Principles of Distributed Corn-
puting, pages 120-129, August 1995.

I11l S. Rangarajan, S. Setia, and S.K. Tripathi. "A' Fault-Tolerant .A.lgorithm for Replicated Data Nlan-
asement'' . IEEE-Trans. on ParalleL and Distributed
S"ustems. pages 1271-1282, Deceniber 1995.

[12] K. Raymond. "A Tree-based _Algo:ithm for Dis-' tributed Nlutual Exclusion" ' ACM Trans' on Com-
puting systems, pages 61-77, Feb. 1989.

t13l G. Ricart and A.K. Agrawai. "An Optimal Algorithm
' for mutual Exclusion in Computer Netrvorks" . Com'

munication of the ACM, Jan. 1981.

[11] NI. Singhal. "A Heuristically-Aided Algorithrn for NIu-
tr:al Exclusion in Distributed System" . IEEE Trans.
on Cornputers, NIaY 1989.

t15l \1. Sinshal. "A Class of Deadlock-Free Nlaekarva-type' Algoritlms for Ir{utual Exclusion in Distributed Sys-
teirs". Distributed Computing,4:I3l 138, Feb. 1991.

t16l NI. Singhal. "A Dynamic Information Structure NIu-
tual Eiclusion -\lgorithm for Distributed Svstems"'
IEEE Trans. on Parallel antl Distributed Systerns,
Jan.1992.

I17l \I. Singhal. "-{ Taxonomy of Distributed Nlutual Ex-'
clusiont' . Journal of Paral,lel and Distributed Comput-
ing. 18:94 101, Iv'{aY 1993.

[18] T.H. Thomas. "A majority consensus approach to
concurrency control for ntultiple copy databases"
ACM Trans. Database Systerns,.Iune 1979.

y vot+
cover*:
ucted,
me in.t":i,f.&jj

rrutual l+.-?$il

rake it:*

failed'
nationi'
ite, say

rllows:

akes 5i
gottcnl
irhn t0

45r

