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The main objectives of this study, which are to
elicit new pattems related to seizures, consist of the
following steps: (1) to identiff and formulate those

pattems in EEG recordings that are inherent to those

electrodes that lead to a seizure: (2) to extract
features that best characterizB those EEG electrodes
that lead to an ictal activity; (3) to establish
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Abstract: - The aim of this study is to develop an automated algorithm that determines patterns of dynamic brain

U"tuuior during monitoring of epileptic seizures. The goal is to interpret and characterize subdural EEG activities

*t it" fo"*ing-on behaviJral pattems recorded from channels that lead to seizure- The software implemented

*orfA U" genJral both in its implementation structure as well as in characterizing specific EEG patterns, in order to

cope with-what is expected to be a multitude of elusive brain behavioral characteristics. A main challenge is in the

aUitity to provide meaningful assessments of such subdural EEG behaviors within the context of electrodes that do

or do not lead to a seizuie. The EEG interictal data recorded inside the brain can be processed to define similar

pattems evident in those electrodes that lead to a given seizure to further facilitate surgical planning. The

fontributions of this study is in the implementation of a back-propagated neural network that automate the decision

*uting process. This process is to eiploit different parameters in order to assess relevant brain changes in the

,rU:""i during, at the onset, and aftei an epileptic seizure. This allows determining whether the patient has a

corisistent ,our"" of ictal activity with the most potential to lead to an epileptic seizure, so the epilepsy focus could

be located with a higher degree of accuracy.

Key words: - Epileptic seizures, subdural EEG, ictal activity, neural network

1 IntfOdUCtiOn mathematical derivations that provide not only

Seizures are related to a malformed pathologic quantitative measures' but also describes and locates

substrate thar is more extensive than th""i;;i;*; ttrS 
.fogus 

of an ictal activity; (4) to correlate the

evident on MRI scans [1,2]. The ggC nt"ri"taiaut clinical features with the EEG findings in order to

recorded inside the brain can be processed ,J;; dltgrm.rne whether the patient has a consistent source

similar patterns evident in those ilectrodes th.;;; of ictal activity' which is coming from the location

to a given seizure to further facilitate ,tr.gi"ut :-1T:Ti"c 
the group of channels that present

planning[3].interictalactivity;(5)toclassiffarrdtogroupthose
AmathematicalframeworkisprovidedfortheEEGcharurelsthatareknowninadvancetoleadto

study of interictal EEG leading or not to an epileptic ::til]:: in order to extract similarities in their

seizure. The EEG of epileptic subjects can be ;i;ti;; behavior' so a corlmon behavioral pattern could be

into two main categories, interictaf *O i"t"i.'iir" found; (6) to find the best suitable classifiers that

interictal EEG is the EEG taken when tt. p4i".i'i, t:parate in a new feature space the two classes of

not having seizures or in betweet t"i^t".'izt. :9:1:d"t leading and not leading to an ictal

Interictal activity is considered to be abnormal if it actlvlfy'

can occur in a patient with epilepsy in the absence of
an actual seizure. The ictal EEG activity on the other
hand is when the actual seizure occurs. 2 Method

In this study, eight children with medical refractory
partial seizures that underwent pre-surgical

evaluation have been analyzed. The subdural EEC

data was recorded using XLTEK Neuroworks

Ver.3.0.5 (equipment manufactured by Excel Tech

Ltd. Ontario, Canada). Sampling frequency of 500H2

with 0.1'70 Hz bandpass frlter settings and 12 bits



A./D conversion were used to obtain the digital EEG
recordings. Figure I shows the intracranial recording
strips placed on the brain of one patient for
illustrative purposes and to highlight the clinical
significance ofsuch a preoperative process.

Fig. I Intracranial electrodes as placed during surgery
(courtesy of Miami Children's Hospital).

To classi$ those electrodes that lead to an
epileptic seizure, a program was developed in order
to quantif the patterns that are inherent to those
electrodes. Input data in this study was subdural EEG
segments from 20 to 3600 seconds of duration of
epileptic patients. The first step in the procedure
involved identifying the pertinent electrodes in the
overall interictal EEG recordings in which the
seizures occurred. The physicians performed this
task initially through visual inspection of the
recorded data. A computer program was earlier [4,6]
developed in order to detect automatically interictal
spikes so as to provide more accurate and consistent
input data to the proposed classification algorithm.

The classification algorithm consists of the
following steps. Results obtained are revealed in the
next section in order to assess both the validity of
such steps and the merit of each step for identiffing a
suitable linear classifi er.
Step l- Obtaininq an approximated input EEG matrix
In this preprocessing step, filtering was performed
applying the Singular Value Decomposition (SVD),
which is based on the eigenvalues decomposition

[7,8]. The larger singular values were retained (in
this case the first five were deemed sufficient for the
analysis), so a better approximation is obtained, or
equivalently, more information is contained in that
approximation and the other values are set to z.ero,
thus a new matrix was created. The approximated
matrix, containing less noise was used in the
subsequent steps. This implementation concluded the
fi ltering preprocessing step.

Step 2- Aoplyine different parameters to the EEG
data

Since brain dynamics are nonlinear, this study
investigated methods such as the calculation of
correlation dimension integral, mobility and
complexity.

The correlation dimension integral R(r) given in
equation (l) is a measure of spatial organization,
where the space is occupied by a set of random
points. It determines the degree of complexity in the
EEG signal.

l N-l N-l / , ,\R(r)= ,, I I 0('-lxi-xilJ (l)
N' j=t i=j+t

Where, r is the threshold value used to
evaluate the similarity between two reconstructed
vectors Xr and {. N is the total number of points in
the time series. The vector X, is a point in the

embedded phase constructed from the input EEG
signal as a single time series according to the
following formula:

Xi = (Xi,Xi+r,X;+2t,...X; +(m-l)r), where m is the

so called embedding dimension and t is a time
delay.

Additionally, the Hjorth's parameters, mobility
and complexity were calculated using equations 2
and 3. Mobility (equation 2) gives a measure of
deviation of the voltage changes with respect to
deviation of the EEG voltage amplitude, while
complexity (equation 3) provides a measure of
excessive details with regard to the slightest possible
signal's shape [9, l0]. The mobility is computed
using the following formula

I

Ir(y(t))=(o(y)/o(y)2 e)

where o is the varianc" *d y' is the fnst derivative

of the primary signal y. The complexity,

C(v(t)) involves the first derivative of the mobility

M(y') and the mobility ofthe signal itselfM(y) and it
is expressed as:

I

C(y(t)) = (M(y')ilvlg)7 (3)

Step 3- Extraction ofthe best features from the EEG
data

The next step dealt with extracting features from
the filtered EEG matrix using the aforementiqned
parameters of step 2 in order to discriminate befween

the
para
sepa

over
subc

abe
for e

Step

elec,

rn tr
wer(
the

com
linei
time
One
a cli
clas:

terrr
spik
elec
para
appr
faci.
elec

S!9I
clas

that
inte:
ANI

rev(
feat
sepi
mec
anti
stro
desl
timr
elec
ano

plot
diff



WSEAS TRANSACTIONS ON SIGNAL PROCESSING Tssue 2. VoI. 3. Februarv 2OO7 ISSN: IZSO-SOZZ t49-5022

he EEG

is study
rtion of
ry and

given in
rization,
random

ly in the

D (r)

used to
tstructed
:oints in
t in the

rut EEG
to the

n is the

a time

mobility
ations 2
asure of
spect to
:, while
uure bf
possible
omputed

(2)

rivative

bility

r) and it

(3)

the EEG

res from
entioned
befween

the two groups of electrodes. All these three
parameters were computed for each electrode

separately using successive epochs or non-
overlapping windows of I second for all the recorded
subdural EEG data. By computing these parameters,

a behavior for each feature over time was established

for each electrode.
gtep 4- Imolementation of regression lines for each

electrode and parameter

As all the different parameters were represented

in time, regression lines for all of these parameters

were calculated in order to keep a suitable track of
the behavior of each electrode with respect to the

computed parameter. This also helps in determining a
linear classifier that separates in the parameter vs.
time space the two different classes of electrodes.
One condition to make this study more relevant from
a clinical point of view was to require from these two
classes of electrodes to be totally independent in
terms of source location, and synchronicity of the
spike firing. After obtaining regression lines for all
electrodes, two groups of regression lines per
parameter were created. These computed linear
approximations were used for each electrode to
facilitate visualization of the overall trend of each
electrode.
Step 5- Applyine a Neural network for linear
classification

Establishing an artificial neural network (ANN)
that is trained to extract seizure-leading features of
interictal EEG is a significance outcome, since this
ANN

(l) can help to overcome the subjective factor
associated with human classification;

(2) can serye as a second expert for decision
process validation; and

(3) can be used for fast automated seizure
leading channels detection, even for on-line
recordings, sparing EEG technicians the
tedious task of long-term monitoring.

At this stage, a plot of the three selected features
revealed well dehned electrodes clusters. No other
features produced class clusters so compact and
separated from each other. But extrapolation of this
mechanism of classification in time did not work as
anticipated since tle time dynamics of the parameters
strongly changed from one recording to the other,
despite visibte class clustering. In a parameter vs.
time plol the separating points between the two
electrode groups changed from one recording to
another.

This is best illustrated in Figure 4. Note that each
plot is represented only for 20 seconds in two
different segments of the EEG data. The real time,

where the data was taken, is displayed at the bottom
of the two plots.

In order to consider this relative change and yet
make real-time classification possible, time
independent analysis was performed by computing
for each feature three statistical parameters, namely
the mean of the regression line that represents the
feature behavior, the standard deviation of the
paraneter over time and the power of the frequency
spectrum of the feature over time.

The average and the standard deviation for each
regression line were computed for each group of
electrodes. Also, the Fourier Transform was applied
to the behavior of each parameter over time and its
power frequency was calculated for each electrode.
These statistical parameters were then inputted to an
artificial neural network (ANN) in order to obtain a
linear classifier for each feature [6]. Linear decision
functions could then be established for classifoing the
electrodes based on these statistical parameters. One
decision function was created exclusively for each of
the three parameters (correlation, mobility, and
complexity). These specific decision functions would
find the optimum separating plane between the two
classes of electrodes in a 3D space where the axis are
represented by the statistical parameters used (mean,
standard deviation, and frequency power).

The training and testing process was carried out
using a cross validation training technique. The
network was trained with a 25 percentage of the EEG
data and tested in the remaining.

Establishing an artificial neural network (ANN)
that is trained to extract seizure-leading features of
interictal EEG is a significance outcome, since this
ANN: (l) can help to overcome the subjective factor
associated with human classification; (2) can serv€ as

a second expert for decision process validation; and
(3) can be used for fast automated seizure leading
channels detection, even for on-line recordings,
sparing EEG technicians the tedious task of long-
term monitoring.

The network configuration used in this research
consist of 3 input neurons that conespond to the
mean, standard deviation, and frequency power
(p,o,<D) of the parameter analyzed. The output would
be I or -1, which indicates if a given channel leads to
seizure or not, respectively.

The output classifiers are three decision functions
of the form:

tQO = wr.tQ9 + w2-o6Qg + w3.Q@)+wa (4)

The subscript ( is defined as follows:



forCorrelatiar

forMobility

forComplexity

Where X is a vector containing the values of the
specifi c parameter (correlation integral, complexity,
or mobility) for all time windows; wr, w2, w3, ond wa

are coefficients andFr6(X), o6(X) pd O6(X)
are the mean, the standard deviation, and the
frequency power of vector X, respectively.
Electrodes are classified as leading to seizure only if
"f q(X)> 0 for a specific feature.

The decision functions consisted of feed-forward
ANNs trained via back-propagation. These ANNs are
structured with 3 input neurons and I output neuron,
with linear activation functions. This type of structure
produces a linear classifier.

3 Results
The algorithm was tested with various fypes of
interictal data. Results indicate that this EEG analysis
technique allows defining two regions of electrodes,
one for electrodes leading to an ictal state and another
for the remaining electrodes that do not lead to such
state. Also, using different parameters,
characterizalion of the behavior of the interictal EEG
over time is possible. The rate of missed detections as
well as the rate of incorrect positive detections were
extracted and are given in p€rcentages in Table l As
it can be observed, the complexity results are the best
compared to the other two parameters. Two
misclassification percentage rates are calculated: one
for the group of electrodes leading to seizure (False
Negative Rate) and the other for to the group of
electrodes that do not lead to seizure (False Positive
Rate).

It should be mentioned that making the ANN
converges and yielding accurate classification results
should be emphasized as well as that the separability
is achieved because of the choices of the 3
discriminant features of mean, standard deviation,
and frequency power. This in itself constitutes a
mayor contribution of this dissertation.

In assessing the examples treated before, the
complexity parameter produces the most consistent
and reliable results across all 8 patients included in
the study.

The total number of electrodes that presented
interictal activity was 75, out of which 30 lead to

seizure onset and 45 did lead to an ictal state.
following evaluation results were obtained.

Snecificin = N 
=96%' FP+TN

Sensitivir = TP 
=97%' TP+FN

Prccision= TP 
=94o/o

TP+FP

The terminology used is explained as follows: FP
(Not leading to seizure), FN (Leading to seizure), FN
(Leading to seizure), and TN [Not leading to seizure).

Examples of the complexity outcome are given in
Figures 5, 6 and 7. The electrodes represented in red

G) are the channels that lead to seizure and the
electrodes in blue (+.) are the channels that do not
lead to seizure. Note that the three features ( ;l,o,@ )
have great potential for classifuing electrodes leading
to seizure, regardless on what type of classifier used
with respect to the 3 parameters.

Key findings can be affrmed as follows: (l) it
was found that at any window of time along the EEG
signal (independent of time), acceptable classifiers
could be obtained using just the complexity values;
(Z) A search for such decision functions across
patients is ineffectual, because experiments reveal
that such decision functions are patient dependent;
(3) It is extremely important that when one is to
search for such decision functions, electrodes should
be analyzed only if they are localized in different
locations and with recorded interictal spikes not
happening simultaneously.

Table 2 Lower U or higher 0 values ofthe leading to
seizure with respect to the not leading to seizure

channels.

Patient Mobiliry
(M)

Compl*ity
c,

Correlation
/R',t

I fI 1) U

2 1] fl U
3 U u fi
4 n fI u
J f) fl .rj

6 fl 1I U

7 U u il
8 U fl fl

A summary of the results for of all the patients is
provides in Table 2. The €urows indicate if for a
given parameter, the values of the red group of
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electrodes are higher or lower with respect to the blue

group of electrodes. As can be observed, for 5

patients out of 8, the complexity values for those

electrodes that lead to an ictal state are higher than

the values of those electrodes that do not lead to

seizure. Also, the mobility values for these five

patients behave in the same manner. Two patients

behave in a similar fashion, and their complexity and

mobility values are reversed if we compare them with
the other five Patients.

A closer look at this table reveals the following

conditions: If we assign a negative G) to lj and a (+)

to 1), then, the following relations hold:

C*R<0
M*R<0
M*C>0
M*C*R<0

These relations as established in equation 8

constifute another mayor observation in this study. It
could be concluded that the integration of these 3
parameters could augment our results.

4 DYNAMICS OF CORRELATION
INTEGRAL, MOBILITY, AND
COMPLEXITY AS POTENTIAL
SEIZURE PREDICTORS
G assessing the examples treated before, the
complexity parameter produces the most .consistent
and reliable results across all 8 patients included in
the study. Nevertheless, a detailed example is
provided for a long event consisting of one hour of
EEG recording prior to a seizure to see how these 3
parameters change as we approach an ictal state. For
this particular example, we provide the behavior of
one the 3 parameters in 2 distinct windows of time
for visual appreciation. For each window of time, the
behavior of the parameter itself is provided with
respect to time as well as through regression line
approximations coffesponding to that behavior.

It can be observed, as illustrated in Figure 2, in
this long event of I hour, how the mobility of the
EEG signal can differentiate between the two groups
of electrodes. Mobility remains the most reliable
feature in this case. The regression lines
corresponding to this parameter are separated in two
well defined groups. The blue channels (-) do not
lead to seizure and the red O lead to seizure as
illustrated in Figures 2 and 3. Also correlation
integral and complexity behave in a similar manner.
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Fig. 2 Behavior of the mobility: (a) behavior of the
paramet€r one hour before seizure; (b) regression

lines one hour prior to a seianre.
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Fig. 3 Behavior of the mobility: (a) behavior of the

parameter 2 minutes before seizure onset; (b)
regression lines 2 minutes prior to a seizure.

As time approaches the onset of the seizure, the
trend of the behavior of the measured parameters

through time becomes similar for the two classes of
electrodes. In other words, just prior fo the seizure,
the regression lines of the two groups of electrodes
converge into one group; there is no clear separation
between them as can be seen in Figure 3.
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It can be concluded that even for a long event of
interictal datq the aforementioned parameters
succeed in discriminating the two classes of
electrodes.

4 Conclusion
In this study, we presented a new quantitative
technique for the classification ofdifferent electrodes

from short and long duration EEG data. The unique
contribution of our study is to understand better the
characteristics of the different interictal epileptiform
activities, so a better localization of the epileptic
focus could be determined. The likelihood of the
success of sqrgery is increased when all test results
point to a single epileptogenic focus I l-14]. In all
of these performance values of the 3 parameters
implemented, it can be said that the results obtained
show great promise in delineating electrodes that lead
to seizure from those that do not. It is fifiing to note
that when our results failed to discriminate between
these two sets of electrodes, a clinical analysis
revealed that those electrodes were indeed situated in
the same region and their interictal spikes were
happening simultaneously. As this study will involve
a higher number of patiene as they become available,
additional results will provide more credence to our
findings.

The uniqueness of this algorithm is in the
establishment of a mathematical foundation capable
of extracting features from interictal EEG signals
using the above mentioned parameters, which served
as change indicators for our analysis. The integration
of several parameters (correlation integral, mobility,
and complexity) constitutes a unified method for
assessing differences in the EEG channels.
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Table I Percentage of misclassification (results have been averaged across all EEG

Patient
Correlation

FNr
Correlation

FPr
Mobility

FNr
Mobility

FPr
Complexity

FNr
Complexity

FPr

Patient I 40.7 o/o A-O o/" 14.3 o/o 12.9 o/" 14.3 Yo O.O o/o

Patient 2 37.5 o/o 0.0% 20.0 o/o 0.0% 0-01/o A.0o/o

Patient 3 0.0 o/o 8,2 o/o 0.0 o/o 4.0 o/o O-O o/o O-0o/o

Patient 4 33.3 0/o 0.0 o/o O.0 o/o 0.0 o/o 0.0o/o 0.Oo/o

Patient 5 0-0 o/o 5-A o/o 0.0 o/o O.O o/o 0.0 o/o O.0 o/o

Patient 6 28.6 o/o 0.0 o/o l4-3 o/o 0.0 Yo 14.3 o/o O-Oo/o

Patient 7 42.8 o/o 0.0 o/o 28.6o/o O.A o/o l4-3 o/o 0.0 %

Patient 8 42.8 o/o 5.0 o/o 14.3 o/o 0.0 Yo 0.0 o/o A.0Yo

Fig- 4 Electrode clusters changing their relative location in the feature vs. time plot.
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Fig. 5 Complexity results for patient 2.
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Fig. 6 Complexity results for patient 4.
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Fig. 7 Complexity results for patient 6.
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