
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

10-23-2000

Dynamic data retrieval on the world wide web
Dmitriy Beryoza
Florida International University

DOI: 10.25148/etd.FI14051129
Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Beryoza, Dmitriy, "Dynamic data retrieval on the world wide web" (2000). FIU Electronic Theses and Dissertations. 1654.
http://digitalcommons.fiu.edu/etd/1654

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1654?utm_source=digitalcommons.fiu.edu%2Fetd%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

DYNAMIC DATA RETRIEVAL ON THE WORLD WIDE WEB

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Dmitriy Beryoza

2000

To: Dean Arthur W. Herriott
College of Arts and Sciences

This dissertation, written by Dmitriy Beryoza, and entitled Dynamic Data Retrieval
on the World Wide Web, having been approved in respect to style and intellectual
content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Nagarajan Prabakar

Subbarao Wunnava

Raimund Ege

Maxim Chekmasov

Naphtali Rishe, Major Professor

Date of Defense: October 23, 2000

The dissertation of Dmitriy Beryoza is approved.

Dean Arthur W. Herriott
College of Arts and Sciences

Interim Dean Samuel S. Shapiro
Division of Graduate Studies

Florida International University, 2000

ii

Copyright 2000 by Florida International University

High Performance Database Research Center

All rights reserved.

iii

DEDICATION

I dedicate this thesis to my wife, Yulia; my parents, Tatiana and Alexander; and my

brother, Sergei. Without their love, patience, support and constant encouragement the

completion of this work would not have been possible.

iv

ACKNOWLEDGMENTS

I wish to thank members of my committee, and especially my major professor, Dr.

Naphtali Rishe, Dr. Maxim Chekmasov and Dr. Nagarajan Prabhakar, for their

support, guidance, valuable advice, and patience. Dr. Maxim Chekmasov, Alexander

Simanov, Yulia Pichugina, and Andrei Selivonenko provided valuable comments on

the first version of this document. Special thanks go to all my colleagues at HPDRC

who made this research project possible-Marina Chekmasova, Anna Mullary,

Vladimir Mullary, Alexander Simanov, Andrei Kirienko, Andrei Selivonenko,

Oksana Dyganova, Dmitry Tsyboulsky, Michael Baranovsky, Kiran Balakrishna,

Rukshan Athauda and Eugene Kalenkovich. Additionally I would like to thank all

students and research staff who helped us implement parts of the functionality-Juan

Carlos Carrillo, Vishal Maru, Yulia Pichugina, Ashok Madala, Sunil Godavarthi,

Alex Roque, Celestino Pena, Oksana Petrova, Mikhail Petrov, Marina Klimchuk, Rob

Valenti, Ray Morejon, Pusheng Zhang, and Philip Bayer. I would also like to thank

Theresa O'Connell and Maria Monteagudo for their invaluable administrative help on

all stages of this project.

This research was supported in part by NASA (under grants NAG5-9478, NAGW-

4080, NAG5-5095, NAS5-97222, and NAG5-6830) and NSF (CDA-9711582, IR-

9409661, HRD-9707076, and ANI-9876409).

V

ABSTRACT OF THE DISSERTATION

DYNAMIC DATA RETRIEVAL ON THE WORLD WIDE WEB

by

Dmitriy Beryoza

Florida International University, 2000

Miami, Florida

Professor Naphtali Rishe, Major Professor

Methods for accessing data on the Web have been the focus of active research over

the past few years. In this thesis we propose a method for representing Web sites as

data sources. We designed a Data Extractor data retrieval solution that allows us to

define queries to Web sites and process resulting data sets. Data Extractor is being

integrated into the MSemODB heterogeneous database management system. With its

help database queries can be distributed over both local and Web data sources within

MSemODB framework.

Data Extractor treats Web sites as data sources, controlling query execution and data

retrieval. It works as an intermediary between the applications and the sites. Data

Extractor utilizes a two-fold "custom wrapper" approach for information retrieval.

Wrappers for the majority of sites are easily built using a powerful and expressive

vi

scripting language, while complex cases are processed using Java-based wrappers

that utilize specially designed library of data retrieval, parsing and Web access

routines. In addition to wrapper development we thoroughly investigate issues

associated with Web site selection, analysis and processing.

Data Extractor is designed to act as a data retrieval server, as well as an embedded

data retrieval solution. We also use it to create mobile agents that are shipped over the

Internet to the client's computer to perform data retrieval on behalf of the user. This

approach allows Data Extractor to distribute and scale well.

This study confirms feasibility of building custom wrappers for Web sites. This

approach provides accuracy of data retrieval, and power and flexibility in handling of

complex cases.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 IN TRO D U CTIO N .. 1

1.1 PROBLEM BACKGROUND 1
1.2 PROBLEM STATEM ENT ... 3
1.3 D ISSERTATION OVERVIEW .. 4

2 RELATED W O RK ... 5

2.1 THEORETICAL RESEARCH 5
2.2 BUSINESS SOLUTIONS AND DATA RETRIEVAL TOOLS ... 7
2.3 SUM M ARY ...

3 HETEROGENEOUS DATABASE APPROACH ... 11

3.1 INTRODUCTION..11
3.2 M SEM O D B ... 11

4 W EB D A TA SO U RCES .. 16

4.1 INTRODUCTION .. 16
4.2 D ATA EXTRACTOR .. 16
4.3 W RAPPER CONSTRUCTION .. 19

4.3.1 Source selection...1............... .19
4.3.2 Tree representation of H TM L...26
4.3.3 W eb site analysis .. 30
4.3.4 D ata output ...
4.3.5 W rapper paramneters .. 57

4.3.6 Coding and debugging .. 59
4.3.7 K now ledgebase ... 59

4.4 D ATA EXTRACTION LIBRARY .. 65
4.4.1 O verview .. 65
4.4.2 Page retrieval functionality.......................... 67
4.4.3 HTM L processing functionality .. 70
4.4.4 D ata representation functionality 77
4.4.5 W rapper interface functionality .. 79
4.4.6 Challenges .. 81

4.5 SAM PLE W RAPPER

4.5.1 Sam ple W eb site 86... 86
4.5.2 Site analysis .. 88
4.5.3 Im plem entation ...-... 92

4.6 D ATA EXTRACTOR SCRIPTING LANGUAGE 96

4.6.1 Introduction 96.. 96
4.6.2 O verview 98..... 98
4.6.3 D ocum ent blocks 9........9..... 99
4.6.4 D ata types-. - -.. 102
4.6.5 V ariables-. ... -...103

4.6.6 A ssignm ents 106
4.6.7 Com m ents.. .. 106
4.6.8 Pattern expressions 107
4.6.9 Com m ands and functions- 116

viii

4.6.10 Example 1.24

4.6.11 Strong features .. 129

4.6.12 Future development .. 130

43 SUMMARY 132

5 MOBILE DATA RETRIEVAL AGENTS ... 133

.1 INTRODUCTION .. 133

5.2 IDEA.- ... 135

5.3 ARCHITECTURE ... 137

.4 AGENTS COMPOSITION AND EXECUTION .. 141

5.4.1 Query formulation .. 141

5.4.2 Agent construction and delivery., - 142
5.4.3 Agent execution., -142

5.4.4 Data delivery .. 143

5.5 IMPLEMENTATION ... 143

5.5.1 Language .. 143

5.5.2 Framework .. 144

5.5.3 Security ... 145

5.6 CONCLUSIONS ... 147

6 CONCLUSIONS AND FUTURE WORK ... 148

6.1 CONTRIBUTIONS OF THIS STUDY .. 148

6.2 TURF IMPROVEMENTS ... 151

6.3 FUTURE RESEARCH DIRECTIONS .. 154

6.4 CONCLUSION ... 1601

7 APPENDIX .. 161

7.1 DESL SYNTAX IN EIBNF...161

REFERENCES ... 164

VITA .. 171

ix

LIST OF FIGURES

FIGURE PAGE

FIGURE 3-1 MSEMODB ARCHITECTURE 12
FIGURE 4-1 DATA EXTRACTOR SYSTEM STRUCTURE 17
FIGURE 4-2 SAMPLE HTML DOCUMENT 28
FIGURE 4-3 TREE REPRESENTATION OF SIMPLE HTML DOCUMENT 29
FIGURE 4-4 SAMPLE OF EBAY AUCTIONS 38
FIGURE 4-5 ZIP2 ADDRESS INFORMATION 40
FIGURE 4-6 SOURCE OF ZIP2 ADDRESS ITEM 41
FIGURE 4-7 ALTAVISTA SEARCH RESULTS 44
FIGURE 4-8 FLIGHT INFORMATION FROM EXPEDIA.COM 46
FIGURE 4-9 ZIP2.COM BUSINESS ADDRESS DATA -.. 49
FIGURE 4-10 DETAILS OF ADDRESS ITEM 5
FIGURE 4-11 HTML SOURCE OF ITEM "M & K MARKET" 50
FIGURE 4-12 HOTEL INFORMATION AT 1-800-96HOTEL 51
FIGURE 4-13 HOTEL ROOM PRICE DETAILS 52
FIGURE 4-14 HTML SOURCE OF "CAESAR'S PALACE" ITEM 53
FIGURE 4-15 SIMPLIFIED SCHEMA OF THE KNOWLEDGEBASE 61
FIGURE 4-16 CLASS HTTPSESSION 68
FIGURE 4-17 CLASS HTTPCONNECTION 69
FIGURE 4-18 CLASS HTTPPARAMETER 69
FIGURE 4-19 CLASS HTTPPARAMETERLIST 70
FIGURE 4-20 CLASS TAGGEDSTREAM 71
FIGURE 4-21 CLASS TAGGEDDOCUMENT 72
FIGURE 4-22 CLASS MARKUPELEMENT 7......3.........................73
FIGURE 4-23 CLASS HIERARCHY FOR MARKUP ELEMENTS74
FIGURE 4-24 CLASS TEXT 74................... 74
FIGURE 4-25 CLASS COMMENT 75... -75
FIGURE 4-26 C LASS T AG 75
FIGURE 4-27 CLASS HTM LLINK 7.6...76
FIGURE 4-28 CLASS HTM LFORM 76
FIGURE 4-29 CLASS HTMLTABLE ... 76....................... 76
FIGURE 4-30 CLASS TAGA TTRIBUTE 77
FIGURE 4-31 CLASS MARKUPENUMERATION 77
FIGURE 4-32 CLASS TAGA TTRIBUTEENUMERATION 77
FIGURE 4-33 CLASS DATAVECTOR 78
FIGURE 4-34 CLASS DATATABLE....78
FIGURE 4-35 CLASS DATAEXTRACTOR .. 79
FIGURE 4-36 CLASS PARAMETERS 79
FIGURE 4-37 CLASS SITEFORMATEXCEPTION 80
FIGURE 4-38 CLASS SITEERROREXCEPTION 80
FIGURE 4-39 CLASS BADINPUTEXCEPTION 81
FIGURE 4-40 BOOKSTORE QUERY FORM 88
FIGURE 4-41 SOURCE OF BOOKSTORE QUERY FORM 89
FIGURE 4-42 BOOKSTORE SEARCH RESULTS PAGE .. 90
FIGURE 4-43 BOOKSTORE SEARCH RESULTS PAGE SOURCE .91
FIGURE 4-44 BOOKSTORE DATA EXTRACTION WRAPPER 93
FIGURE 4-45 YAHOO! STOCK QUOTES SCRIPT 124
FIGURE 4-46 YAHOO! HOME PAGE ---.---...-- 125
FIGURE 4-47 YAHOO! FINANCE HOME PAGE .. 1..26

x

FIGURE 4-48 YAHOO! FINANCE SAMPLE STOCK QUOTE REPORT .. 127
FIGURE 5-1 MDRA COMPOSITION, DELIVERY AND EXECUTION SEQUENCE 136
FIGURE 5-2 MOBILE DATA RETRIEVAL AGENTS ARCHITECTURE. .. 137

xi

I Introduction

Li Problem background

The explosive growth of the World Wide Web in the recent years has provided users

worldwide with unprecedented volumes of information. This growth was fueled by

the ease with which information can be published and accessed from anywhere in the

world. Anyone with a browser and an Internet connection can access any document

available on the Web. Data on the Internet is primarily published in HTML [HTML],

a text format with rich hypertext presentation capabilities. This format, however, does

not provide any mechanism for conveying to the user the semantics of the data that it

presents.

There are several ways to find information on the Web. The simplest one is to browse

the Web site that contains the data of interest. For example, if a person is interested in

information about new and used car prices, she can go to Edmund's guide

(httmp//wwwedmundscom) and read everything about a particular car model. This, of

course, requires prior knowledge of the specific Web site.

The next level of querying for information is interaction with a search engine like

Yahoo! (http://www.yahoo.com) or AltaVista (http.//www.altavista.com). Here users

specify keywords and the search engine tries to find Web sites that contain them.

Sometimes, sites themselves provide simple search functions.

I

Even more control over querying is given by specialized search and interaction

functionality. Complex queries that contain many different parameters can be posed.

For example, when user is looking for airline tickets on Travelocity

(http://www.travelocity.com), she can search available flights by dates and times,

source and destination, airline, price and other factors. Often, such complex querying

functionality is associated with other transactions, such as interacting with online

services and purchasing products.

This variety of ways to look for information on the Web, unfortunately, does not give

us a comparable variety in presentation formats. With few exceptions, this

information is provided only for visual consumption. No convenient mechanisms

exist for analysis and processing of the found data, users can only read what is

presented in a Web page. There is no way for user to, for example, create complex

queries to the travel agent's database-for each of such queries a special program

would have to be implemented inside the agent's Web server. Even if the queries that

are available meet user's needs there is no way to work with the data that they return.

The stock quotes that are available on the financial Web sites most of the time cannot

be imported in a spreadsheet for further analysis. The addresses of businesses from

online Yellow Pages cannot be used in electronic address book or printed as mailing

labels.

The sites that do provide data in an easy-to-process form, such as XML [XML] (a

"cousin" of HTML that retains the semantics of data), are still rare. Although this is

2

expected to change in the future, large volumes of data are likely to remain in HTML

for quite some time.

1.2 Problem statement

As we have seen the data on the Web is available to users through very simple

interfaces that, nevertheless, do not allow close interaction with information. In the

majority of cases user can only browse through data, not being able to define complex

queries to it or feed it into databases or analytical tools, Because of these limitations

data on the Internet is often underutilized.

There exists a strong need for developing a mechanism for accessing data that is

scattered across Web sites and using it efficiently in a variety of applications, such as

database management systems, spreadsheets, and analytical tools. As we will see in

the next chapter this problem has interested researchers for several years. A number

of approaches to building a mechanism that would connect Web sites and applications

have been proposed both in academia and business, which only emphasizes the need

for it.

In this research project we present a system for accessing data on the Web developed

at High-Performance Database Research Center (HPDRC), a research center at

Florida International University.

3

1.3 Dissertation overview

The rest of this thesis is structured as follows. Chapter 2 gives a brief insight into the

currently existing methods for Web data retrieval. Various academic research projects

are reviewed, along with business solutions and developer tools currently available on

the market. Chapter 3 introduces the Multidatabase Semantic Object-Oriented

Database System (MSemODB) being developed at Florida International University. It

describes, in particular, the place of Web data sources in the MSemODB scheme.

Web data source analysis and wrapper construction are covered extensively in

Chapter 4. It also provides information on Data Extraction Library functionality

created for simplification of wrapper design, as well as on the scripting language that

allows speedy wrapper creation for simple data sources. Chapter 5 describes our

approach to distributing data extraction functionality to the client side (throughout

this work, we use data extraction interchangeably with data retrieval). Finally

Chapter 6 summarizes the ideas introduced in this study and discusses avenues for

further improvements and additional research that is planned in this project.

4

2 Related work

2.1 Theoretical research

Over the past several years many researchers have studied ways for collecting and

processing data available on Web sites. A variety of methods for accessing such data

have been proposed and two major directions in data extraction-automatic and

wrapper-based-have emerged.

Althoughfully automatic extraction and labeling of data on arbitrary sites is currently

beyond capabilities of computer science, assisted, learning-based data extraction has

been quite successful in some systems [AD99, GM99, LN99]. In these examples

systems guesses the site structures and ask users to label data fields that were found.

Automated data extraction systems were created that are well tailored to specific

domains [DEW97], use ontologies [ECJ99], combinations of heuristics [EJN99], and

language-based parsing [MSS99].

Wrappers are interface modules that mediate between Web sites and clients that want

to extract data from them. Wrappers are usually coded manually or generated through

special wrapper-generating browsers, such as ones described in [LHB+99, NQL,

SK98]. In our research we used wrapper-based approach because it gives the highest

accuracy results and can be used to cover virtually any problem domain.

5

Wrappers use specialized scripting languages to define data extraction and labeling

rules. Some of such languages are based on Prolog-like predicate logic [LSS96,

Coh98, LD96, CDS+98], others are procedural [WEBL, NQL].

Through data extraction Web sites can be used as data sources in applications and

database systems. To facilitate such integration wrapper languages are often based on

well-studied SQL syntax [MMM96, AM98, BD99, BD99a, KS98, BDHS96, NSOO,

LC99]. In such systems queries to the Web are short and easy to maintain. They also

extend SQL to provide good search, parsing and site navigation functionality.

Many wrapper languages have special features that simplify the process of data

extraction. Some use regular expressions for data extraction and navigation through

HTML documents [NSOO, MMM96, AM98, AM97, HGC+97, DYKROO, KS98,

Coh98, WEBL, NQL]. Because of the hierarchical nature of HTML many researchers

[AM98, BDPOO, EJN99, LN99, Coh98, LHB+99, NSOO] use trees to represent Web

documents. Such structures are simpler to search and navigate. Others [HGC+97]

favor flat file representation because it is easier to store, requires no parsing, and is

forgiving to document syntax errors.

Some of the systems [LSS96, AM98, AMM97] in addition to data extraction provide

restructuring of documents. These systems can be used as standalone tools because

presentation of results is a built-in feature. Form processing is used in some (but not

all) wrapper projects [DEW97, BD99, K598, DFKR99, FS99] in addition to simple

link navigation. Some projects [CM98, AD99] support data extraction from

documents that are not HTML.

The systems and extraction methods listed above deal with formats that do not stroe

information about semantics of data. In XML data comes already labeled and

structured, and therefore pattern matching is usually not needed. There is, however, a

need for document navigation and querying. As XML is becoming a language of

choice for data exchange and software integration, new languages emerge that

support these operations. Examples include XSLT [XSLT], XML-QL [DFF98], XML

Query Language (XQL) [RLS98], and SgmlQL [HLM+97], XPath [XPATH], XPtr

[XPTR] and others [BGL+99, CDTWO0, CCSOO, MS99, FSW+99].

2.2 Business solutions and data retrieval tools

Data extraction on the Web has not only been the topic of theoretical research-it is

widely used in commercial applications. Some of the solutions were born as research

projects and later found application in business.

Perhaps the most popular type of Internet data retrieval application is a comparison-

shopping agent. Such agents dynamically collect prices across a multitude of Web

stores and allow user to compare and shop. Examples include MySimon

(h ttp//wwrmY51mon.com), Yahoo! Shopping (http)//shoingahoo.com)

RoboShopper (http://wwwaroboshopper.com), and R U Sure (http://www.rusure.com)

Some comparison shopping systems were born as university research projects in Web

data retrieval and then successfully applied to business needs. Good examples of this

are Jango (http://ango.excitecom), which grew out of ShopBot research [DEW97];

GoTo Shopping (http;//shopgoto.com/) (formerly Cadabra) which is based on

Stanford "DDI" research project; and Junglee (now part of Amazon.com), which also

came from Stanford research.

Another application of data retrieval is auction shoppers-systems that query Web-

based auctions dynamically and bid for available products on behalf of user. Popular

examples of these systems are Auction Watchers (http //www.auctionwatcherscom/),

Auction Tracker inside R U Sure (http://www.rusurecom/) and Bidders Edge

()ttp://www~biddersedgeom)

Some of the commercial data analysis and integration tools that are not related to

Web data retrieval sometimes provide this functionality. Microsoft Excel is capable

of retrieving a Web page and treating it as a spreadsheet through a feature called Web

Query. Microsoft Access can import data into tables from HTML files. SuperNova

data integration suite of products (htp://www.supernova.com) is shipped with a GUI-

based editor for building wrappers around Web sites. These wrappers then help

present Web sites as relational data sources that could be queried for information.

Some of the tools available on the market were built specifically for dynamic data

extraction, processing and integration with other data sources. Known examples of

such tools are packages available from OnDisplay (hlttp://www.ondisplay.corn),

Cohera (http://www.cohera.com) and Liaison (http://www,1iaisonmom). They provide

GUI editors for building wrappers around Web sites. Using these editors regions

inside HTML pages can be marked and labeled as data fields. Data extraction tools

collect data using one or more wrappers (doing so periodically or on demand) and

channel collected data into existing applications. Some of them provide application

programming interfaces to facilitate such integration, which allows enterprises to

build custom applications that use Web sites as data sources.

A large number of software packages that make it easier to extract data from Web

sites have appeared in recent years. Among them are Net Reaper

(http;//www.chimerasoft.com/chimerasoft/netreaper/), MergEm (http://www.sky.net/

~-floersch/htmltools.htmlrierge), Web Sifter (http://inventiveweb.com/prodwebsft.

htm), SGrep (http://www.cshelsinki.fi/jak kol/srep.html), and MacroBot (http //

ww.ipgroup.com/macrobot/). A number of specialized programming languages,

such as WebL [WEBL], Network Query Language [NQL], and W4F [W4F], were

designed recently to simplify tasks of Web navigation and page content extraction.

Some of the tools that were originally designed for text processing, such as Perl

programming language [PERL] and OmniMark [OMNI], are also being used for Web

data extraction.

2.3 Summary

As we have seen, there has been a significant number of projects, both research and

commercial, that attempt to define efficient mechanisms for Web data retrieval,

9

extraction and processing. Some of the researchers propose custom-built wrappers,

some concentrate on building the SQL-like query languages for extracting the

information, others present the mechanisms for auto-discovery of data on the Web.

In this work we would like to define a system for data extraction from the Web that

will satisfy the following requirements:

* Power. System must extract data from the vast majority (if not all) of data

providers on the Internet. This, of course, requires development of powerful

networking, site analysis and data extraction functionality.

" E bedda bility and database integration. We must be able to integrate data

extraction functionality with other applications. Additionally, tight integration

with database management systems must be provided.

" Portability and mobility. System must operate on multiple platforms, and be

compact for embedding in mobile data collection solutions.

* Simplicity and maintainability. Solution must be simple to use and maintain,

because the format and functionality of data sources on the Web changes

frequently, and related changes will have to be made in the system's setup.

In the rest of this work we describe our experiences developing such system.

10

3 Heterogeneous database approach

3.1 Introduction

In the previous chapter we have seen a review of existing methods for accessing data

on the Web. The majority of these methods concentrate on extraction and purification

of data, and channeling it to external applications and users. However, others

([HGI+95, BDKM99, MAM+98]) approach Web data extraction as a part of a bigger

problem of heterogeneous database integration.

In our research we are also investigating ways of integrating data extraction into a

heterogeneous database system.

3.2 MSemODB

The need exists for integration of the wide variety of heterogeneous databases

available today. Such integration would let users access resources of multiple

databases of different types and structures via a unified interface. It will also

empower them to pose queries over a collection of different data sources. To date

there has been a variety of research projects on the issues of heterogeneous database

integration. Various researches have studied the issue of bringing together different

types of relational and object databases as well as semi-structured and unstructured

data sources. At HPDRC, this problem has also been investigated extensively. Our

research resulted in the development of MSemODB - a heterogeneous database

11

management system. The general architecture structure of MSemODM is shown in

Figure 3-1.

DBA
View Definition and

User Sm tic:SQL queries
inte tor &
Knowledge Schema Quer Dispatcher.ei

Rec oncilitor Catalog
Dat

quycoorntor;

CORBA

[-------------------------------________------ -- ______-----1---______

SemanticSQL S Semantic SQL c S t SQL

Dat Exrator
Commercia Semantic syste

RDBMS Database Eng ne

R tio P st-' Semantic site Web data site

Figure 3-1 MSemODB architecture

MSemODB consists of several components. Query Coordinator that coordinates all

operations in the system. Sites, each of them wrapping a particular type of data

source, integrate these sources into the MSemODB system.

12

The system is using Semantic Binary Object-oriented Data Model (Sem-ODM)

[Ris92] as a data representation standard and SQL query interface for communication

between its components. Sem-ODM combines the simplicity of relational and power

of object-oriented data models. A major advantage of this model is its ability to use

standard SQL-92 query facility interpreted over Sem-ODM schemas (called Semantic

SQL) in a variety of relational and object-oriented databases. This feature makes

MSemODB compatible with a number of existing tools developed for standard

SQL-a well-studied and popular query language.

The communication between components in the system uses CORBA technology,

which is an efficient cross-platform and language-independent communication

medium.

The main module that controls execution in the system and flow of data is Query

Coordinator. Its function is to collect database schemas from all member databases

and dispatch user queries to the appropriate database sites. It gives a common user

interface to all the databases in the system. Through it users enter queries using

common query language and view resulting datasets in a single data model. Query

Coordinator consists of Integrator & Knowledge Reconciliator, Schema Catalog and

Query Dispatcher. Schema Catalog collects schemas of individual relational,

semantic and Web database sites, and coordinates them to resolve conflicts. Database

administrator can use Integrator & Knowledge Reconciliator to manage and modify

Schema Catalog, and to introduce new relations that are not apparent from mere

collection of member schemas. Query Dispatcher optimizes and executes queries

13

using Schema Catalog. It decomposes queries posed by user into sub-queries based

on the knowledge stored in the Schema Catalog and dispatches these sub-queries to

appropriate sites for execution. When the results are available, it assembles them and

presents them to the user.

The database sites are exposed in the system through their individual Semantic SQL

and Semantic Schema modules. For the Relational Site a special knowledgebase and a

reverse-engineering tool facilitate relational-to-semantic schema translation and

storage. The majority of translation tasks are performed automatically. The database

administrator can step in and make modifications and enhancements to the schema

after the automatic conversion is completed. The Semantic SQL module of the

Relational Site implements an algorithm which automates conversion from Semantic

SQL queries to relational SQL queries. With this functionality, virtually any

commercial RDBMS available on the market today can be integrated with

MSemODB.

In the Semantic Site that wraps around Semantic Databases integration is far more

natural. Semantic Object-oriented Database engine (Sem-ODB) (developed at

HPDRC) already has Semantic Schema and Semantic SQL query facilities in

implemented. This database system is a multi-platform, distributed, fully functional

client-server implementation, that is suitable both for standard database applications

and for large-volume data and spatial data applications.

14

The third site is built around a Web data extraction system that is the topic of this

work. The purpose of this system, called Data Extractor, is to provide a reliable and

efficient framework for data extraction from the Web. Using Data Extractor external

applications pose queries to Web sites and extract data from them. Data Extractor

presents extracted data in two-dimensional tables that can be further processed and

returned to the user. This system is currently being used as a standalone application

and development tool. A set of modules is being implemented to supply Semantic

SQL and Semantic Schema functionality to the Web data site for its integration into

MSemODB.

Further discussion and detailed description of MSemODB architecture and

technologies that are used in its design can be found in [AthOO, RAYCOG, RAYCOOa,

RYA+OO, RYA+OOa].

15

4 Web data sources

4.1 Introduction

We have seen many existing approaches to solving the problem of data retrieval on

the Web. However, at HPDRC we felt that no single system has all the features

necessary for adequate data extraction from the Web. In our work, the Data Extractor

system, we attempted to integrate the advantages of the systems reviewed in Chapter

2.

4.2 Data Extractor

Data Extractor system provides our heterogeneous database system, MSemODB, with

a mechanism for accessing data available on the World Wide Web. The Semantic

SQL and Semantic Schema modules access Data Extractor through a standard

interface that allows schema discovery, query initiation and data retrieval. Together

with these modules the system works as an integral part of a MSemODB system,

capable of executing SQL queries and returning result datasets.

Data Extractor system consists of several components (see Figure 4-1).

16

VI-apper coitrcller

Data Extr~actio n

Li WI Library
.. Wrapper-s

IKiow led ebasbe

Workd Wide Web

Figure 4-1 Data Extractor system structure

Wrapper Controller. This is the main component of the system whose

responsibility is to control the execution of all other parts of the system. It is the

entry point for communications with the Data Extractor from the outside. It loads,

executes and controls behavior of wrappers and redirects data that they generate

to the user. It accesses the knowledgebase to become aware of the configuration

and schema changes in the system.

17

* Knowledgebase. This module stores system configuration information. It contains

data on what wrappers are available, where they can be loaded from, what

parameters are required to execute them, and what kinds of data they generate.

* Vrappers. Wrappers are lightweight modules that execute in response to user

requests. They extract data from the Web sites and return it to the user in an easy-

to-process form.

* Data Extraction Library. This library contains extensive network access and

HTML processing functionality. This functionality allows wrappers to traverse

Web sites and extract data from HTML pages.

Data Extractor can be implemented as standalone, embedded, or mobile solution. As

a standalone server it serves clients through a simple browser-based user interface,

executes user queries, and delivers raw or processed data directly to the user. When

embedded inside another application (as it is the case with MSemODB framework)

Data Extractor acts as a data provider for that application. Lightweight mobile

implementation of Data Extractor as a Mobile Data Retrieval Agent that is delivered

to the user and executed at her computer is discussed in Chapter 5.

Let us now describe the process of Web site analysis and wrapper development.

18

4.3 Wrapper construction

As it was mentioned above, wrappers in Data Extractor execute on behalf of users

and extract data from the Web sites. Wrappers essentially simulate a user working

with the site through the Web browser. They fill out and submit forms, "click" on

links, find data of interest inside of pages. To support this behavior special

functionality was developed that emulates browser interaction with the Web site. It

allows us to create and play back a "scenario" of user navigation through the site.

The process of creating a wrapper for a Web data source is a multi-step process:

4.3.1 Source selection

Surprisingly, selecting a Web site as a data provider in some applications might

become a complicated task by itself. Cases when only a single Web site is a source of

necessary information are actually quite rare. Stock quotes, airline schedules and

weather information-the kinds of information that are needed in business

applications-are usually provided by dozens of sites on the Web. As a result,

selecting a source of information often becomes the first step in generating a wrapper.

There are many factors that have effect on decision to select a particular Web site as

an information provider:

19

Registration and access control

Some of the sites today require user registration in return for providing information

for free. This might cause problems for wrapper authors. The following must be

considered:

a) Registration overhead. It is required that the human operator registers at the Web

site and maintains the usemame and password in the knowledgebase or the

wrapper itself. Upon registering the contact information has to be provided and

usemame and password has to be kept current. This takes valuable time away

from site analysis.

b) Data depth. Registration introduces an extra step in data extraction. Commonly a

login form containing a username and password has to be filled out and

submitted. With slower connections waiting for the form to be submitted and for

user to be authenticated could last several seconds, delaying data retrieval.

c) Secure Sockets Layer (SSL). Most of the Web sites that require authentication also

require data transfer after login to be done through SSL protocol. For reasons

explained elsewhere in this work it was decided against implementation and

deploynent of an SSL-based solution. It is best to avoid such sites.

d) Site overload. The wrapper is likely to access the Web site much more frequently

than the regular user. Some site operators may regard such behavior as an abuse

20

of service that they provide. When the wrapper operates through identity based on

username and password it is much easier for the site maintainer to see that too

many requests come from a particular user and terminate or restrict this user's

access rights. It has to be noted that a carefully designed wrapper system will

disallow information source overload through use of scheduling and load

balancing algorithms. From our experience account termination most often occurs

because of violation of internal quotas on number of Web site accesses set for

users by the site owners. Actual site overload because of heavy wrapper use

occurs much less frequently. This makes account termination more of a decision

based on management and business policies, rather than on abuse.

Generally it is best to avoid sites that require registration because in our experience

wrappers for such sites have proved to be burdensome to maintain effort required.

Web site owners' objections

Some of the Web sites owners are seriously concerned about outsiders using their

information on a large scale. Even though the site access might be free, the high-

volume access to the site and use of data by wrappers and related applications might

(in the owner's opinion) constitute a copyright violation. Even though copyright and

other legal claims in such cases are often without merit, it is wise to consult an

attorney when creating wrappers for commercial use of information.

21

Site overload (a problem touched on in previous section) is also a concern. A

"misbehaving" or, in other words, poorly written wrapper can cause significant

problems for the Web site, flooding it with requests. In some cases such wrapper can

effectively shut the site down, preventing legitimate users from accessing it. Special

care should be taken when creating wrappers for slow sites. They must always be

thoroughly tested before being used heavily.

Another problem that sometimes causes objection from Web site operators is loss of

banner revenue. Wrappers are usually designed to ignore everything on the Web site

except for the data inside HTML, and that includes advertisement banners. On a large

scale this could cause profitability problems for the site, because for most sites on the

Internet revenue from banner advertisements is the primary source of income. One

could argue that Web crawlers that collect data for search engines also ignore banner

advertisements. However search engines drive user traffic to Web sites and therefore

it is beneficial for Web sites to allow them access to pages. Wrappers, on the other

hand, only collect information from sites without bringing users to them. To avert

complains of Web site maintainers it might be a good idea to give proper credit to the

site, or even promote it. This can be done in the application that uses data from the

site.

Cost

Although it is rare today, some sites do charge for access to information. Examples of

this are Web sites that sell information record-by-record (e.g. address information),

2

and Web sites that charge subscription fees for access. In order to effectively access

these services in most cases one would need automated payment system integrated

with the wrapper system. Such system would need to track uses of data and correctly

process payment information. In some cases it would also need to be integrated with a

billing system that would pass the costs for accessing the data onto user. Significant

costs associated with these data sources would make free use of data impossible and

limit the widespread use of such wrappers. When situation allows, it is best to avoid

pay-per-use and subscription sites as sources of information.

Web site performance and availability

If given a choice of Web sites of varying performance it is logical to give preference

to the site that is the most responsive. This will assure that the wrapper, which by

definition is slower than a local relational data source, would perform at the top

speed. Additionally, the better performance of the Web site - the less intrusive and

disruptive the wrapper is. High-performance sites like Yahoo! and Amazon.com,

capable of handling millions of users, are less likely to be slowed down by wrappers.

HTML quality

The quality of HTML documents from which data is extracted can sometimes be an

issue. Although the best effort is made by the Data Extraction Library algorithms to

parse any HTML, some of the sites contain too many syntax errors. The only way for

such HTML to be processed is without building a parsed tree, by treating HTML page

23

as a sequence of markup elements. Although this approach gives an alternative way

of extracting data it is extremely hard to deal with. To summarize, such sites cannot

easily be handled with technology that we describe and alternatives should be used, if

available.

Mining depth

An important criterion for Web site selection is mining depth. This is an estimate of

how many Web pages wrapper has to go through in order to retrieve the complete

data set. This metric can be composed of two numbers. The first number is usually

constant--it is the number of pages that the wrapper has to go through before getting

to the page that contains data. On these users enter login information and fill out

query forms. Second number is usually variable-it represents the number of HTML

pages that wrapper must traverse to collect all data returned by a query. This number

depends on the query that was posed through the form and sometimes can be

manipulated through "results per page" parameter offered by some of the sites.

Requests for pages and downloading of these pages are significantly slower

operations compared to parsing and data extraction. Consequently, the less mining

depth is, the better potential performance of the wrapper is (wrapper performance

depends on a set of other factors too, of course, such as site performance and

accessibility). It is better to select the Web site that has the minimal mining depth.

24

Richness and volume of data

Some of the sites provide more useful or relevant kinds of data than the others, or

provide bigger volumes of data. With all other conditions being equal it is better to

give preference to the sites that provide the most complete data sets.

Data locality

As it was already stressed, minimization of the number of pages that have to be

accessed for data extraction is one of the key factors to increasing wrapper

performance and robustness. Minimizing the number of data pages to be retrieved and

processed, is not, unfortunately, the only issue to be solved. In a significant number of

cases pages that contain data do not have complete data. Let's consider a hypothetical

example of an airline reservation system Web site. When user requests information

about all tickets available for a given destination, a set of pages is returned that

contains available flights and tickets. However, some crucial information might be

missing, such as number of stopovers for a given flight, or an aircraft type. This

information might be available on a separate page to which the results page gives a

link. The problem is that to access this additional page we have to make separate

request to the Web site. This request must be made for every flight. Therefore, for a

total of x flights distributed over y HTML pages of results wrapper has to make (y +

x) page downloads rather than just y page downloads. The extra x represents the page

with miscellaneous flight information that we have to retrieve for every flight.

Usually the number of result pages y is comparatively small, but the total number of

25

items x on those pages is significantly bigger, which causes a sharp increase in the

number of page downloads. This is a drawback that drastically decreases wrapper

performance. It is best to avoid sites that require this many requests for data retrieval.

Data presentation formats

Some of the Web sites use Java applets, plug-ins and ActiveX controls to deliver

information to the user. Technology that we are describing is not yet capable of

extracting information from these browser applications. Sites that exclusively use

these methods to deliver information should be avoided when selecting data

providers.

4.3.2 Tree representation of HTML

Before describing the actual Web site analysis let us introduce a data structure that is

used in Data Extractor project to represent HTML documents. When the Data

Extractor project was developed it was tempting to represent HTML as flat files in

memory. Flat files are easy to store and do not require complex handling algorithms

for processing.

However we decided that the tree data structure is more appropriate for storing an

HTML file. HTML is hierarchical in nature and, if the file is syntactically correct, it

can be represented in a form of a tree. Tree representation has several advantages

over flat files:

26

* Convenient structure. Traveling to pre-determined portions of the document

stored in a tree is easier than it is in structure-less flat file.

* Data delineation. Clear division of HTML into separate regions simplifies

extraction of semantics from it and defining data boundaries.

* Simplified searching. Searching for particular pieces of text and data can be

performed in isolated regions of the HTML file.

The idea of storing HTML in a form of a tree was used in many research projects and

software packages. One standard for creating and processing such trees is described

in [DOM].

There are, of course, some disadvantages to storing HTML files in trees. One of the

concerns is that time and amount of memory used to process and represent the tree

are greater than for flat files. Another problem is the low syntax quality of HTML

available on the Web, which makes it hard to build correct trees.

To determine how the HTML file can be presented in a form of a tree let us consider

an example of a simple HTML file in Figure 4-2.

27

<HTM~L~>
<HEAD>

<TITLE>Simple page</TITLE>
</HEAD>

<BODY>
<H2>Hello, World!</H2>

<!-- Simple comment -- >
<P>This is a very simple HTML page.</P>

</BODY>

</HTM>

Figure 4-2 Sample HTML document

Despite its simplicity this file contains all major elements of a common Web page.

These include tags, text and comments. In HTML, most tags have an opening and

closing part. Some of the closing tags can be omitted or, for some types of tags, do

not exist at all. The tags that can have closing parts can contain other tags and

elements, forming hierarchical parent/child relationships. Text and comments cannot

have children elements associated with them. Based on this information we can build

a tree structure from the HTML text in Figure 4-2. This structure is shown in Figure

4-3.

We begin building a tree with a Root element. There is no equivalent to Root in

HTML and we introduce it in order to simplify tree operations and make them more

uniform. Because the HTML tree can have many sibling elements at the top, such tree

would be hard to manage without a single Root element. An empty HTML file will

have just the Root element as its tree.

As we parse HTML we are continuously adding elements to the tree. The elements

that are located on the same level are considered siblings and are put into sibling

28

nodes in the tree. An element that is a child of another element becomes its child in a

tree.

We start with HTML tag and put it directly under the Root node as it encloses all

other elements in the tree. We replace the combination of an opening and closing tags

with a single node in the tree that becomes the parent of the elements that these

opening and closing tags surround.

Rt

page World Simple TML
page.

Figure 4-3 Tree representation of Simple HTML document

HEAD and BODY tags are children of HTML and are placed as such in the tree. As

we continue, tags TITLE, H2 and P are placed in their proper locations. Comments

and pieces of text become tree leaves (nodes without children) and children to the

29

tags that surround them. Comment is located at the same level of the tree as H2 and P

because it is a sibling of those elements in the HTML source.

The tree that we see does not, however, fully represent the HTML file that is shown

in Figure 4-2. Some pieces of the HTML, namely spaces and carriage returns, are

missing, while they are, technically, text elements. The decision not to include them

in the tree depicted in Figure 4-3 was made for the sake of simplicity, because

addition of 9 new text elements would overcrowd the figure and make it hard to

understand. If we were to depict the real tree produced by our HTML parsing

algorithms such elements would be there. Some of the modern software libraries for

parsing HTML consider them as unnecessary and discard such elements. Our

approach is different-in our algorithm such elements are considered regular text

elements and are put as such into the tree. We feel that it is necessary to preserve

them in order to be able to reconstruct the original HTML document. Also, they

sometimes play significant roles of data delimiters: carriage returns (though not

shown by the browser) are sometimes used by programmers to delimit output of data

in programmatically generated HTML.

4.3.3 Web site analysis

Once a Web site is selected for data retrieval (but before a wrapper is created for it) a

thorough analysis of the site must be performed. Success or failure of a particular

wrapper depends primarily on how well was the site analysis done. Good analysis

30

usually makes the subsequent programming effort easier and the resulting code is

more efficient, less bulky, and easier to maintain. The task of wrapper construction

can be sometimes split between two professionals: an analyst that studies and

documents the site in a special report, and a programmer that follows analysts' report

and implements the wrapper. To save time and effort the same person usually

performs both tasks. Therefore, when referring to "analyst" we will assume a person

doing both analysis and implementation.

Programming is the most tedious and time-consuming task of the two. Eventually we

hope to eliminate the programming step from the majority of wrapper construction

tasks with the help of a GUI tool. Such tool would allow analyst to generate a

wrapper by highlighting text portions inside the Web site, and recording link clicks

and form fills.

There are many properties and features of the Web site that the analyst has to identify

in her research. All of them will influence how the resulting wrapper will behave and

how effective it will be:

Starting page/deep linking

Identifying the starting page where the data retrieval process should begin is very

important. The seemingly simpler way of getting to data pages by following the path

from the home page is not always the best one, In this case a lot of unnecessary pages

have to be retrieved and analyzed before wrapper even retrieves the first data page.

31

The page that contains the query form may be buried deep inside the site. Therefore,

the better way of doing this in some cases is to find learn the URL of the page that

contains data or the form and retrieve that page directly, without going from the home

page first. This technique is commonly called deep linking. This will primarily work

for so-called static URLs that do not change because of context or parameters.

Sometimes a wrapper can deep link to the URL that is semi-static. This means that

portions of the URL can be modified depending on the wrapper operating parameters

and the resulting URL will point directly to the data page. This, for example, will

work well for retrieving information from the Yahoo! Weather site.

The straightforward approach to finding out weather for Miami, Florida when going

from the home page is:

a) Retrieve Yahoo! Weather home page (http//weatheryahoo.com)

b) Inside the page locate form entitled "Search by City or Zip Code"

c) Fill out the form with the string "Miami,FL" and submit it

d) Download the resulting page, parse it and extract the weather information

However, we notice that the resulting page URL is:

http://weather.yahoo-com/forecast/MiamiFLUS_f.html

32

This gives us a clue to how the city searches are done on this site. One could easily

substitute "Seattle_WA" for "MiamiFL", and receive weather for Seattle instead.

The resulting wrapper could be built to implement such substitution based on the

parameters supplied at run time. This approach certainly involves certain dangers, as

it is less robust than submitting the form. The server application that processes the

form might be doing some elaborate error checking, for example, checking the name

of the city and substituting alternative names if the city is not found.

Dynamic URLs with well-studied structure can be modified too in some cases. We

call URLs dynamic when they contain changing parameters, or are otherwise

changing depending on the circumstances. When the nature of changes is well known,

substitutions of portions of the URL may allow deep linking. Let us consider Excite

search engine. When searching for topic "dogs" we get a page with a list sites related

to dogs. One can find by analyzing URL of the result page that the query string is

associated with form parameter "search":

http: //search.excite.com/search. gw?search=dogks

By substituting the parameter value with a different value (e.g. "cats") we will get the

result page with a list of links related to cats. Here by changing the parameters in the

URL we are effectively deep linking into that page.

When the form and its parameters are known, its submission can be simulated in

software. Instead of loading the page that contains the form, finding it, filling it out

33

and submitting it wrapper can compose the appropriate HTTP GET or POST request

and submit it to the server (in-depth discussion of HTTP protocol can be found in

[HTTP]). This approach is certainly faster, but less reliable, because the form's hidden

parameters are more likely to change than its regular parameters, and the wrapper will

have to be changed more frequently when form submission is simulated.

In some cases deep linking is not possible-for example, when a session has to be

established between user's Web browser and a server of the data provider. Sessions

are established through one of the following three mechanisms: persistent HTTP

connection, cookies and UR L rewriting.

Persistent HTTP connection is a mechanism introduced in HTTP 1.1 specification,

which allows the Web site to respond to multiple requests over a single TCP/IP

connection. This connection uniquely identifies the client. With such connections

deep linking is hard or impossible to do, because in order to establish connection user

has to go to the site's home page and log in.

Cookies are small pieces of textual information that Web site can save in user's

browser and then retrieve them when necessary. Through cookies, login or shopping

basket information can be saved at client side. Because such information usually

arrives and is retrieved in a certain order deep linking or skipping steps in this process

is not always possible.

34

Finally, servers use URL rewriting to associate a session ID with the user. By

embedding this ID in all pages and URLs that it sends to the client, server can always

use the URL to tell what user sent it. Sometimes instead of session ID some other

identifier, such as a user name, is used. Through this identification mechanism all

transactions are associated with a particular user. One example of URL rewriting is

used in Web-based e-mail system NetAddress. When the user is logged in to check

her e-mail, a dynamic session ID is assigned to her and becomes part of the URL:

http://ww.netadress.cm/tp/Door/314IBGSZC/Welcome

The ID in this case is the combination of digits and letters "314IBGSZC". This ID is

valid only for a small period of time-until the login expires or user logs out of her e-

mail account. After that the URL becomes inaccessible.

Because the mechanism for allocating and distributing session IDs is located on the

server there is no way to reliably simulate it in the wrapper. Therefore, deep linking

to query results on sites with session IDs embedded in links is usually not possible.

Deep linking and skipping start pages helps lower the wrapper work time and the

number of page downloads. Also, it sometimes helps lower the frequency of wrapper

failures because the path from the entry point to the actual data becomes shorter, thus

decreasing the number of places where something could change if the site layout is

modified. On the other hand, deep linking might sometimes be the cause for wrapper

failure. Rather than following the path that user usually follows by clicking links and

35

filling out forms, wrapper attempts to take a shortcut and does so based on knowledge

of inner workings of the Web site which could change without warning. Web site

changes are inevitable in most cases and whether deep linking will prevent wrapper

from becoming outdated or hasten its expiration depends on a particular case.

Page identification

Before the data extraction can actually take place wrapper has to make sure that the

page containing data was actually retrieved. Sometimes the page that is expected does

not arrive. This happens because of many reasons. Network and site problems may

generate HTTP error pages in response to the legitimate request. Site structure and

layout changes could also cause generation of error pages. Finally, the query that the

wrapper poses to the Web site might bring no results.

For reliable wrapper execution it is important to check for all of these signs before

attempting to perform data extraction. HTTP errors are easily detectable and wrapper

should have no problem with halting execution when it detects one. Error pages that

are generated by the site are harder to handle, because the wrapper has to check for

presence, or, on the contrary, for absence of certain features in the document.

Checking for known error messages, absence or presence of known tables, links and

forms could serve as good indications of whether the data was successfully delivered.

Informational messaes, such as "No records found" or "123 sites found", serve as

good evidence of presence or absence of data.

36

Location markers

One of the ways to locate data inside HTML is to search for it with reference to some

visible location marker (or "landmark" [BD99, BDPOO, MMK99]) inside the

document. Location marker is any element of HTML that is uniquely identifiable. It

could be a piece of text, an image, link, comment-any HTML element that could be

found by searching the HTML tree. In addition to being unique, this marker has to be

located close to the data that we are extracting. Once wrapper finds such marker

inside the document, it could then "move" through the tree relative to marker's

location in order to find data.

Let us consider an example of Ebay online auction system (http://www.ebay.com).

When we are interested in a particular type of auction items we want to extract all

information associated with them. That means extracting item titles, numbers, prices,

bids, closing time, etc (see Figure 4-4).

However, as we can see, there is a large number of useless HTML elements-

advertisement banners, menus, titles and other elements-that have to be skipped

before we get to the actual auction data.

Useful data in this Web page starts in a table after the text "All items". This text is

unique and is not likely to appear before that position (at least with that particular

letter case and as a lone text element and not part of a sentence). We can use this

37

knowledge to instruct wrapper to travel to this piece of text inside the HTML, and

then to retrieve auction data from the table that immediately follows it.

Bie smthg(cr srosef In setIs F ploe -g Aig , UAgres f a ber o sv c se t eehd LMit A 'Ccormen -Geste e1&h SEc ope ~Me ~dSwn quervy $r j >G

U

0

rs erh tites an iesrpt ons (to fnd more ems)Bayme lenl c atin m15 4309 PDT

6988 tes found for "cars". Showin ems 1 t SO. sort ems fn ing ir G

All item Al om n n ae reeve G ry temrsor

35V~~6603 N '6A ti~ e 6 CkL64 0 o $S4.99 - m n n<

3 7786 SUet S e trie I . a$1 5l 6 mn nun
35)3~9, Lo The od0 i KF 117 0 $2. RI 5 m nm

3.35800 L L -T ooI.etilKreigitCX a 4 s$90 4m mi
31~S"41 ~L L N $9.99 - m ~ $99

Figure 4-4 Sample of Ebay auctions

Before using this technique it is important to make sure that location marker is truly

unique. In cases when a unique marker is hard to find, not one but a combination of

HTML elemnents can be used as a marker.

38

Data identification markers

Finding data is made easier through the use of data identification markers. These

markers are unique characteristics of an HTML document that point to data elements

and delimit distinct data records. Such markers are usually unique only inside some

part of an HTML document and they must be used together with location markers and

other search techniques.

These markers can exist in many different forms. However, HTML elements that

highlight parts of the document are most commonly used for this purpose. Such

elements include tags that specify fonts, paragraphs, record breaks, table cells and

colors. Some of the HTML elements that are not visible in the browser are useful for

data identification. For example, comments and nonprintable symbols inside text

records do not manifest itself to the user in any way, but the wrapper can split data

into records using these elements as delimiters.

Let us consider a page from Zip2 (http://www.zipscom) Web site that shows records

for department store addresses in San Francisco (see Figure 4-5). This page contains

sets of titles, addresses and telephones of stores.

The data from the first record on this page is shown in bold in Figure 4-6. Extraction

of this information is easy if you search for it using data identification markers that

surround it. Wrapper can be instructed to extract store's title from the link that points

to the details about the store. Street address and city and state information is located

39

next and can be extracted into separate records using BR tag as separator. Finally, the

phone number can be identified as bold text in the adjacent table cell.

results e r

Department Click On Business Web Sites
Sto res
Search Area: Sn F c__

(1) (4 15 66 -84

Ust e (4586-39

Figure 4-5 Zip2 address information

With the help of these features, data can be identified and extracted even when Web

site structure changes, as long as such changes do not modify the page layout

significantly.

40

<TD ALIGN=LEFT VALIGN="TOP">

<A
HREF="http: //www.zip2.com/scripts/search.dll?ep=3&id=495825812&pg=&totdup=&errp=&busco
b=&btJ=on&query=department+stores&qcity=San+Francisco&qstate=CA&sic=531102&ck=&ccity=S
an+Francisco&cstate=CA&adrVer=-1&ver=d3.0">Aeropostale

3251 20th Ave.

San Francisco, CA.

</TD>
<TD ALIGN="RIGHT" VALIGN="TOP"><nobr><FONT FACE="verdana,helvetica,arial "
SIZE="1">(415) 664-8049</nobr></TD>

Figure 4-6 Source of Zip2 address item

Tree search

One of the most powerful ways of locating data in HTML documents is searching.

We ca search for a variety of pieces of information, such as tags, tag attributes, their

values, text elements and comments. For the purposes of a particular application we

can search for exact strings or substrings, searches can be case-sensitive or case-

insensitive.

Because we are dealing with a tree structure additional types of searches are possible.

Searching can be done in the entire tree or in any of its subtrees. This means that the

search can start from the root element or from any element inside the tree structure

and only affect descendants of that element. This is a useful property, because it

allows us to localize search to specific logical parts of the HTML document, ignoring

the rest. Additionally, we can search either in a subtree or linearly. In linear search

the document is treated like a flat stream of HTML elements. Search starts from a

given position in the document and continues until its end or until the element is

found. This is different from subtree search, because subtree search finishes when the

element is found or when every node in the subtree is visited by the search routine.

41

When the root element is the starting point for the search there is no difference in

behavior for subtree and linear searches.

The decision to select either type of search depends on application needs. For some

applications locating data inside isolated portions of the document is important (e.g.

for searching inside tables). For other cases (like searching for location markers) it is

easier to think of the document as of a flat file and search linearly.

Paths

The simplest yet the least reliable (in terms of long-term stability of the wrapper) way

to locate data inside a page is by specifying a path to it. A path is a set of nodes we

can traverse to reach the node we are looking for. Paths in HTML trees usually start

from the root node.

As an example let us consider the path for reaching the text element "This is a very

simple HTML page" in a tree in Figure 4-3. In order to reach it we start from the root

of the tree and go to child number 1 at the root of the tree-tag HTML. After that we

travel to child number 2 of tag HTML-tag BODY, and then to child number 3 of tag

BODY-tag P. Finally we go to child number 1 of tag P-the text we are looking for.

This trip through the tree can be recorded as an ordered set {1,2,3,1 1. It represents a

path from the root of the tree to the element of interest inside the document. Such

sequences of steps can be easily followed in software, if the appropriate data

structures and mechanisms for tree traversing are available.

42

Unfortunately, this approach is the leading cause of wrapper failure in the event of

site changes. If a single node in the path is changed the whole path becomes invalid,

requiring wrapper modifications.

It might be tempting to use paths as the only method for locating data inside HTML

because of their simplicity. Paths are also much easier to implement in tools that

assist analyst or developer in building wrappers. It is better, however, to concentrate

on searching techniques, or combine searching with short paths that do not originate

at the root node, because this will improve wrapper robustness.

Multipage data

The absolute majority of sites that provide large volumes of data dispense it in

portions, showing it to user through sets of linked pages. There are multiple reasons

for that: shorter pages transmit faster, they are easy to read, consume less memory on

the client browser, and require less effort to be displayed. There is always a chance

that user will find the data she is looking for on the first few pages without having to

retrieve them all, thus minimizing load on the server. Finally, the more pages users

view the more advertisement banners can be shown.

Being a convenience to users this often becomes an inconvenience for wrapper

analysts. It is obviously easier to retrieve data from a single page than from a set of

linked pages.

43

An Internet search engine like AltaVista (htp//wwwaltavistacom) is a good

example of a site that produces multi-page results from which data could be collected.

AltaVista data is Web site descriptions, URLs and other information generated in

response to search query. Data entries are displayed on multiple linked pages. User

browses the result page, trying to find the Web site entry that is relevant to her query.

If such entry is not found, user goes to the next page of results (see Figure 4-7).

URL:

19. E Online-Plus - Mvies

theat rs. on vt eo. th s weks re eases~ 4f28 2000. The
URL:

0WELCOME TO FOX MOViESJ

TrnFaeIguMre 4-7s ro thisite stt sc res Fatsot:wei

estssressedg wrappe f234667s 91e0in 121h 1ex1 1617ge.2 Whetpgei

44 *nern

Figue 47 Ala~ita earc reult

Dat exrcto ofmlipg eut sdn otiuul.We h s aeo

resuts s pocesedwraper ollws he inkto he nxt aoe Whn tat ageis
lodddt xrcini oeo tadth hl rcs eet h aata s

44i

extracted is returned as a single data table or data stream to the process that executes

the wrapper.

Techniques similar to those used for data identification are used for identification of

links to pages in result sets. Such links usually appear either as HTML links or

HTML forms (in the form of buttons). Wrapper simply follows the link or submits the

form, and extracts the data from the resulting page, repeating the process over and

over. Data extraction can be performed until all data is retrieved or, in cases when

data sets are very big, until some threshold is reached.

It is important to know when to stop data retrieval. The absence of the "Next" link is

usually a good indication that the page being analyzed is the last page. However

sometimes such link can be present at the last page, and point back to the beginning

of the page sequence. In such cases other clues, such as record numbers, page titles or

other descriptive text, can be indications that the current page is the last one in the set.

Parallel page retrieval

Taking advantage of parallel page retrieval technique can significantly increase

wrapper performance. Quite often the Web site that provides data displays it on

multiple pages. Links to several such pages are sometimes accessible from the index

or summary page. One example of this is the air flight schedule in an online travel

agency Expedia (http//wwwexpedia.com). Such schedule is shown to user when she

45

enters a trip departure and destination cities and travel dates. See Figure 4-8 for an

example.

E_. .d,: r'wFvrts I o heip e

$F0 0$ 0 r Zi MO av ontes His0& M08

a ticketo

Expedia.com.mae an
~ lghts

Sav vn mnremney edngn ou

San Fannico CA@F $n Fan sori) Nw rk NYJFK-K<nnedy)

$754.M
Th S Fncl t Nw Y k t JFK}

F c hso 27-Jun 00 (SF Amven 12:30 AM

7hr 3mn Depart 2:00 PM +18 da1 gh1 0

F ._T New Y kJ KS to SY 3Fi acic
20-Jn-00 Depa1 1210 PM tSFR)
Ohr O0mn ~ Amne 0:00 PM ghn~t:n 4 Wga (AS

$757.00
Te Sn Flight i o New Yok IFK Expediano
27-JunQO (SFO Ari 12:30 AMhis scedlmn s panl 12:30PM +1 ay Fght: 40 408

user Cnnc nn tu Le- Vegas (LAS)
TI NewY Yk 1 K to Sn F s /

2Jn- DOpr 12: 0 PM (SF0)
Ohr S0mn iA0v 600 PM F~gh. 14 355

Connect mn La V ga (LAS)

$7S7:0O
a End Tue Sa Fasc no N w Yo JFK ,I s

27-Jun-)0 (SF0s Ariv 8:30 PM Flht40 34
hr 2mn 0p 100AMCnnnect in Las Vegas (LAS)

ThI New Y 1k 3FK) In Sn Fruan gamudzr
29-Jn- DOpart 2:10 PM (FOI
Shr omn Amrmve :00 PM Fgh 14 S5

Cnnt in LsVegs (LAS)

Figure 4-8 Flight information from Expedia.com

This schedule lists only brief details about each flight. The rest of the information

user can get by clicking on the links next to flights (in our examnple--link called

46

"Details and purchase options"). We have already discussed the inefficiencies of

trying to traverse all such links. However the analyst can craft wrapper in such a way

that data is extracted efficiently.

This can be achieved by doing several data extraction tasks in parallel. Because all

links to pages with details are known when the main page in Figure 4-8 is loaded,

there is no reason why wrapper should visit them sequentially. Network access

functionality becomes the bottleneck in sequential access when many processor

cycles are wasted waiting for remote site to execute requests for pages and send pages

back to client. Wrapper can be programmed to use multiple threads of execution, with

each thread loading a page pointed to by a different link from the main page. When

pages are retrieved and analyzed in this fashion, slowness of network access becomes

less of an issue. If execution of one thread is blocking on network access others can

continue to retrieve pages.

This approach significantly speeds up execution of wrappers. However, it is still far

from being a "silver bullet". The speedup still will not bring overall speed close to

cases when all information is available on a single page. The number of additional

page retrievals, even if done in parallel, could run into hundreds and thousands,

slowing down the wrapper. Additionally, parallel page retrieval is often hard to

implement correctly and thus is more expensive in development and maintenance. To

summarize, parallel page is a good technique that can increase wrapper performance,

but it is better to select sites that do not require it.

47

Hidden data extraction

Data extraction is usually done on textual portions of the HTML page. To be

effectively communicated to the user data has to be highly visible and occupy a

prominent position inside the page. There are times, however, when useful data can

be extracted from other, hidden parts of HTML. Good candidates for this are

comments, tag attributes and their values, URLs and even scripts. Useful data might

include IDs, prices, addresses, phone numbers, and other pieces of information.

Extracting this information can save time on unnecessary page retrievals.

Let us return to an example of Zip2 (htp//ww.zip2.com). This company provides

access to business address information of millions of companies in the US. User can

query this information by cities and types of businesses. Figure 4-9 displays the

results of a typical query for addresses of grocery stores in San Francisco, California.

Notice that the information presented here is incomplete-zip codes are missing from

the list of addresses. In order to retrieve the zip code for a particular address user has

to click on the icon with arrows displayed next to it. Figure 4-10 displays address

details for "M & K Market". Notice that address now has a zip code, 94118.

This is of little help to us, however, because this means that for each item in a list that

could be hundreds of items long we have to do an additional page download and

parsing. This will slow the wrapper down significantly.

48

results I20
rocer s-Retail Ci k on Business Web Si

earch Area: F

(Ig 4 bs s os data

Hideidtartiea receh iuto.Ltu aeacoel tteHM
(15)7 124,42t. (41_') 204-5605i7

source of the page in Figure -9. A portion of this HTML i shown in Figure 4-11

After close examination of that figure one could clearly see that the highlighted

portion of the URL, namely parameter "mzc2", contains the sought-after zip code,

94118. It can be easily extracted from that position. The information we need turns

out to be present on the page despite the fact that it is not shown to the user. This

means that we could extract the required data from the original HTML page without

having to load additional pages, saving significant amounts of time.

49

wsirh e

(A 418 RlateA8 sne ses

o baht t

Fide -taeaisofadrs ie
<Tre B Gten>4lc cktohstZ0,,n i i

HREF="htt 00p:y//ywCo. Po2.omsrit os/d20oortroord Ties= 2d&mS 21239989&re2=M+26+K+
Figure 4-10 Details of address item

<TR BGCOLOR=white">
<TO VALIGN="TOP" ALIGN="RIGHT">
<A
HREF="http:// ,zip2.com/scripts/doortodoor.d1lle=8200&nid2=102398989&mal2=M+%26+K+M
arket&mad2=1701+Anza+St&mct2=San+Francisco&mst2=CA& C z29&&mcn2=&mpn2=%28415%29+751

2442&query=grocery&qcity=San+Francisco&qstate=CA&narrowby=2&subquery=M&sic=541105&ck=&
userid=232228510&userpw=.&uh=232228510,0,&ccity=San+Francisco&cstate=CA&adrVer=-
1&ver=d3.0"><IMG ALT="Get driving directions" SRC="/images/directions.gif" BORDER="O"
WIDTH="18" HEIGHT="18">
</TD>

<TD ALIGN=LEFT VALIGN="TOP">

<A

HREF="http://www.zip2.com/scripts/search.dll?ep=3&id=102398989&pg=&totdup=&errp=&busco
b=&btl=on&query=grocery&qci ty=San+Francisco&qstate=CA&narrowby=2&subqueryM&sic=541105
&ck=&userid=23222850&userpw=.&uh=232228510,0,&ccty=San+Francisco&cstate=CA&adrVer=-
i&ver=d3 . ">M & K Market

1701 Aza St.

San Francisco, CA.

Figure 4-11 HTML source of item "M & K Market"

50

Let us consider another example. Web site 1-800-96HOTEL

(http://www.l10096hotelcom) specializes in hotel bookings. When user selects a

city, prices for hotels in that city are shown. After that, user can see detailed

information about a hotel, or book a room there. Results of a sample request to this

system can be seen in Figure 4-12.

hotel !com 80071546

Las Vegas, Nevada
Arivin: Faia u 6,20 or 2Nights

IGuaanteed Lowe Rates

SANS TOWN

CAESAR S PALACE

CAESAR S PALACE-PALACE ROOM CT STI 1 5 9. 5

SAHARA N9

Figure 4-12 Hotel information at 1-800-96HOTEL

However, this list does not give complete details about rooms and prices available at

each hotel. In order to retrieve all prices for a hotel we must click "BOOK NOW"

button. Then all prices will be displayed, as shown in Figure 4-13. As in the previous

example, this means that in order to retrieve complete information wrapper has to

traverse at least one additional page for every hotel listed.

51

hotel !com OO.7 1S 66

Las Vegas Nevada

.M E Reerato Efor CAEA PALACE.,

With hidden data retrieval unnecessary page downloads can also be avoided. The

HT ML source of page in Figure 4-12 is shown in :Figure 4-14. The highlighted

portion of it is a piece of hidden form associated with "BOOK NOW" button. The

hidden fields of that forrn contain roorn name and prices for at least one room not

shown to the user but available from the hotel. extracting this information from

the form we can avoid going into a room details page.

The exa uples above show that discovering and extracting hidden data fror HTML is

beneficial in speeding data extraction up.

52

<TR> <!-- ## BEGIN Hotel ROW ### -- >
<FORM ACTION="https://www.180096hotel.com/cgi-

bin/bookit?SID=HRN&Dest=LAS&LKF=HR&TRK=Hl" METHOD="POST" NAME="form2">
<TD BGCOLOR="#EEEEEE" NOWRAP >

<A STYLE="text-decoration: none"
HREF="javascript:document.form2.HotelInfo~value='l';document~form2.submit(); '">CAESAR'S PALACE
</TD>

<TD BGCOLOR="#EEEEEE" NOWRAP >
 CENTER STRIP

</TD>

<TD BGCOLOR="#EEEEEE" NOWRAP ALIGN=CENTER >
<INPUT TYPE="HIDDEN" NAME="InputData"

VALUE="Year=00&Month=06&Day=16&Nights=02&Adults=02&Children=00&Beds=l&Smoking=N&Year4=
2000">

<INPUT TYPE="HIDDEN" NAME="HotelData" VALUE="Seq=010&Hotelld=LAS
CAES&HotelName=CAESAR'S PALACE &Rating=4.5&Location=CENTER STRIP
&Policy=4 DAYS &NonRefundable=N&Special=N">

<INPUT TYPE="HIDDEN" NAME="Hotellnfo" VALUE="0">

<INPUT TYPE="HIDDEN" NAME="RoomData" VALUE="RoomType=DELUXE /1-2 PERSON
&InvType=A&InvCode=Al999999999999&RateType=036&TotalPrice=0426.00&Rates=199.95&Rates=l
89.95">

<INPUT TYPE="HIDDEN" NAME="RoomData" VALUE="RoomType=DELUXE TRIPLE
&InvType=A&InvCode=A1999999999999&RateType=042&TotalPrice=0483.00&Rates=225 .95&Rates=2
15.95">

Figure 4-14 HTML source of "Caesar's Palace" item

Scripting simulation

Modern Web sites are often script-intensive-in other words, they make wide use of

JavaScript and VBScript for a variety of tasks. Some of these tasks, such as various

visual effects, are not of particular interest to data extraction. Others, such as

navigation, or form validation and submission, are important. The functionality that

they provide lets user submit queries to the Web site and travel between pages-

something that wrapper is supposed to do. Unfortunately, script execution is beyond

the current capabilities of Data Extractor system. Therefore, careful analysis of what

particular script does is required of the analyst. Furthermore, if particular script is

53

important for data retrieval (such as submitting the form or navigating to the pages

that contain data) the actions that is performs have to be programmed in the wrapper.

This way we will be simulating execution of the script without having to execute it.

Another issue with scripts is the dynamic HTML generation. Portions of HTML

documents can be generated on the fly using JavaScript. Such generation may

complicate data extraction because the page that will be parsed and processed is not

the same page that the user will see. In such cases serious analysis is also necessary in

order to determine a way to extract data of interest without executing the script

routines.

Image maps

Analysis similar to analysis of scripting has to be done for HTML image maps. Image

maps associate parts of an image with URLs. When user clicks on a region inside of

the image, browser follows the URL associated with that region. Because clicking on

a map region is sometimes is the only way to get to the data of interest, analyst has to

determine what URL has to be followed and simulate traveling to that URL in

wrapper.

Weak binding

One of the most important techniques in successful wrapper design is weak binding.

By binding we mean wrapper reliance on presence of particular features of the Web

54

site. In order to identify and extract data from HTML page wrapper has to look for

certain features and markers inside the page. Such binding has to be weak so that

wrapper could withstand minor Web site changes without having to be rewritten or

corrected.

This issue is closely related to all site analysis and description techniques discussed

so far and it has to be taken into account when applying them. Trying to find a

balance between reliable data identification and weak binding has proved to be rather

challenging. It is hard to come up with universal recipes on how to do this optimally,

as these two tasks are inherently contradicting. The weaker the binding-the less

reliable data identification within the site is. The stronger the binding-the better data

identification is, and, unfortunately, the greater the chance that the wrapper will not

withstand the next site change.

In absence of a clear-cut solution to this problem we suggest, that site analyst tries

and identifies the smallest set of site features that will help pinpoint data location

inside the site. When selecting these features analyst also has to make sure that they

are content-dependent (could be searched for) rather than structure-dependent

(specific positions inside markup trees), as the latter are more likely to change. When

such set of features is identified it can be used to create a wrapper that is more

tolerant to site changes.

55

4.3.4 Data output

The data that is extracted from Web sites either is returned to the user directly or fed

into the calling application that analyzes and processes it. For wrapper to be

integrated into heterogeneous and other database systems its interface has to act as a

mini-database system that produces data in response to queries. Therefore, one of the

major tasks of wrapper analysis and implementation is the definition of the structure

of wrapper output, or schema. Schema description and registration is done through a

data repository, called knowledgebase, that will be described later.

We define schema by specifying names and types for pieces of data, or fields, that the

Web site provides. Wrapper is then programmed to output data using the field

information defined in the schema.

In Data Extractor system wrappers return data row-by-row rather than in bigger

chunks. The output of a field is done as soon as all the data that is contained in it is

extracted from the Web site. This approach simplifies concurrent execution of

wrapper and applications that process and consume data. As soon as the wrapper has

extracted and returned the first record to the calling application, data can immediately

be filtered, modified or otherwise processed by that application.

There are problems that are associated with schema definition. Data available on the

Web site is usually taken from a data source or database internal to that Web site.

Only a small portion of that database is displayed to the user. Knowledge about the

56

database schema is not exposed: no information is given on how data is decomposed

into tables internally or what relations exist between tables. Some fields (e.g. internal

codes or product IDs) are rarely shown to the user. Finally, the size of the data set

displayed is often less than the one that is stored in the database. All these factors

make schema definition complicated.

Wrappers in Data Extractor project return data in simple two-dimensional tables

similar to ones used in relational databases. There is a single table defined for each

wrapper. In the future we plan to use more complex data structures and generate

multiple tables from a single wrapper.

4.3.5 Wrapper parameters

Some of the advantages of a wrapper lie in its ability to shield user from Web site

complexity, and to generate data in response to requests made through a simple

interface. In order to be truly useful, wrapper has to be flexible as well. It has to

change its behavior when requested to do so by the user, and be able to execute a

class of queries, not only a single query. For example, a wrapper that extracts weather

information for major cities within a country, or even for most cities in the world is

valuable. On the other hand, wrapper that can only give weather for Tampa, Florida is

significantly less valuable,

57

In order to tell wrapper what kind of information we would like to generate from a

particular source we introduced wrapper parameters. Wrapper parameters are named

values that are passed to the wrapper when it is started.

Parameters contain important pieces of information that wrapper needs to query a

Web site. For example, to find all books on Amazon.com that are related to a

particular topic, that topic must be specified as a parameter. After wrapper receives

and analyzes its parameters it can use them to correctly fill out forms, filter out

unnecessary records and so on.

The values are passed to wrappers in two forms-name and single value:

{ name;, value;}

and name and a set of values:

{namei, { val ue, 1,valueg2, ... ,val en}}

For the majority of cases single value parameters are sufficient. Multivalue

parameters are useful in situations when wrapper has to simulate selection of multiple

values in HTML list box, or when the query has to be repeated for a variety of values

of the same parameter (e.g. lookup of ticket information to multiple alternative

destinations).

58

4.3.6 Coding and debugging

When the Web site analysis is completed the next step is to create a wrapper

application that extracts data from the site. In Data Extractor project wrapper code is

implemented in Java [JAV] using functionality of Data Extraction Library. The

results of site analysis that describe steps to traverse the site and acquire data are

implemented in Java and debugged using wrapper executor. Wrapper executor is a

Java application that through a simple interface allows programmer to specify

wrapper parameters, execute it and step through the wrapper code in any Java

development environment. Debug information about network communications and

returned data is given as feedback to programmer during wrapper execution.

When the wrapper is debugged and tested, it can be integrated in the Data Extractor

system and used in MSemODB framework.

4.3.7 Knowledgebase

To make wrapper known to the Data Extractor system, it has to be registered in a

wrapper repository that is called knowledgebase. Knowldegebase is a database that

contains information about available wrappers, their parameters, output fields,

locations and so on. The database administrator maintains knowledgebase and is

responsible for keeping it up-to-date.

59

Knowledgebase stores information necessary to describe all wrappers currently

available in the system. Wrapper status is given for each wrapper in order to clearly

mark wrappers that are inactive or outdated. Information about the site that wrapper

processes is stored. A list of output fields along with their names, types and other

information is associated with each wrapper record. Wrapper input parameters are

listed by names and types. A wrapper type is listed (at this point, wrappers can be

either "Java" or "script" (script wrappers are discussed later in this work)). Finally, for

each wrapper its storage location is given, which can be either in the knowledgebase,

or in the file system.

The knowledgebase is stored in a Semantic Object-oriented Database System

(SemODB). The detailed description of Semantic Modeling Approach to database

design can be found in [Ris92]. The simplified schema of the knowledgebase is given

in Figure 4-15.

60

SITE STORAGE KB STORAGE

url:String wrapper:Binary
name:String

description:String

w aps stor d at
(mn: ()F IL E

file-name:String
INPUT WRAPPER path:String

PARAMETER
required b name:String

name:String status:String
description:String table-name:String

type:String description:String

is pa of

:1) JAVA WRAPPER

OUTPUT FIELD
SCRIPT

name:String WRAPPER
type:String

width:Number
description:String

Figure 4-15 Simplified schema of the knowledgebase

Let us list categories, attributes and relations in the schema:

OUTPUT-FIELD - category (This category defines output fields generated by

wrapper)

name - attribute of OUTPUT-FIELD, range: String (m:1) (Output field name)

type - attribute of OUTPUT-FIELD, range: String (m:I) (Output field type)

61

width -- attribute of OUTPUT-FIELD, range: Number (i:1) (Output field width in

characters or decimal precision)

description - attribute of OUTPUT-FIELD, range: String (mi:1) (Output filed

description)

INPUT-PARAMETER - category (This category defines wrapper input

parameters)

name - attribute of INPUT-PARA METER, range: String (m:1) (Parameter name)

description -- attribute of INPUT-PARAMETER, range: String (m.:1) (Parameter

description)

type - attribute of INPUT-PARA METER, range: String (m:1) (Parameter type)

SITE - category (This category describes site that is processed by the associated

wrapper)

url - attribute of SITE, range: String (m.:1) (Site URL address)

name - attribute of SITE, range: String (m:1) (Short descriptive site name)

description - attribute of SITE, range: String (in:1) (Site description)

62

WRAPPER - category (This category defines facts about the wrapper)

name - attribute of WRAPPER, range: String (m:1) (Wrapper name)

status - attribute of WRAPPER, range: String (m:1) (Wrapper status)

table-name - attribute of WRAPPER, range: String (m:]) (Name of the table

generated by this wrapper)

description - attribute of WRAPPER, range: String (m:1) (Wrapper description)

STORAGE - category (This category defines wrapper storage)

FILE - subcategory of STORAGE (This category defines wrappers that are stored in

the file system)

file-name - attribute of FILE, range: String (m:1) (Name of the file in which

wrapper is stored)

path - attribute of FILE, range: String (m.:1) (Path to wrapper file)

KB-STORAGE - subcategory of STORAGE (This category facilitates storage of

wrappers in the knowledgebase)

wrapper - attribute of KB-STORAGE, range: Binary (m:]) (Stored wrapper)

63

JAVA-WRAPPER - subcategory of WRAPPER (This category defines Java-based

wrappers)

SCRIPT-WRAPPER - subcategory of WRAPPER (This category defines wrappers

created using a scripting language)

wraps - relation from WRAPPER to SITE (.:]) (This relation associates wrappers

with sites they process)

is-part-of - relation from OUTPUT-FIELD to WRAPPER (m:]) (This relation

connects output fields to the wrapper)

required-by - relation from INPUT-PARAMETER to WRAPPER (m:]) (This

relation connects input fields to the wrapper)

stored-at - relation from WRAPPER to STORAGE (1:]) (This relation associates

wrapper with the place it's stored at)

64

4.4 Data Extraction Library

4.4.1 Overview

One of the most important parts of the Data Extractor project is the Data Extraction

Library. Its purpose is to provide Web document retrieval, parsing and data extraction

functionality for wrappers.

The wrappers in Data Extractor project are built in Java in order to ensure their multi-

platform availability, compactness and portability. Java is often being named as a

language of choice for building Web-based applications, owing, in part, to its

versatile text processing and network communication functionality that comes

standard in Java function libraries. Java programs are often more compact, secure and

well organized even in comparison to their C++ counterparts.

Why build an additional library of functionality and not just use the core libraries of

functions? Unfortunately Java portability comes at a price of decreased performance.

This often discourages authors of network tools that require high-performance, such

as browsers, Web servers and Web crawlers, from using Java, because it performs

worse than C++ on such tasks. However, as it was shown in [HN99] and done in Data

Extraction Library, performance problems can be remedied. Another reason for

implementing a custom library is the fact that Data Extractor project required a large

number of specialized functionality, such as Web page retrieval and parsing, HTML

65

tree traversing, and so on. These functions are not provided in the standard set of core

library routines.

Yet another concern when developing the library was "reinvention of the bicycle."

Why build HTML parsing functionality or and HTTP client functionality when such

functions are available in dozens of commercial packages sold on the market today?

We have, in fact, evaluated several such libraries, both commercial and free, and

determined that none of them satisfied all the library requirements:

* Compactness. Most libraries had much more functionality than was necessary and

as a result the code size was often quite big. In comparison, our HTTP and HTML

parsing functionality is only around 50 Kbytes and, therefore, is easy to transmit

even over slow connections. Compactness is one of the key features for

distributing data extraction functionality to the client side (discussed further).

" Modularity. Some of the libraries that we reviewed could not be decomposed in

separate compact packages to be used independently, but rather were a monolithic

inseparable whole. Often such libraries, along with core functionality contain

utility functions that are rarely, if ever, used, but cannot be removed easily. Our

library was designed with little interdependence between packages and contains

only the essential functionality.

66

* Extensibility. Some of the libraries we have seen could not be easily extended to

accommodate additional protocols or support of new technologies. By having

control over the source code of the library we can easily add new features.

* Browser simulation, The library had to support a full set of functionality to

simulate browser interaction with the Web sites. It had to be able to fill out and

submit forms, follow links, accept cookies, and have other functionality that is

commonly expected in a browser. Not all libraries that we saw supported this.

* HTML parsing, traversing and searching functionality. Requirements for such

functionality in our case were dissimilar to most approaches taken by HTML

libraries. As a result we had to implement our own routines for HTML

processing.

The Data Extraction Library provides a set of Java interfaces that facilitate building

of wrappers. They can be separated into four main groups of functionality: page

retrieval, HTML processing, data representation and wrapper interface. Let us

review these groups.

4.2 Page retrieval functionality

Fast and reliable page retrieval from the Internet is crucial to wrapper operation. In

Data Extraction Library page requesting and retrieval is done through sessions. A

session is a conversation with a Web server, the result of which is a stream of data.

67

This data can be read as a stream or (when data is actually an HTML page) can be

converted into a document. Sessions are more than simple HTTP request/response

pairs. They provide rich functionality for building of requests and modification of

parameters (similar to filling out forms in browsers). The HTTPSession class is

responsible for session creation and manipulation.

class HTTPSession
HTTPSession(URL address);

void open ();
void close();
HTTPParameterList getParameterList();

void setParameterList(HTTPParameterList list.);

void useSubmit(String name);
InputStream getlnputStream ();
HTTPConnection getHTTPConnection();

int getConnectionMethod);

void setConnectionMethod(int method);
URL getURL () ;

URL getConnectionURL O;

Figure 4-16 Class HTTPSession

When we create a session, we specify the URL of the page to be retrieved. Session

has a parameter list associated with it that can be fully modified and manipulated.

Even parameters embedded in the URL can be accessed and changed.

Session also has a connection and a connection type associated with it. Connection is

a module that encapsulated an "HTTP conversation" between the Web site and the

wrapper. The standard Java library connection functionality was not sufficiently

flexible, powerful and fast for the purposes of creating efficient wrappers. Because of

this we implemented custom connection functionality and encapsulated it in

HTTPConnection class.

68

class UTTPConnection
HTTPConnection(URL address);
void connect ()
void close();
void setRequestProperty(String name, String value);
String getRequestProperty(String name);
int getResponseCode (;
InputStream getInputStream ();
OutputStream get~utputStream (;
int getHeaderFieldNum (};
String getHeaderField(int field);
String getHeaderField(String field);
URL getURL() ;
URL getOriginalURL ();
void setConnectionMethod(int method);
int getConnection ethod ();
String getHeaderFieldKey(int key);

Figure 4-17 Class HTTPConnection

Connection functionality allows wrapper to take full control of composition and

submission of HTTP requests, as well as specification of request and response

parameters. The most widely used connection methods-GET and PUT-are

supported. Connection functionality supports transparent redirection, and keeps track

of both initial and redirected addresses. Cookies are also fully implemented.

class HTTPParameter
void setValue(String value);
String getValue();
void setValues(Vector values);
void setParameterType(int type);
int getParameterType ();
Vector getValues ();
void setValidValues(Vector values);
Vector getValidValues);

void setDefaultValues(Vector values);
Vector getDefaultValues ();
void addValue(String value);
void removeValue(String value);
void removeAllValues ();
void setName(String name);
String getName();

Figure 4-18 Class HTTPParameter

69

HTTP parameters that are commonly specified as part of URL are implemented in a

separate class, called HTTPParameter. HTML parameters can have single values or

multiple (in case of checkboxes and multiple selection lists) values. Parameters can

also have sets of valid values (e.g. the values that are available in the HTML drop-

down list) and default values (e.g. the initial value of the text input filed). Full support

for all HTML parameter types and their functionality is implemented in

HTTPParameter.

class HTTPParameterList
void removeParameter (String name);
String getValue(String name);
void addParameter (HTTPParameter param);
void addParameter(String name, String value);
void addParameter(String name, Vector values);
Vector getValues(String name);
HTTPParameter findByName(String name, int startlndex, boolean

caselnsensitive);
int setParameter(String name, String value);
int setParameter(String name, Vector value);
void removeAllParameters ();

Figure 4-19 Class HTTPParameterList

HTTPParameterList handles lists of HTTPParameters. Its functionality includes

adding, removing, modifying and searching for parameters. This class is also

responsible for automatic encoding and decoding of parameters and their values for

transmission to and from the Web site.

4.4.3 HTML processing functionality

The contents of the retrieved HTML pages are stored internally in a form of a tree

that consists of markup and text elements. Each HTML page that is retrieved from the

70

Web is automatically converted into an HTML tree. The parsing and document

storage functionality was built to parse HTML and any other markup language that is

based on SGML. It can be easily modified to store and process XML documents.

The HTML parser that we implemented cannot, however, be called general-purpose

parser because it is lacking the validation mechanism. The validation functionality is

not necessary in Data Extraction Library, because we only need to store documents in

memory, traverse them and search them for information. Little attention is paid to

meanings of tags. This makes parser more robust, because it does not refuse to

process the document that is syntactically incorrect and is able to build a tree (even

incorrect one) for any document. Correctness of the tree does not concern us because

we only need a structure that can be traversed and that is a representation of the

original document. It is not our job to try to interpret this structure because we do not

render HTML on the screen - we only need to traverse it to extract data from it.

class TaggedStream
TaggedStream (HTTPSession session);
TaggedStream (InputStream stream);

void close();
long getBytesRead();
MarkupElement read();
int getPageLength();
URL getURL ();

void setURL (URL address);

Figure 4-20 Class TaggedStream

When the document is received from the network or from the file it is automatically

presented as a stream of markup elements. Markup elements (described in greater

detail further in this document) are the syntactic pieces that, when combined, create

an HTML or other SGML-like document. This stream is processed by class

71

TaggedStream. It is automatically converted into a tree document structure. For the

purposes of some applications it can be read as it is, without converting it into a

document. This may be necessary for some simple searches or other operations on

very large documents.

class TaggedDocument
TaggedDocument (URL address);
TaggedDocument(HTTPSession session);
TaggedDocument(TaggedStream stream);
Enumeration findAttribute(String text, int parameters);
Enumeration findAttribute(String text, String tagName, int

parameters);
Tag getRoot();

URL getBaseURL ();
void setBaseURL (URL address);
URL getURL ();

void setURL (URL address);
Enumeration find(String value, int parameters);

Figure 4-21 Class TaggedDocument

When the document is retrieved, a TaggedDocument object is constructed. It contains

the tree representation of the document, like the one shown in Figure 4-3. The

document can be created from a document on the Internet or from a local file. The

object is initialized by specifying the document's URL, or, in more complex cases, by

specifying the session through which the document is supposed to come. Documents

can be queried for their source URLs, and in some cases, for base URLs that are used

as references to relative objects inside documents, such as pictures. Powerful search

functions are implemented in the TaggedDocument. They are similar to tree search

functions described later in this work.

As it was already mentioned, the basic element into which every document is split is a

markup element. Markup elements are text, comments and tags, to name the most

72

common. In Data Extraction Library markup elements are represented by class

MarkupElement. It implements behavior common to all types of elements.

class MarkupElement
boolean isDescendantOf(Tag parent);
Tag getParent);
MarkupElement nextElementlnSubtree (Tag tag);

MarkupElement nextElementFlat (;
MarkupElement getLeftSiblingo);
MarkupElement getRightSiblingo);
Enumeration findlnSubtree(String value, int parameters);
Enumeration findFlat(String value, int parameters);
Enumeration findAttributeFlat(String value, int parameters);
Enumeration findAttributelnSubtree(String value, int

parameters);
Enumeration findAttributeInSubtree(String value, String tag,

int parameters);
TaggedDocument getParentDocument (;

Figure 4-22 Class MarkupElement

Each markup element is a node in a document tree. MarkupElement class implements

functionality for traversing this tree. Use it to find parents, children and siblings of the

element, as well as its parent document. Class provides functions for stepping through

the tree levels as well as traversing the document linearly.

Search functionality is also implemented in this class. We can search for pieces of

text in tags; tag attribute names and values; text and comments. Searching can be

done linearly and in subtrees. Search can be case sensitive and insensitive, and can be

done for pieces of text that "begin", "end", "contain" or are "exactly like" the search

string.

73

When the search is initiated the search function returns a cursor (called an

enumeration) to the calling application. Using this enumeration the application can

step through the found instances.

Functionality specific to each type of element is implemented in the descendants of

MarkupElement. The hierarchy of these classes can be seen in Figure 4-23.

Markup lement

Text Tag Comment

LLink MLTabe TLorm

Figure 4-23 Class hierarchy for markup elements

class Text extends MarkupElement

String getText();

void setText(String value);

Figure 4-24 Class Text

Text elements are implemented in class Text. This class inherits behavior from the

MarkupElement class and adds two simple assignment and query routines. Text

elernents (as well as comments) can only be leaves in the document tree and their

behavior is very simple.

74

class Comment extends MarkupElement

String getText();

void setText(String value);

Figure 4-25 Class Comment

Comment class implements HTML comments and its behavior is very similar to that

of the Text class.

class Tag extends MarkupElement
Vector extractText();

String getAttributeValue(String name);
Vector getAttributes (;
void setAttributes(Vector values);
Vector getChildren();
void setChildren(Vector children);
void addChild(MarkupElement child);
void setClosingTagExists();
boolean closingTagExists();
String getName();

void se tName(String name);

Figure 4-26 Class Tag

Tag class implements HTML tags. In the development of parsing algorithms no

differentiation (with few minor exceptions) was made between different HTML

tags-they are all treated equally and stored in objects of the same class. This

simplifies the parsing algorithm and provides opportunity to use the Data Extraction

Library for XML, SGML and other SGML-based markup languages.

Use this class to modifies tag name and attributes, and traverse its children. It

simplifies extraction of all text elements that are children of a particular tag, making

data extraction easier.

There are several types of tags that require implementation of special functionality:

75

class HTMLLink extends Tag
HTTPSession getHTTPSession);

Figure 4-27 Class HTMLLink

HTMLLink class implements HTML link tags, namely A and LINK. They provide

links to other documents. A special function is implemented that lets programmer

construct an HTTPSession out of a link, which then can be used to retrieve the

document to which the link points. This function significantly simplifies traveling

between documents on a Web site.

class HTMLForm extends Tag
HTTPSession getHTTPSession();

Figure 4-28 Class HTMLForm

HTMLForm implements functionality of HTML forms. Use this class to construct a

session from a form. This session will contain all of the form's parameters, including

hidden ones, along with their valid and default values. Such session can then be used

to simulate the form submission. Parameters of the session can be modified to

simulate modification of form fields.

class HTMLTable extends Tag
DataTable getTable);
DataTable getTable (boolean firstRowHeaders);

Figure 4-29 Class HTMLTable

HTML Table class simplifies data extraction from the HTML tables. Data on Web

sites is often stored in HTML tables. In such cases we can extract DataTable object

(to be described later) using HTMLTable, and return it to the calling application.

76

class TagAttribute
Str ing getValue ();
void setValue(String value);
Tag getParent();

void setParent(Tag parent);
String getName();
void setName(String name);

Figure 4-30 Class TagAttribute

Tag attribute functionality is implemented in class TagAttribute. It provides

functionality for working with attribute names and values.

class MarkupEnumeration
Object nextElement();
boolean hasMoreElements (;

Figure 4-31 Class MarkupEnumeration

The two classes that facilitate stepping through the search results are

MarkupEnumeration and TagAttributeEnumeration. MarkupEnumeration steps

through found elements of the document tree.

class TagAttributeEnumeration

Object nextElement();
boolean hasMoreElements (;

Figure 4-32 Class TagAttributeEnumeration

TagAttributeEnumeration searches through attribute names and values.

4.4.4 Data representation functionality

When data is extracted from the Web it is stored in a standard way and shipped to

consumer. There are two ways to store data in Data Extraction Library-in rows and

in tables. Tables are collections of rows.

77

class DataVector
DataVector ();
DataVector(Object[J values);
DataVector(Vector values);
int indexOfStringValue(String value);

void insertElementAt(Object value, int position);
void removeAllElements ();
int size();

Object elementAt (int position);
void setElementAt(Object value, int position);
void addElement(Object value);
void removeElementAt(int position);
boolean isEmpty () ;

Figure 4-33 Class DataVector

Rows are implemented by instances of class DataVector. DataVector stores text

strings, although it potentially can store objects of any kind. Rows can grow and

shrink without limitations, elements can be inserted anywhere in the row or replace

other elements. DataVector also provides functionality for searching for substrings

inside of elements.

class DataTable
void setColumnNames (DataVector names) ;
DataVector getColumnNames () ;
Object getValue(int row, int column);
void setValue(Object value, int row, int column);
void removeRowAt(int row);
DataVector rowAt(int row);
DataVector columnAt(int column);
void removeColumnAt(int column);
void setColumnName(int column, String name);
String getColumnName(int column);
void removeAllElements ();
void addColumn(DataVector column);
void addColumn(DataVector column, String name);
void addRow(DataVector row);
void insertRowAt(DataVector row, int rowPos);
int getHeight();
void insertColumnAt(DataVector column, int columnPos);
void insertColumnAt(DataVector column, String name, int

columnPos) ;

int getWidth();
int getColumn-ndex(String name);
DataTable subTable(int rowBegin, int columnBegin, int rowEnd,

int columnEnd);

Figure 4-34 Class DataTable

78

DataTable implements functionality for creating and modifying tables of data. Rows

and columns can be added, removed and modified anywhere in the table. The table

dimensions are automatically adjusted to maintain its rectangular shape. Columns can

be labeled with descriptive names. Applications can extract "subtables" of any size

from tables to form new tables.

4.4.5 Wrapper interface functionality

Wrapper interface functionality provides a simple communication and control

mechanism that simplifies implementation of wrappers and transmission of data.

class DataExtractor
void returnRow(DataVector vector);
void returnTable(DataTable table);
void getData(Parameters parameters);

Figure 4-35 Class DataExtractor

Every wrapper implements a getData function through which it is automatically

integrated into the wrapper framework. Wrapper execution starts when the controlling

environment executes this function and ends when the execution of this function

ends, either naturally, or because of an error. While working, wrapper returns data to

the calling application using returnRow and return Table functions.

class Parameters

void set(String name, Object value);

Object get.(String name);

Figure 4-36 Class Parameters

79

Every time the wrapper is executed its behavior is modified through parameters.

Parameters are transmitted to wrapper inside the Parameters class. This class assigns

names to values (both single and multiple) and provides access to these values.

Exceptions provide convenient mechanism for notifying the calling application about

the exceptional situations and errors that occur inside of wrapper.

class SiteFormatException

Figure 4-37 Class SiteFormatException

The most common class of errors occurs when the Web site structure changes. In the

dynamic environment of the Web such changes are inevitable and usually it is not a

question of "if" but "when" the site will change. When the wrapper detects that the

site format is different from what it expects it to be it is often impossible to continue.

In such cases wrapper should throw a SiteFormatException exception to notifying the

wrapper controller of the site format error. A common automated response to such

error on the system side is termination of wrapper execution. After such wrapper is

stopped it is marked as "outdated" in the knowledgebase and systems administrator is

notified.

class SiteErrorException

Figure 4-38 Class SiteErrorException

SiteErrorException error is used to tell the calling application that the fatal error has

occurred and that further data extraction is impossible. Such errors are not generated

frequently and should be used to indicate a genuinely serious problem. Most errors

80

can be safely ignored and wrapper can simply generate an empty result set to indicate

unavailability of data.

class BadlnputException

Figure 4-39 Class Bad nputException

BadlnputException is thrown when wrapper detects an error in parameters that were

supplied to it or when the required parameters or values are omitted.

4.4.6 Challenges

Some difficulties were encountered while implementing the HTML parser

functionality and page retrieval.

Syntax errors

In the course of building wrappers for a variety of sites we found a large portion of

HTML pages to be syntactically incorrect. A shocking estimated 90% of all Web

pages on commercial Web sites we have analyzed so far had syntax errors. The high

quality of modem Web browsers is partially to blame for such a high percentage of

incorrect HTML documents. In order to accommodate the widest possible variety of

Web sites and make an effort to display any Web page, no matter how badly

structured, the browsers were made extremely forgiving. HTML page author can miss

or mismatch closing tags, put end tags in the wrong order, not close comments or

make other mistakes-and browser will not alert her to the problem.

81

Faulty HTML is often created by inexperienced or careless designers. Sometimes

errors are introduced by buggy or poorly written HTML editor tools that generate

incorrect HTML or do not enforce correct syntax. Browser forgiveness, while being a

convenience to a Web surfer, condones bad HTML design habits and makes the job

of HTML parsing much harder.

Syntax errors, fortunately, had little impact on the work of our parsing functionality.

Only for one site out of over a hundred analyzed a wrapper could not be built due to

hopelessly incorrect HTML pages. For all other sites the parser did a satisfactory job

of building markup trees out of pages. Such trees weren't always "correct" in the

sense that it is impossible to build a correct tree for an incorrect document. However,

they provided a representation of the document that is adequate for traversing and

information extraction. The job of HTML parser in our case is merely to attempt a

split the text of an HTML document into a markup tree; it is not required to assure

that this tree is valid syntactically or that it represents a correct interpretation of the

HTML source. With the exception of link and form tags semantic meanings of tags

are ignored.

Slowness of core network functionality

Java is an interpreted language and this takes its toll on performance of time-critical

routines in the standard Java libraries. Slowness of the network functionality in Java

contributed the most to the overall slowdown of the wrapper operations. In our tests

between 40% and 70% of the overall wrapper execution time was spent connecting to

82

Web servers, sending requests for pages and receiving pages. In comparison only

about 5-10% of the time was spent on parsing and processing, and the rest--on

operations associated with data extraction and wrapper execution control.

Network operations were somewhat sped up when standard Java HTTP protocol

implementation was re-written using sockets. This way a lot of unnecessary

operations were eliminated, making the implementation leaner, faster and flexible

enough to accommodate redirects, cookies and other protocols.

In the future we expect the slowness of the network functionality to remain one of the

stumbling blocks for successful wrapper implementation. Slowness of such

operations is not inherent to Java-the same operations implemented in C++ for

comparison purposes performed only insignificantly faster. This decreased

performance significantly reduces usefulness of the applications written using

wrapper technology because the speed of data set generation is slow and sometimes

insufficient for satisfactory user experience.

Scripted Web sites

The majority of Web sites today use some kind of scripting. The two commonly used

scripting languages are JavaScript (or JScript) and VBScript. Most of the Web page

scripts are used for decoration purposes only and carry no semantics. However, in

some cases scripts assist navigation or validate and fill forms.

83

In our opinion attempting to parse and execute such scripts in the course of data

extraction is an interesting technological task, but it does not seem to facilitate such

extraction in a significant way. All scripted functionality for page navigation and

processing of forms can be duplicated in wrapper code. This, to our mind, is less

resource and time consuming task than building a script interpreter. At this point in

time it was decided against implementing script interpretation functionality in the

Data Extraction Library.

Applets, Plug-ins, ActiveX controls

A significant number of Web sites use Java Applets, ActiveX controls and Netscape

Plug-ins to provide users with functionality that cannot be provided through scripting

or to display data that cannot be displayed in HTML or images. It is clear that

extracting data and navigation information from these mini-applications is

significantly harder that doing so with embedded Web page scripts. Attempting to do

this is a very large project in itself. Also, very few Web sites provide data of interest

to data extraction application using these technologies due to their low portability and

demand on computer resource. With the increasing number of Web users accessing

the Web through low-performance, low capability devices such as Personal Digital

Assistants (PDAs) and cellular phones we do not expect popularity of these

technologies to increase. We decided not to pursue the path of analyzing and

attempting to extract data from these browser mini-applications.

84

Secure Sockets Layer (SSL)

Implementation of the SSL support for the library is an important issue. Many Web

sites today support this protocol for secure client-server communication. For Data

Extraction Library to be able to access these Web sites, SSL protocol support has to

be implemented inside the library. The SSL protocol was studied and the

functionality that establishes a secure connection was added to the library.

Unfortunately problems of different nature precluded us from using it or distributing

it. Currently the encryption technology used in SSL and on a majority of sites

supporting SSL is patented by RSA Inc. (http://www.rsa.com), and licensing fees

have to be paid for its use and distribution. This hampered any further work on the

issue. The issue of SSL support might be solved soon, because relevant patents are set

to expire in Fall 2000.

During Web site analysis we also determined that the vast majority of the information

providers either offer two ways of accessing information (both with SSL and without

it) or offer portions of information that are free without SSL. Because Data Extractor

technology is primarily geared towards the free access to information this allowed us

to avoid having to incorporate SSL into our software. In the future, however, SSL has

to be supported, so that the wrappers would be able to cover the same set of Web sites

the browsers usually cover.

85

4.5 Sample wrapper

So far we have described the process of Web site selection and analysis, issues

involved in wrapper construction, and, finally, the data extraction functionality

available through the Data Extraction Library. Let us now apply this knowledge and

step through the process of wrapper analysis and construction for a simple Web site.

4.5.1 Sample Web site

The Web site that we will be analyzing is a fictitious online bookstore called

"Makebelieve Bookstore". We decided not to analyze the real world Web site because

the details of such site and some of the problems with its analysis could have been

distracting. Instead of concentrating on the complete outline of process and the

functionality it could have been easy to get lost in discussion of details that, while

important, could have prevented us from seeing the big picture.

The functionality of the bookstore is very simple. The user is first greeted with a

homepage that contains book database query form (see Figure 4-40). Using this form

bookstore visitor can search for Computer Science books. Search can be performed

by a partial book title, publisher and price range. To find a book at least one publisher

has to be selected. Available price ranges are "less than $20", "less than $50" and

"less than $100".

86

When user selects the search criteria and presses "Find books" button search request

is submitted to the bookstore Web server. The server application finds books that

have specified features in its internal database and displays results to the user (see

Figure 4-42). If more than 10 books are found the results are displayed on multiple

linked pages that user can go through by selecting "Next" and "Previous" links. When

no books match the specified criteria bookstore responds with a message "No books

found."

As we can see this is a very simple site that is easy to analyze. At the same time it

bears all the characteristics of the sites we usually select for data extraction:

* Search form. We know that most Web sites today use HTML forms that let user

search their internal databases for information.

* Error and success messages. Search results are clearly identified by messages,

whether it is the number of records found, or indication that the query did not

generate any results.

* Multiple records of the same structure, containing different data types. The kinds

of data that are generated are diverse, including text, currency and date

information. Data is organized in sets of records that (we assume) closely

resemble the records of the database where the Web site is getting its information.

Multiple records are available, all having the same structure.

87

* Multiple result pages. Data is shown on multiple pages and can to be accessed by

navigating the links or submitting forms.

a

a nm

title:

PubIi.hi r FSp nier Ve IP Mht~sendst

Figure 4-40 Bookstore query form

4.5.2 Site analysis

Before implementing the wrapper it is important to do a preliminary analysis of the

site's features. As we know from previous sections such analysis can significantly

speed up development and improve wrapper performance.

88

<HEAD><TITLE>Searching the online bookstore</TITLE></HEAD>
<BODY>
<H

2
>Welcome to Makebelieve Bookstore!</H2>

<P>Use form below to find a book. You can search by partial

title of the book, publisher and price range. </P>

<r-- Book search form -- >
<FORM ACTION="books.jsp" METHOD="GET" NAME="searchform">
<TABLE WIDTH="35%" BORDER=0 BGCOLOR="#D4E3Fl" CELLSPACING=0 CELLPADDING=2>
<TR>

<TD HEIGHT=50>Partial title:</TD>
<TD HEIGHT=50><INPUT TYPE="TEXT" NAE="title"></TD>

</TR>
<TR>

<TD ROWSPAN=3>Publisher:</TD>
<TD><INPUT TYPE="CHECKBOX" NAE="publisher" VALUE="MT">M & T</TD>

</TR>
<TR><TD><INPUT TYPE="CHECKBOX" NAE="publisher" VALUE="SV">Springer Verlag</TD></TR>
<TR><TD><INPUT TYPE="CHECKBOX" NAME="publisher" VALUE="AW" CHECKED>Addison-Wesley</TD>
</TR>
<TR>

<TD HEIGHT=50>Price:</TD>
<TD HEIGHT=50>

<SELECT NAE="price">
<OPTION VALUE="20" SELECTED>less than $20
<OPTION VALUE="50">less than $50
<OPTION VALUE="100">less than $100

</SELECT>
</TD>

</TR>
<TR><TD ALIGN="CENTER" HEIGHT=50 COLSPAN=2><INPUT TYPE="SUBMIT" V UE="Find
books"></TD> </TR>
</TABLE>
</ FORM>
</BODY>

</HTM>

Figure 4-41 Source of bookstore query form

We begin by analyzing the data entry form. We see that it is the only form in the page

and can be found by simply looking for the FORM tag (see Figure 4-41). We analyze

form fields and decide which of them we will modify and which will be left

unchanged. We try various combinations of input parameters to determine how Web

site responds to a variety of entered values. In particular, we are interested in how

Web site responds to queries that bring no results (e.g. when the partial book title

cannot be matched in the database). We determine that when we search bookstore for

a title that is guaranteed not to exists (e.g. "@#$%") Web site responds with a page

containing string "No books found" (similar approach to recognizing empty result

pages is described in [DEW97]).

89

._ _

I 1A a

i

r
i
i

Book- tiffo Ye PI ic
I

i

JIT7
i

q

x Lr' c. ;, IIC" i i1 l1I..,.1o31 '. ;iSlf flilo E. 1. PC P
1?1.II $C jit 3a IC T' imt dt: to the LI -1 1,1 ',,=1lo 1_- i

c idl 3t It<l , . :f C ii ttl. m'elli ikt t ',11 a rI B I! lt'itl

1 _ \ 1
L

{ 3 1 IY 0i1 p 1 c .Ti tft . Ilk1 3eyl 3 .ft z 4 f F .. :E. a C 1},; =t1i
r Ti

;

'{ "
Tom-

1

g } r#
,j)r $j ! :

$1
(

?
_

,Y, 1 1) 1 I \i

DT3 -Moi:ck and j ,f <<3 c The,)1 ' l i:r, ti,> t is3, -U y r

1 k ?.J .. 6 a ¬ . ? 1. E_

X
s "tm

it tit I lli f;)W A lw! Re,, "e rv m Y l..S ,1 aI e t ? 4 't;

T- t T E p7 i-ep

i

3f t : slim ?=3 ;fi? 3;t , An hill odulc

iz t .1 IT

i

a

f

Figure Bookstore sears results page

also study cases when queries bring one age of results and when results do not

fit on a single age and are scattered across multiple ages. It turns out that the

difference between such cases is minimal. In Figure 4-42 we see a common results

age. At the bottom of the page we see a link called "Next". ' cn Ali results fit on

one page no such link is present. When results occupy several pages such link is

90

present and in order to see all results we must follow it until a page that doesn't

contain "Next" link is found.

<HTM>
<HEAD><TITLE>Book Catalog</TITLE></HEAD>
<BODY>

<H2>Found 33 books.</H2>
Displaying books 1 through 10. <P>

<TABLE BORDER=1 BGCOLOR="#D4E3F1">
<TR>

<TD><CENTER>Book title</CENTER></TD>
<TD><CENTER>Year</CENTER></TD>
<TD><CENTER>Price</CENTER></TD>

<TD><CENTER>Publisher</CENTER></TD>
</TR>

<TR><TD>Database Design</ TD><TD>1972</TD><TD>$7 . 50</TD>
<TD>ADDISON-WESLEY PUB CO</TD></TR>

<TR><TD>Feedback and Organization Development : Using Databased Methods
(Addison-Wesley Series on Organization Development</TD><TD>1977</TD>
<TD>$25.95</TD><TD>ADDISON-WESLEY PUB CO</TD></TR>

<TR><TD>A Guide to Ingres : A User's Guide to the Ingres Product (A Relational
Database Management System With Built-In Application Development
Facilities F</TD><TD>1987</TD><TD>$40.95</TD><TD>ADDISON-WESLEY PUB
CO</TD></TR>

<TR><TD>The Ingres Papers : Anatomy of a Relational Database System (Addison-
Wesley Series in Computer Science</TD><TD>1985</TD><TD>$45.25</TD>
<TD>ADDISON-WESLEY PUB CO</TD></TR>

<TR><TD>Relational Databases and Knowledge Bases</TD><TD>1989</TD>
<TD>$31.25</TD><TD>ADDISON-WESLEY PUB CO</TD></TR>

<TR><TD>Database for the IBM PC (Micro Computer Books</TD><TD>1984</TD>
<TD>$14.95</TD><TD>ADDISON-WESLEY PUB CO</TD></TR>

<TR><TD>Data Models and Database Theory</TD><TD>1996</TD>
<TD>$30.00</TD><TD>ADDISON-WESLEY PUB CO</TD></TR>

<TR><TD>Concurrency Control and Recovery in Database Systems</TD><TD>1987</TD>
<TD>$35.50</TD><TD>ADDISON-WESLEY PUB CO</TD></TR>

<TR><TD>Files and Databases : An Introduction</TD><TD>1986</TD>
<TD>$41.95</TD><TD>ADDISON-WESLEY PUB CO</TD></TR>

<TR><TD>Database : A Primer</TD><TD>1983</TD><TD>$18.95</TD>
<TD>ADDISON-WESLEY PUB CO</TD></TR>

</TABLE>

<A HREF ="/bookstore/books. jsp?publisher=MT&publisher=AW&price=100&title=database
&start=11">Next >>

</BODY>
</HTM>

Figure 4-43 Bookstore search results page source

Finally, we determine how we can extract data from the pages. Let us study the

source of the page with results (see Figure 4-43). The table that contains the book

information is the first and only one in the page. It has 4 columns and a title row,

which has to be skipped during data extraction. The format of the data table is the

91

same on every result page. We also determine that the first column contains book

title, second contains year, third contains book price and fourth contains the name of

the publisher. Price always starts with a dollar sign.

At this point we are done with analysis and are ready to implement the wrapper code.

Of course, this Web site is a "toy" site, and for real cases the complexity of the

analysis and implementation will be bigger.

4.5.3 Implementation

We will implement our wrapper in Java using Data Extraction Library. The resulting

portion of the source code that performs data extraction is shown in Figure 4-44. The

source code presented here is not a complete application but rather a stripped down

piece of source code, simplified for better understanding. In the complete application

a variety of additions can be made in order to strengthen wrapper's robustness.

Multiple additional safety checks and data purification code can strengthen wrapper's

error detection and make data output cleaner. The choice to do that depends on the

analyst and is usually dictated by the level of perfection that has to be achieved and

amount of time available for implementation. We argue that the functionality

presented here is adequate given the simplicity of the Web site and non-crucial nature

of the wrapper.

92

// loading and filling out Bookstore search form ---------------------------------
TaggedDocuent td = new TaggedDocument(new URL("http://localhost/bookstore/"));

Enumeration enum = td.find("form",MarkupElement.TAG); // find form inside the document
if (!enum.hasMoreElements())

throw new SiteFormatException("Form not found",td.getURL());

HTMLForm hf = (HTMLForm)enum.nextElement(); // access form
HTTPSession hs = hf.getHTTPSession(); // convert it to HTTP session
HTTPParameterList pl = hs.getParameterList(); // get form parameters

Vector v = new Vector(); // select 2 publishers ...
v.addElement("MT"); /... M & T and ...
v.addElement("AW"); ... Addison-Wesley
pl.setParameter("publisher",v);
pl.setParameter("price", "100"); // select price to be < 100
pl.setParameter("title","database"); // select partial book title to be "database"

// submitting form and retrieving results page ---------------------------------------
hs.open(); td = new TaggedDocument(hs); hs.close();

// processing results pages --
while (true)
{

// looking for the book table --
enum = td.find("table",MarkupElement.TAG);
if (!enum.hasMoreElements(})
{

// if the search found no books then just return empty table
if (td.find("No books found.",MarkupElement.TEXT).hasMoreElements(})
return;

else throw new SiteFormatException("Book table not found",td.getURL());
}

Tag ht = (Tag)enum.nextElement(); // go to the table

// looking for table rows ---
enum = ht.findlnSubtree("tr",MarkupElement.TAG);
if (!enum.hasMoreElements())

throw new SiteFormatException("No rows found",td.getURL(),ht);

enum.nextElement(); // skip first row (header)

while (enum.hasMoreElements())

{

// extracting text from every row and returning it-----------------------------------

Tag tr = (Tag)enum.nextElement(); // extract text from every row
Vector strings = tr.extractText();
if (strings.size() != 4) // check for correct table width

throw new SiteFormatException("Wrong table width",td.getURL(),tr);

DataVector dv = new DataVector(); // compose return data table row
dv.addElement(((String)strings.elementAt(O)).trim());
dv.addElement(((String)strings.elementAt(l)).trim());
String price = ((String)strings.elementAt(2)).trim();
if (price.charAt(O) == '$') // remove dollar sign from the price
dv.addElement(price.substring(l));

dv.addElement(((String)strings.elementAt(3)).trim());
returnRow(dv); // return next data row

// processing Next link, if one exists ----------------------------------- -----------

enun = td.find("Next >>",MarkupElement.TEXT);
if (!enum.hasMoreElements()) break; // not found - we are done

// link found - follow it

hs = ((HTMLLink) ((Text)enum.nextElement()).getParent()).getHTTPSession();
hs.open(); td = new TaggedDocument(hs); hs.close();

Figure 4-44 Bookstore data extraction wrapper

93

We begin by downloading the home page of the bookstore from the address

http://localhost/bookstore/ This page is converted into a searchable TaggedDocument

upon download. We know from the analysis that the form that we need is the only

form on that page. By means of a simple search for a form tag we determine if the

page that we have received is the page we are looking for. If the form is not found it

might be an indication of the site change or unavailability, and we notify system of

this by throwing appropriate Java exception.

Once the form is found it is converted to an HTTPSession and is ready to be filled out

with our search criteria. For the purposes of a sample application we will implement a

predefined query for this bookstore Web site. We will request books published by

M&T and Addison-Wesley that are priced less than $100 and contain word

"database" in their titles. In a "real world" wrapper the developer would probably add

wrapper parameters that for title, publisher and price. This way the bookstore can be

searched for a wide variety of books without having to modify the wrapper code.

When the form is filled out, it is submitted, the page with results is received, and a

new TaggedDocument is created from it. The first thing we do in the new page is

check whether the document that we received contains an HTML table. If it does not,

this means that the document that we received does not contain any data-we know

from analysis that an HTML table containing data has to be present. If this is the case

then we check for the presence of message "No books found" inside the page text. If

it exists that means that our search merely did not yield any results. This is a normal

situation and we just return no results to the calling application-an equivalent to the

94

empty result set. If, however, such message was not found then this is an error and we

have to throw Java exception to declare that the site format has been changed.

Once we have found the table that we are looking for, we can process its rows. First

we skip the title row that contains column headings. After the title row all the rows

are contain actual data. We extract textual information from every row and check that

there are exactly 4 columns in each row. If there aren't, then the table format has been

changed. In this case we have to notify system of the changed site structure, so that

the wrapper could be updated quickly.

When the data is extracted, it is cleaned from the extra spaces that might be present

inside and the dollar sign is stripped from the price. After the data is cleaned it is put

into a DataVector and returned to a calling application. Data cleaning and extraction

is performed until no rows are left in the table.

After the table is fully processed we can go to the next page to extract data from

there. In order to do that we search the page for the text containing string "Next >>".

If such text is found we go to its parent element, which must be a link. If it is a link

then we convert this link to an HTTPSession and use it to retrieve the next page of

data. When that page is retrieved and parsed into a document we repeat the process of

data extraction.

95

The process of extracting data from the page and moving to the next page is done

while the "Next" link is present in pages. When the last page is reached the data is

extracted from it and the wrapper execution is finished.

4.6 Data Extractor Scripting Language

4.6.1 Introduction

As the Data Extractor project was progressing two things soon became apparent.

First, the majority of the Web sites which were analyzed and for which wrappers

were implemented had simple structure and did not need the full power of Java for

data extraction. Second, maintenance of Java wrappers became cumbersome in some

cases, where Web sites would change their structure once in three months or even

more often, which in tum required changing the Java source of the appropriate

wrapper. The need was felt for a simpler way to define wrappers which could give

wrapper designer access to the wealth of data extraction functionality already created,

but at the same time would allow her to formulate wrapper in a simple way. As a

result a simple language that facilitates fast definition of wrappers for the majority of

Web sites was proposed. The language is called Data Extractor Scripting Language

or DESL (pronounced as "dazzle").

96

We followed several requirements when we designed DESL. First, it had to be

simple, expressive, and cover only the functionality necessary to extract data from

HTML. It was not necessary to create another programming language similar in

power to Java. This would have defeated the purpose of such language, because the

combination of Java and Data Extraction Library are already well suited for building

wrappers. Simplicity and expressiveness of the language improve understandability

reduce code size, reducing overall maintenance time. Java can still be used in cases

when site is too complex for a scripting language.

Second, we had to be able to generate scripts in this language using a user-friendly

GUI. One of the plans for future development of Data Extractor is to build a GUI

environment, where a designer could create and update wrappers quickly, using a

WYSIWYG ("What You See Is What You Get") interface. A wrapper would be a

result of a "macro recording" of the steps the designer takes through the Web site and

the data extraction instructions generated in response to the data fields that designer

highlights inside the site. Because of the demands of the GUI, DESL must support

"round trip engineering". This means that we should not only be able to generate the

script based on designer actions, but also import it into the GUI afterwards and

modify it if the need arises.

97

4.6.2 Overview

DESL is a platform-independent, interpreted programming language. It is not a

general-purpose programming language, however, because it is lacking the language

control structures and data operations that are commonly expected in a programming

language. These features were omitted to simplify the language and make it suitable

for computer-assisted script generation and modification. DESL navigate Web pages,

extract data from them, purify it, and send it to the calling process.

Syntax of DESL in Extended Backus-Naur Form (EBNF) is given in Appendix.

Scripts in DESL are composed and stored as text files, one per script. Script file has

" .desi " extension.

Scripts are compiled before being interpreted. Compilation may be performed into

some external representation, like "bytecode" that can be executed, or Java source

code, that can be compiled and then executed. Alternatively, scripts may be compiled

into memory and executed from there without being saved externally. Particular

compilation and execution methods can be chosen depending on the situation.

Scripts behave the same way Java-based wrappers do in Data Extractor system. They

acquire execution parameters from user, traverse and analyze Web pages, extract and

purify data, and return data to the calling process.

98

4.6.3 Document blocks

In scripts, execution and decision-making is structured around HTML documents.

Script travels from document to document, extracting data along the way. Depending

on the contents of the document decisions are made about whether to travel further,

extract data, abort execution, or take some other action.

DESL script consists of a number of document blocks. Each block has a unique name

followed by braces ("{ ") that contain sequences of commands for matching and

extracting data. Every document name must begin with a letter and contain letters,

digits or an underscore ("_"). It is case-sensitive. An empty document block looks

like this:

simpleblock
{
}

Each block describes an HTML document and contains instructions that find and

extract data. Instructions can be of two types: statements and pattern expressions.

Statements perform data manipulation and flow control, and are represented by

commands and assignments. Every statement ends with a semicolon (";"). A lone

semicolon represents an empty statement. Statements can be grouped in a statement

block, or a sequence of statements surrounded by braces:

99

{
statementl;
sta temen t2;

}

Pattern expressions are instructions for traveling through the document tree,

matching groups of elements, and manipulating data in the tree. Pattern expression

consists of a pattern and an action. Pattern matches element sequences in the tree.

Action is a statement or sequence of statements that execute when the pattern is

matched.

More details of pattern expressions and statements are given further in this work.

Document blocks are linked to each other with special commands-@follow and

@spawn. These commands load new documents and execute blocks associated with

them. Consider, for example the following short script:

title-page
{

//... load title page and process it
//... now go to query page:
@follow (querypage);

}

querypage
{

//... specify query
/... get results in the new document and process them:

@follow(results);
}
results

{

/.. process results

}

100

In this example we first load the title page, obtain a link to the page that contains

query form and follow that link. In the query page we specify query parameters and

submit the form by calling follow. Finally we get to the results page where we extract

data.

Execution of the script starts with processing the first document block. If that block

contains references to other HTML documents they are also processed. The execution

of the script ends when all the referenced document blocks have been processed.

The first document block in the script must have parameters. These parameters define

the URL and other information related to the first document that the script would

retrieve and process. For example:

yahoo-search("http: //search.yahoo .com/bin/search",
@method ("get ") , @par("p", " computers "))

{

}

The only parameter that always has to be specified is the document URL-all other

information is optional.

Documents can make recursive calls to themselves. This becomes necessary, for

example, when a linked set of HTML pages contains search results. In this case

structure of every document in a set is the same and the same processing instructions

101

can be used. One of the ways to process such chain of documents is to reference

document from itself:

process results

{
//... do required processing of results on the page
//... check if we need to go to the next page of results
I... if no - stop execution
@follow($urlprocess_results);

}

4.6.4 Data types

The only data type that DESL scripts manipulate is string. Text strings consist of zero

or more characters and are enclosed in double quotes. Long strings can be composed

from several pieces using a plus ("+") sign. String constants can contain the following

escape sequences to denote control or nongraphic characters:

\b Backspace \t Tabulation
\n Linefeed \f form feed
\r Carriage return \ " Double quote

\' Single quote \ Backslash
\ddd Character with \xhh Character with

decimal code ddd hexadecimal code hh

The following are examples of strings:

""l "St"+"ring" "\tThis is an ampersand: \x26"

102

Most commands and functions in DESL operate on string expressions. String

expression is a combination of string constants, variables and functions that return

string results combined using a plus sign. For example:

"The price for " + $product + " is " + @trim(@alltext)

Aside from strings, DESL also includes rudimentary integer type support. In

functions that require integer arguments (e.g. a @sub function that is described later)

integer constants can be used. Neither integer arithmetic, nor type conversion

between strings and integers is supported yet.

4.6.5 Variables

DESL scripts manipulate text strings. Strings can be temporarily stored in variables.

Variables in DESL are global and are accessible throughout the script. Variables do

not require explicit definition-they are allocated and become accessible as soon as

they are referenced in the script.

New variables are initialized with an empty string (""). Once placed inside the

variable, a value will remain there until the end of execution or until it is replaced by

another value.

103

Each variable name must be preceded with a symbol that shows its type. All variable

names used in scripts must begin with a letter and contain letters, digits or an

underscore ("_"). Variable names are case-sensitive.

There are three major types of variables: temporary variables, input parameters, and

output fields.

Temporary variables

Temporary variables are used to temporarily store values that are extracted from the

document. Their names begin with a dollar sign:

$current-temperature

Input parameters

Values are passed into the script via input parameters. Input parameters start with a

percent sign:

%airport-code

104

As we know from discussion of wrappers parameters can have single and multiple

values. When the variable has multiple values a special iterator-@foreach-can be

used to cycle through all of them. For example:

@foreach (%stock)
@spawn("http://finance.yahoo.com/q",process,@par("s",%stock));

In this example @foreach is used to iterate through a list of stock symbols, spawning

a separate thread to query information for each of the stocks. At each iteration of

@foreach reference to %stock in the second line of the example above is substituted

with the next value from the value list of input parameter %ostock.

Output fields

Output fields define the fields that the script returns to the calling process. The output

field names start with a pound ("#") sign:

#publisher

The script fills output fields row-by-row. Once the set of fields is filled, script can

invoke a special command (@endrow) and submit the row to the calling process.

After that the new set of values can be filled in.

105

4.6.6 Assignments

Assignment operator ("=") is used to assign values to variables:

$stockprice = "7 1/211;

Assignment is allowed only for output fields and temporary variables. Input

parameters cannot be modified and no values can be assigned to them.

A special case of assignment is the append operator ("+="). It was introduced in order

to support experimental multi-valued output fields:

#fare += $nextfare;

Append adds a value to the output field instead of overwriting it. After this operator is

applied, field is converted to a multiple-valued field and all subsequent append

operators will continue adding values to the value list. Note that this operator works

only with output fields.

4.6.7 Comments

Comments in DESL are similar to Java. They can be both single line (// comment) and

multi-line (/* comment */). Comments can be used wherever whitespace is allowed.

106

4.6.8 Pattern expressions

As we already know, every pattern expression consists of a pattern and an action:

pattern action;

Action is a single statement or a statement block. Action can contain new patterns

that can have new actions, and so on, for example:

pattern1
{

pattern2 statementl;
sta tement2;
pattern3
{

pattern4 statement3;

}

pattern5

{
sta tement5;
statement 6;

Pattern is a special sequence of characters that allows us to match parts of document

tree and move through it. Pattern cannot contain spaces unless quotes or double

quotes surround them.

When the pattern is matched the action associated with it is executed. However, when

the pattern is not matched, the script fails and reports to the system that site format

107

has been changed. Why? Patterns were designed to match document elements that are

expected to be present in the document. Failure to find necessary elements indicates

that the document could not be retrieved or the document structure has been changed.

In both cases we cannot continue execution and must report an error.

There is an exception to this rule. When the pattern contains operators "?" or "*"

(described below) failure to match pattern does not terminate the script and execution

continues.

Matching of a pattern in a new document block always starts from the beginning of

the document tree. A tree pointer, or the current position in a tree, moves through the

tree during matching. When the match is found, the tree pointer is positioned at the

end of the match. This is done to simplify data extraction from that point in the tree.

In the following example, the pointer will be positioned at text element "Price" before

a c tion is executed:

td."Price" action;

When the action finishes execution the pointer is returned to the position at which it

was before matching was started. In the previous example, if the tree pointer was at

the beginning of the document before the matching was initiated, then after action

is executed it will return back to the beginning of the document. This default pointer

behavior can be modified through movement operators described below.

108

Tree element matching

Tags in a tree are matched by name. For example, to match tag table write the

following pattern:

table action;

To match tag table that contains attribute border with value "0" and contains attribute

width use the following expression:

table (border="O " ,width) action;

Inside the attribute values Perl5 regular expressions can be used. (See [PERL] or

http://www.cpan.org/doc/manual/html/pod/perlre.html for details)

Text elements are matched using string constants surrounded by double quotes, for

example:

"Stock value" action;

When matching text elements, combinations of variables and string constants can be

used. Unlike in string expressions, however, variables and strings have to be

concatenated without a plus sign. For example:

109

%ab"c" action;

Here concatenated values of input parameter a, temporary variable b and a string

constant "c" form the body of the text element.

Matching of comments is done the same way as matching of text elements, except

instead of double quotes single quotes are used, for example:

'Comment' action;

Variables can also be used, with only difference that the variable name cannot be the

first element in the expression. If it has to be first it has to be preceded with an empty

comment element - "(two single quotes).

Perl5 regular expressions can be used both in text element and comment matches.

Tree levels

Level operator (".") separates tree elements in a pattern and shows that one element is

a child of another. For example, to show that tag td is a child of tag tr use the

following expression:

tr.td action;

110

When used as a first element in a pattern, level operator causes matching to start from

the top of the tree. For example, to look for tag html at the top of the document use

the following:

.html action;

To match any number of levels between elements use operator "-". For example, to

look for text "Feedback" anywhere inside of a form use the following:

f orm- "Feedback" action;

The matching that we have described so far matching has been hierarchical-it was

done in subtrees. Occasionally there is a need to match patterns linearly. In linear

matching searching is not done inside one of the subtrees of the document tree.

Rather, document is treated as a flat file and searching is done from a point in that file

until its end.

For linear matches operator "," is used. For instance, to match text "Prices" anywhere

in the document after text "Search results" use the following:

"Search results", "Prices" action;

111

Tree pointer movement

The default pointer behavior during and after matching was described above. There

are, however, ways to alter it.

In order to make pointer stay at a location other than default after matching, operator

"!" is used. The following example will cause tree pointer to stay at tag a before

action is executed (instead of staying at text element "Price"):

table-!a-"Price" action;

Sometimes there is a need to control where pointer stays after action associated

with the pattern has finished executing (by default, pointer returns to position at

which it was before matching has started). In such cases operator ""' (backtick) is

used. In the following example pointer will stay at text element instead of returning to

the place at which it was before pattern match was started:

"Search results" action;

A set of operators is used to explicitly specify movements through the tree:

^ Move pointer one level up
Move pointer right
Move pointer left

112

Both "<" and ">" will go to the next element in a tree linearly, if relevant left or right

sibling does not exist.

Square brackets ("[x]"), when used at the beginning of the pattern or after a ".", ","

or a "-" refer to (x+1)'st child of the current tag (x is zero-based). For example:

^. [3]-"Time"> action;

Here we first move to a tag that is one level above our current position and then go to

its 4th child. After that we look for text "Time" in the subtree and when such element

is found we go to its right sibling. Notice the period that separates the "A" and the

brackets-it is necessary to define meaning of square brackets as a "selector of the

child". As we see from the next example other interpretations are possible.

Square brackets used after "^", ">" or "<" specify the number of times that operation

has to be performed. For example to get to a 3rd left sibling of a text element the

following can be used:

"Current price"<[3] action;

113

Nonmatching

Occasionally there is a need to match absence of an element from the tree. It could be

error messages or other information that should not be present. A tilde ("~") operator

is used to match absence of tree elements. Tilde can be used in front of the tag, text or

comment element. For example:

"'"Page not found" action;

Recurrence

When data is extracted, patterns often have to be matched repetitively, especially

when data is arranged in recurring sets inside the document. Such recurrence can be

applied to patterns through the use of recurrence operators:

* Match any number of occurrences of pattern
+ Match at least once

Match 0 or 1 times
{x,y} Match between x and y times; y can be omitted

to show that the upper limit is infinity.

Recurrence works like a loop and matches the pattern specified number of times.

Action assigned to pattern is executed every time the pattern is matched. The

following expression will match every table cell in a document and execute action

for every match:

114

td* action;

Some recurrence operators-"*" and "?"-are used to relax the rule that the pattern

must be matched or the script will fail with an error. Patterns in which these operators

are used are allowed not to match, because by definition they allow zero matches.

Recurrence operators can be specified multiple times in a single pattern. This

effectively creates multiple nested loops. The following pattern will execute action

for all table row tags and for every cell inside every row:

tr*-td+ action;

If the square brackets ("[x]") are specified before a tag, text or comment element

they refer to the (x+1)'st occurrence of a pattern. The following will match 4 th

occurrence of tag a:

a[3] action;

115

4.6.9 Commands and functions

Reserved words in DESL identify predefined commands, functions and other special

functionality. All reserved words start with an "at" sign ("@"). This makes them more

visible and makes programs more understandable.

Both commands and functions perform predefined actions. No user-defined functions

can be defined. Commands do not return values and typically are used alone.

Functions return values and are used in expressions and assignments. A special kind

of command-an iterator-works as a loop statement and is used to go through

multi-value variables.

Let us review details of commands and functions. For each of them we will outline its

syntax, parameters and return values, and give an example. When describing

parameters and return values we will use the following notation for parameter types:

string string variable or expression

integer constant integer value

ipref reference to an input parameter

block reference to a document block name

cgipar special data type that defines CGI parameters for

page retrieval and form submission

116

Commands

@endrow

Description Closes the current row of data and returns it to the calling
process.

Parameters None
Return value None
Example @endrow;

@end

Description Stops execution of the script or the current script branch (if
launched by @spawn)

Parameters None
Return value None
Example @end;

@break

Description Finishes the execution in the current block surrounded by braces.
When executed in the outermost block (document block) this
command ends script execution.

Parameters None

Return value None

Example @break;

@c ont inue

Description Continues execution at the next iteration of the loop. Can be used
in recurring pattern matches to skip to the next match, or in

@foreach to go to the next value of the variable.

Parameters None

Return value None

Example @c ont i nue ;

117

error(message : string [,parameter : ipref])

Description Reports a fatal error to the system. If the input parameter is
specified considers error to be caused by that parameter and
associates error with it.
Errors that are caused by changes in site structure do not have to
be reported-every pattern match failure and its place will be
automatically recorded by the system.

Parameters message - briefly describes the nature of the error
parameter - input parameter that is the cause of the error

Return value None
Example @error ("Invalid book ID", %bookid) ;

@follow([url string,] doc : block
[, parameter cgipar, ...J)

Description This function stops execution of the current document block and
transfers control to another block whose name is specified in doc
parameter. Its behavior is equivalent to submitting a form or
following a hyperlink, when user browser leaves the current Web
page and loads a different one.
@follow exists in two modifications, depending on whether the
first parameter, url, is present. If it is present, it is used as an
address of the page that is loaded and processed by doc
document block.
If it is not present, the URL in the nearestform or a tag is used for
the new document and its parameters. The nearest tag is found by
taking the current tree position and traveling up the tree until such
tag is met. For correct execution of @follow it is desirable to set
tree position in the pattern at or below such tag.
Optional parameter(s) specify CGI parameters that
accompany form or link and are described in "CGI parameter
functions" section below.

Parameters url - address of the page to retrieve
doc - document block that will process the page
parameter, ... - request parameters

Return value None
Example a- "Next "

follow(nextpage);

118

@spawn([url : string,] doc : block

[, parameter : cgipar, ...])
Description This command behaves exactly like @follow, with a single

difference: instead of transferring control to the new document
block, a separate thread of execution is spawned to process that
block. The execution of the original block continues concurrently
with the execution on the spawned thread. This command allows
us to process many documents simultaneously, thus speeding up
the wrapper execution.
Script execution finishes when the last of the spawned document
blocks finishes its execution.

Parameters url - address of the page to retrieve
doe - document block that will process the page
parameter, ... - request parameters

Return value None
Example @spawn("ht tp: / /search .yahoo . com/bin/search " ,

results, @par ("" s " , $search_text)) ;

Iterators

@foreach (parameter ipref) commands

Description Iterates through specified multi-value input parameter. For each
value on the list executes the commands that are specified as a
single command or a group of commands in braces. Every
reference to the parameter inside the command block is replaced
by the value of the parameter at that iteration.

Parameters parameter - input parameter to iterate through

Return value None
Example f orm-input (value= "Get Quotes")

@foreach (%sybol)
@spawn (results, @par ("stock", %symbol)) ;

119

Stringfunctions

sub(text : string, from integer [len integer])
: string

Description Extracts substring from text starting at a given position f rom.
Extracts len characters, or until the end of the string (if len is
omitted).

Parameters text - text to extract substring from
from - position from which to start extraction
len - number of characters to extract

Return value Extracted string.
Example #price = @sub("$12.34",1) ;

match(pattern : string, text : string
[,position : integer]) : string

Description This function is used to match text using Perl5 regular
expressions. The pattern specifies syntactic pattern for the
string inside text. The part that is enclosed in parentheses
(grouping) specifies the portion of the matched pattern that has to
be returned. If many groupings exist, then the zero-based
position parameter must specify which grouping contains data
of interest, otherwise the contents of the first grouping will be
returned. If no grouping is specified the entire matched pattern
will be returned. If nothing was matched an empty string is
returned.
Perl5 and extended Perl5 expressions are supported. (See [PER]
or htt //wwwcpan.or /doc/manual/html/pod/perlrehtml for
details) Currently only matching is supported. Replacement is not
implemented.

Parameters pattern - pattern that is used for matching text
text - data on which matching is done
position - the position of the grouping to be returned

Return value Matched sequence of characters inside the specified grouping.
Example // The following will match a sequence of

// words separated by whitespace, followed
// by a "$" and a price with possible
// decimal dot inside. Only the price will
// be extracted.

#price = @match("(\w+\s+)*\$(\d+(\.\d+)?)",
" The price is $56.781" , l);

120

@trim(text : string) : string

Description Removes leading and trailing whitespace and control characters
from the string (behaves similarly to Java trimo) function).

Parameters text - string to be processed
Return value String without leading and trailing whitespace.
Example @trim(" Only text will remain

Informationalfunctions

@url : string

Description URL of the document that is currently processed by the script.
Parameters None
Return value The URL of the document that is being processed.
Example $site = @match ("http: / / ((\w+\ .)+\w+) ", @url) ;

@text string

Description Contents of the current text or comment element. For comments,
the text is given without the outer "<!-- -- >".

Parameters None

Return value Value of the current text or comment element.
Example $temperature = @text;

@alltext string

Description Collects and concatenates all text elements that are descendants
of the current element of the tree.

Parameters None
Return value Concatenated text elements.

Example #description = @trim (@alltext) ;

121

@attrval (name : string) : string

Description Retrieves value of the attribute from the current tag in a tree.
Parameters name - tag attribute name.
Return value Value of the tag attribute.
Example #id = @attrval ("id");

CGI parameter functions

CGI parameter functions can be used only as parameters for @spawn, @follow and

the first document block.

@method(method : string) cgipar

Description Selects which HTTP method to use to retrieve a new document.
Currently only "get" and "post" are supported. "get" is the default
method and does not have to be specified.

Parameters method - submission method.
Return value Selected method.
Example a- "Next"

@follow (newdoc, @method ("post"));

@par (name string, valuel : string, ...) : formpar

Description Specifies CGI parameter name and value. CGI parameters appear
in URLs after "?" and are commonly assigned through fields in
HTML forms. Multiple values can be specified.

Parameters name - parameter name
alue], .- parameter value(s).

Return value Parameter name and value combination.

Example form [31
@spawn (doc, @par ("state" , "FL" , "CA" , "NY")) ;

122

@submit (name : string [, value : string]) : cgipar

Description Forces the form to use the Submit button with the specified name,
or name and value.

Parameters name - button name
value - button value

Return value Reference to the submit button to be used.
Example form-"Please fill in your preferences"

@spawn (doc,@submit("Prices", "airprice"));

@selectbyval(name : string, substr : string) : cgipar

Description Selects an item from a drop-down list or a list of radio buttons in
a form. The item whose value attribute matches substring
substr is selected.

Parameters name - name of the parameter
substr - substring of the parameter value

Return value Selected name and value.
Example form

@spawn (doc,@selectbyval("city", "Lauder"));

selectbytext (name : string, substr : string) : cgipar

Description Selects an item from a drop-down list or a list of radio buttons in

a form. The item whose text matches substring substr is

selected.
Parameters name - name of the parameter

substr - substring of the parameter text

Return value Selected name and value.

Example form

@spawn (doc,@selectbytext ("state", "Flor"));

123

4.6.10 Example

Now let us review a complete example of a DESL script applied to a real Web site-

Yahoo! Finance (http //financeDaoo~com). ESL script that is extracting

information from this site is given in Figure 4-45.

1. yahoo ("http: / /www.yahoo .com/ " , @method (" get"))
2. {
3. a- "Stock Quotes" @follow (quotes) ;
4. }
5.
6. quotes
7. {
8. form-input (value= "Get Quotes")
9. {
10. @foreach(%symbol)
11. @spawn (results, @par ("s" ,%symbol)) ;
12. .
13.
14.
15. results

16. {
17. b. AViews ", ' table<
18. $date = @match("\w+ (\w+ \d+)",,@text);
19.
20. table-table-tr*

21. {
22. "No such ticker symbol."? @continue;
23. #date = $date;
24. td[0] #symbol = @alltext;
25. td[1] #last_trade_time = @alltext;

26. td[2] #lasttrade_val = @alltext;
27. td[3] #change val = @alltext;
28. td[4] #changepercent = @alltext;
29. td[5] #volume = @alltext;
30. @endrow;

31. }
32. }

Figure 4-45 Yahoo! stock quotes script

124

In this script we will demonstrate the following major features of DESL: multi-valued

input parameter processing, multi-threaded execution, flexible form submission,

document feature finding, tabular data extraction and regular expression matching.

nt-D

BaCr Slop Refresh Home Se,.rch Favctes History M i Pnnt Ed
nk h]nm.UA Fre H tman - uc a xe [s, e m ge e- 4 C -usone L nks

Sea ch

] h hp p]w yyboo com/ ire

Shop

Figure 4-46 Yahoo! home page

Script starts with the document block yahoo and its load parameters on line 1. This

document is Yahoo! home page (available at http://www.yahoo.com and shown in

Figure 4-46) The request must be made using HTTP method GET (@method call in

this case is really unnecessary, because GET is used by default). Inside the block we

try to find a link (tag a) that contains text "Stock Quotes" (line 3). If such link is

found we follow it. If it is not found, script terminates with an error, because the

pattern that we tried to match was not optional. This makes sense, because if Yahoo!

has removed a link to Stock Quotes from its Web site, then chances are that stock

quote functionality itself was changed significantly or was disabled altogether. In this

case script appropriately generates a "site changed" error.

125

HCC FIN ANCE -oe ~-H

PEI N At vA CC iket r e A meiit rad

WelcomeCutmz YooDreue an

Enter one or more syb Is be ow MrkeoSummryk[[
t~, B asic Hde

Investing mae
Today's Markets News & Editornat

Figure 4-47 Yahoo! Finance home page

If the link was found, we follow it. The document that is retrieved (shown in Figure

4-47) is handled by document block quotes on line 6. Here we try to find aform

through which we can specify a stock symbol (line 8). From preliminary analysis of

the site we know that such form should contain button called "Get Stocks". Our formn-

finding pattern will mnatch only if this button exists. If it does not, the script will fail

because site has mnost likely been changed.

When the form is found we can use it to retrieve infonnation about the stocks that

interest us. It is quite possible that we will need information on several stocks, Here,

126

if stack symbols are specified in a multi-valued input parameter sy of we can

iterate throng all of the using foreac command (line We submit the form

for every shack symbol in a list.

I

pile. Fl ,,,,onfess To'-0,3
r3

41
u .4 h: StLl !-''te Sh, Horne Mall

Links O! l itl t USA NP T ?, F.(ta Hatt"ri " _ll . It V 7 F' i ik 1

I

!FINANCE

Get Quotes

,_ -z

Welcome

I

11V R;Quotes

j f

a" d ss u e'.) :$t ,g 3 E t, x<314 o-6 zS ra t rt= : z i z au: > d " J
i
E

i Si d " ki e _ . d~ '_ C a L .,. .,, V' Bd L . . 1+.t2 , tA# _ ., F'.1 : P1- .(> R s1SE dt# t+.: ti

-,J ,

1

nu 3:¬ c'. .?3 *'"i S M r t .

1 v

I

'i d '

Y

9 .

i d

Recent ewe

J

Figure,"-l' Yahoof Finance sample stock quote report

127

In order to make things more efficient we submit all forms in parallel spawning a

separate processing thread for each submission (line 11). Script will finish its

execution once all parallel requests have been finished.

Results document block on line 15 extracts stock information from the results page

(shown in Figure 4-48). In this block we first check if there exists a text element that

is written in bold font and begins with text "View" (line 17). If it does, we look for a

first table after it. This is the table that contains data on stock quotes. The text element

before the table, to which we move using left move operator ("<"), contains current

date. We extract and store it in a temporary variable $date. Date is extracted using

pattern "\w+ (\w+ \d+)". This pattern skips the first word in a text element (day of

week) and extracts month and date combination. After pattern is matched and

command that is associated with it is executed we return to the table tag as specified

by operator '"(backtick).

Next we search for all rows in a nested subtable using operator "*" (line 20). We look

for multiple rows because one stock quote symbol value can, in fact, contain a list of

concatenated stock symbols (e.g. "MSFT YHOO ORCL"). In this case Web site will

return data for all symbols.

When a row is found we first check if it contains an error message (line 22). If it does,

we continue to the next search iteration. Notice that if the error is not found, script is

not terminated (this is possible because "?" operator is used-we match 0 or 1

occurrence of the message). If the error is not found we assume that the row contains

128

valid data and start to fill output fields. First we store our saved date-it has to be

stored with every row that goes out (line 23). Next we search for table cells (td tags).

Each table cell is associated with particular output field, as shown in lines 24 through

29. From each cell we extract all text elements and represent them as a single string.

We do this because there can be many such elements, separated by tags that specify

fonts and colors, and we just want to have pure text. At the end of every iteration we

close and send out the row of data (line 30).

Note that the script given in Figure 4-45 is not the most compact implementation for

the given task-it was filled with extra code to demonstrate features of the language.

The same result could have been achieved by using a slightly modified version of

results document block.

4.6.11 Strong features

DESL possesses several strong characteristics that make it useful and attractive in

data extraction tasks that were previously only implemented in Java.

* Support for round-trip engineering and manual coding. Programs can be coded in

DESL manually. However, it can also be generated and modified easily using a

GUI design tool.

129

* Parallel execution. Simplicity with which branches of the script can run in

parallel allows analysts to develop efficient and fast scripts quickly, without

worrying about process synchronization and data safety.

* Brevi y. DESL is expressive and powerful, allowing developer to fit a lot of

functionality in a short piece of code.

* Powerful tree pattern matching and tree navigation. Tree navigation is done

through a set of short pattern matching expressions that replace complex

combinations of Java searches and loops.

* Powerful text matching and extraction. Text matching through regular

expressions simplifies extraction of pieces of text from pages. Resulting code size

is small in comparison to code required to perform similar operations in Java.

4.6.12 Future development

The development of DESL is an ongoing process. As the prototype of the interpreter

is being developed and tested we expect many additions and corrections to be made to

the language features and tools that use it. Implementation of the wrapper designer's

GUI will have a significant impact on DESL features.

Some of the changes may include:

130

Expanded data type support. DESL primarily handles text strings. It might not be

convenient in cases where good support for integer, date/time and other data types

is required.

Data output capabilities. In some existing Web data extraction solutions data is

retrieved in a form of trees rather than a two-dimensional tables. We have already

been experimenting with tree-like structures for storing data, and might

incorporate this functionality in our solution. Additionally, we are considering

adding script functionality that will generate multiple connected tables instead of

just one.

New control structures. When we designed DESL we assumed that sophisticated

control structures such as, for example, "if", "while" and "switch" in C++, were

too heavy for a scripting language that has to support round-trip engineering.

Creating scripts in such language using GUI would be cumbersome and would not

give us ease of use and simplicity (in comparison to Java) that we were striving

for. This assumption might have to be re-evaluated as we gain more experience

using DESL and use it in a variety of projects. The need for more sophisticated

control structures might eventually come up.

Rich text-processing functionality. Text-processing features of DESL are

sufficient for the majority of data extraction tasks. New text functionality will be

added as the need arises.

131

* Exte ded tree-processingfunctionality. Matching of tree paths and tree navigation

functionality are some of the strongest features of DESL. However we foresee

that changes and extensions to these features, particularly in tree navigation, will

become necessary as we experiment with DESL.

* Strict type checking. Currently, information about the input parameters that script

takes as well as the output fields that it generates is very simplistic. We plan to

extend it by adding data types and sizes. We might also add lists of valid values

and validation rules.

* Script information. We are evaluating the idea for making the scripts self-

describing. This means putting some of the information related to the wrapper

that is commonly recorded in the knowledgebase into the script itself. Also,

information about author, revisions, versions and other data may be stored in the

script.

4.7 Summary

In this chapter we have described the Data Extractor system and its components. Web

site analysis issues were reviewed. A number of wrapper development techniques

were demonstrated. The Data Extraction Library, as well as the functionality for

accessing Web sites and extracting data from HTML docurents was described. A

sample wrapper that uses these techniques was presented and discussed. Finally a

scripting language DESL that simplifies wrapper construction was introduced.

132

5 Mobile Data Retrieval Agents

5.1 Introduction

In the previous chapters we described a mechanism for dynamic extraction of data

from the Web. This mechanism allows us to treat virtually any Web site as a read-

only data source. The data collected on such Web site can be used in a myriad of

academic and business applications-anywhere where data collected in real time can

be applied.

We also know of difficulties associated with using Data Extractor wrapper

technology. Here are some of them:

* Performance in multi-client conditions. The Data Extractor system is designed to

be a client-server system with the data extraction functionality executed on the

server. This creates a potentially serious bottleneck. As the number of users

(especially remote users) grows, the system will become overloaded with

requests. This problem was observed in trial runs of Data Extractor prototype-

when the number of clients grew the response time for each individual request

became longer. This problem is associated with increased number of simultaneous

network connections that the server makes on behalf of the wrappers. The root of

this problem is in non-distributed nature of the Data Extractor system and might

be solved by distributing the software across multiple cooperating servers or

moving the data extraction functionality to the client.

133

* Potentially long data delivery route. When the client is located remotely, the

server-based data extraction can potentially have prohibitively long data delivery

routes. Suppose the client is located in San Francisco and it uses remote services

of Data Extractor server in Berlin. If the data that is being extracted on behalf of

client is located on the site in Los Angeles and its volume is high, we will end up

shipping high volumes of data in a round trip half way across the world. This

process might have potentially been done locally and data would have been

transmitted faster and over a much shorter distance.

* Server in potentially slow network segment. Network communications are the

slowest operations in data extractions. In case when network links between data

extraction server and data source, or data extraction server and data consumer are

slow the resulting data extraction will be slow. If, however, the direct link

between data provider and consumer is fast, doing extraction at consumer site

could speed up the data extraction and delivery.

* Legal issues. In rare cases server maintainers might be prevented by law from

accessing data on certain sites on behalf of the client, as it might constitute

copyright violations. In these same cases giving user ability to extract data

directly, without the services of a middleman, might be legal.

One solution for these problems might be installing local server for an exclusive use

of a small number of clients, but costs and complexity associated with such an

operation could be high.

134

In an attempt to resolve these and other problems we introduce a mechanism for

performing data extraction on the client side through Mobile Data Retrieval Agents

(MDR A).

5.2 Idea

The idea of MDRA is in distributing the data extraction functionality to the client

computer, close to consumer of extracted data. We expect this approach to help

resolve performance problems associated with extracting data on remote server on

behalf of the user. The issue of distributing data extraction to remote sites is not new -

an example of a similar system is described in [DF96]. In [MMM96] users interact

with Java applets (that always execute on the client computer) to pose queries to the

Web.

MDRA approach is different from shipping the complete server functionality to the

client side, as the knowledgebase of wrappers as well as all the mechanisms for their

maintenance will still be stored on the server and maintained centrally. Users, who

subscribe to the MDRA service, will be able to connect to wrapper portal, a service

that publishes available wrappers and applications associated with them, and request a

particular wrapper or application to be executed on the client computer. In response to

that request a package containing functionality necessary to perform data extraction

for a particular Web source will be constructed and shipped to the client computer. It

will then be executed there and produce data for the user.

135

This approach, although in a seemingly different fashion, is already used in some

business applications, such as downloadable personal shopping bots from GoTo

Shopping (http//shop. otocom/) and R U Sure (http/www.rusure /). User

downloads and installs an application associated with one of these services on her

computer and then can use it to perform price comparison for a variety of products by

querying Web sites in real time. From time to time comparison shopping application

automatically downloads from the central location up-to-date instructions on how to

get prices from a variety of online stores. Technologies used in these services are

proprietary and cannot be evaluated to discuss their merits and disadvantages. Our

technology is planned as an open platform that will not be geared only towards

comparison but will support any application that requires data extraction from the

Web.

2 Mobile agent comnpose dand delvee

Knowledgebase I

World Wide Web 3 Agent is execute Mobile Data Retrieval
dat is eyd Agent y

Wrappr po ~1. Mobile agent requested

Client cornputer
I Mobile agents s err..

Figure 5-1 MDRA composition, delivery and execution sequence

136

5.3 Architecture

MDRA architecture is based on the architecture of Data Extractor system. In fact,

many of the Data Extractor's components can be used in both systems. The internal

structure of the MDRA is shown in Figure 5-2. The sequence of events for

composition, delivery and execution of MDRA can be seen in Figure 5-1.

Let us describe components of MDRA framework in greater detail.

[Mobile Data Rerea Agn

Data

Outer packag ng Mobile wrapper
module controller

Requests

o Data Extraction
9 Library Wrappers

Figure 5-2 Mobile Data Retrieval Agents architecture

137

Wrapper portal. At the heart of MDRA server is a wrapper portal system. This

module is a Web-based catalog that allows users to select and execute wrappers

from the knowledgebase. Upon user request it lists available wrappers and

wrapper-based applications. User then can select the one that she is interested in.

Once the wrapper or application is selected, it is packaged and delivered to the

client computer and executed there, producing data for the user. Aside from

listing and packaging wrappers, portal authenticates users, allows them to change

and save their preferences, and save and retrieve previously created queries

(references to wrappers combined with wrapper parameters).

Agent knowledgebase. The knowledgebase used in MDRA server system is

similar to the original Data Extractor knowledgebase. It also contains information

about available wrappers, their parameters and status. In addition, however, it

may contain information required by the wrapper portal. For example, it could

store user account information, such as access privileges and preferences. Names

and execution parameters of wrappers that users have run so far can also be stored

in this database. Using this information, wrappers can be executed with the same

parameters on a regular basis without having to specify them every time. Also,

lightweight applications that use wrapper output or act as intermediaries between

wrapper and applications on client computers can be stored in the knowledgebase,

together with necessary composition and parameter information.

Mobile wrapper controller. MDRA package is a collection of modules that are

needed to perform data extraction on the client computer and delivery of data to

138

user. Wrapper controller is responsible for controlling the behavior of wrappers,

passing parameters to them and directing the flow of data from them. In this sense

it is very similar to wrapper controller used in Data Extractor system, but,

perhaps, optimized for shipment to client computer and execution there. For

wrappers that are written in DESL the interpreter for that scripting language will

also be shipped as part of wrapper controller.

Wrappers. The same wrappers can be used in the Data Extractor and MDRA

implementations. They will be created and stored on the server and managed

centrally for all users of MDRA service. This significantly simplifies service

maintenance and ensures correct operation and timely updates that will be

available to all users of the system.

Data Extraction Library. Data Extraction Library contains functionality that is

essential for performing data extraction and networking operations and has to be

shipped with every MDRA. Our implementation of it is very compact and will be

transmitted to the client computer quickly even on slow links.

Outer packaging. Outer packaging component is a module that unites all other

modules in the MDRA. In different implementations it can be implemented as a

Java applet, an application, a browser plugin or take some other form. The job of

this component is to communicate user commands to the wrapper controller and

receive results generated by the wrapper. Packaging component can be designed

to work in an interactive mode, where it would request parameters for wrapper

139

execution from the user via the user interface. Alternatively it can be delivered

packaged with parameters selected by the user at the wrapper portal. This way it

can work without user involvement.

Packaging component can act as a browser of data, data exporter, wrapper based

application or connector to outside applications:

+ Browser. Browser works as a flexible display tool. It displays data that it

receives in a tabular format, like a mini-spreadsheet. Columns can be adjusted,

collapsed and sorted. Data can be edited, searched, copied, printed and

exported. This mode is useful for browsing and modifying data generated by

the wrapper.

+ Exporter. This type of packaging is useful for a non-interactive mode of

operation. Component can be configured to automatically generate a data file

on user's computer that will contain data output by the wrapper. Data files can

be in a variety of formats - plain ASCII, Comma Separated Values, Microsoft

Excel, XML and others.

+ Wrapper-based application. Lightweight applications can be developed to

perform simple operations on data generated by wrappers. Such applications

can work interactively with user, executing wrappers based on user input and

performing complex operations on the data received from wrappers.

140

+ Connector. This type of packaging is useful in cases when data received from

the Web has to be exported into applications running on user's computer. We

can write connectors that populate tables in DBMSs or import live data into

analytical or financial packages.

5.4 Agents composition and execution

5.4.1 Query formulation

User interaction with the system (see Figure 5-1) begins with connecting to the

wrapper portal. Wrapper portal lists available wrappers and packaging configurations

that user can run on her computer. This information along with wrappers and

applications is stored in the system knowledgebase. Server maintainers continuously

update knowledgebase. A variety of tools such as GUI editors and wrapper integrity

checkers that are designed for Data Extractor system can be used here as well.

When the necessary configuration and packaging is selected, user optionally can

specify execution parameters and save this configuration for future reference. In some

cases additional information may be required from user. This information may incluse

usernames and passwords for wrappers that access pay-per-use sites, or credit card

information for queries that are not free. After all necessary information has been

collected from the user, she may ask the system to build, deliver and execute the

agent.

141

5.4.2 Agent construction and delivery

Once the wrapper portal receives the request for an agent it begins packaging it,

Several components, including outer packaging module, wrapper parameter

information, wrapper controller, wrapper, optional DESL interpreter and Data

Extraction Library can be combined in a single package for delivery to client

computer. Optionally, components that change frequently (such as wrappers and their

parameters) can be packaged separately from the ones that do not change often. With

separate packaging the part that does not change might be cached on the client

computer. Depending on particular implementation, the package can be compressed

and/or digitally signed. When packaging components, special attention must be paid

to keeping agent as compact and platform-independent as possible.

Once the package is ready for delivery it is sent to the user computer. In different

implementations such delivery can be performed in a variety of ways-from

automatic Java applet delivery to manual download and installation.

5.4.3 Agent execution

When the agent is delivered to the client computer it is executed based on parameters

supplied to it. Parameters can be specified at the portal or through dialogue with the

user. Outer packaging component handles the dialogue with the user and controls

wrapper execution through commands to wrapper controller, Wrappers interact with

the Web sites extract data and pass it to the outer packaging component module

142

through the controller. Overall agent execution, including stopping and restarting, is

controlled through its user interface.

5.4.4 Data delivery

When the data is retrieved from the Web it can be returned in several forms: it can be

fed into other applications, displayed to the user or exported to the file system.

5.5 Implementation

5.5.1 Language

The prototype of the MDRA system is currently being implemented in Java

programming language. Java was chosen for a variety of reasons. Because the mobile

agents are based on existing implementation of Data Extractor and Data Extraction

Library, which are implemented in Java, compatibility was important, as was reuse of

the existing modules. Portability was also an important consideration because MDRA

code is shipped to the client side and executed there, and thus has to be supported

with no or little modifications on a variety of platforms.

There are, of course, concerns about Java performance, as it is, by definition of an

interpreted language, slower than its compiled counterparts, such as C++. Some of the

performance problems did indeed manifest themselves at the early stages of

143

implementation of Data Extractor system and Data Extraction Library functionality.

These problems primarily appeared when the load on the Data Extractor system

increases dramatically because of multiple connected clients. Most of these problems

were identified and resolved. In MDRA framework execution will be dedicated to a

single client and as a result we do not expect any noticeable performance degradation.

5.5.2 Framework

For MDRA technology to be easy to use it has to be user-friendly. This starts with

installation procedures. For the majority of computer users downloading software

from the Web site and installing it on their computer is unattractive. There are many

reasons for that: the process of software downloading and installation is often

inconvenient and confusing; user might be afraid of viruses or have insufficient

permissions to install software on her computer.

One of the easiest ways to ship MDRA functionality to the user's computer and

execute it there is through a Java applet. Because it starts automatically and integrates

with browsers well, even inexperienced users will be able to use it. Most popular Web

browsers provide good support for Java applets, so chances are that whichever

browser or computing platform user chooses applet-based agent framework is likely

to be supported there.

144

When user requests the agent the browser will receive a Java applet packaged with all

the necessary system components and libraries. The applet will then execute in

browser context, querying the Web and supplying data to the user.

Although we expect the package size to be minimal we might decide split it into the

part that does not change often, such as framework code and libraries, and parts that

vary, such as wrappers and parameters. This way the browser that caches Java applets

will keep the part that does not change in the cache and user will have to wait less

next time she wishes to execute the agent.

Other options for packaging MDRA technology might include ActiveX controls,

Netscape plugins, and, in absence of alternatives, downloadable applications. These

options, however, are associated with a set of problems, such as limited portability,

size, access restrictions and others.

5.5.3 Security

One of the strengths of Java applets-security-becomes a challenge in the context of

mobile agents. Browsers prohibit Java applets from accessing system on user

computer. This is done to prevent attacks from maliciously written applets that could

sabotage systems or steal information.

MDRA, however, need to access system resources and perform other actions that

applets are normally prohibited from doing. These actions include accessing network

145

resources (for data extraction) and file system and system resources (to save data on

the system or feed it into other applications on the system).

A pa ial solution to this problem is to create a proxy application on the server where

the applet came from (applets are allowed to communicate with the home server).

Through such proxy (whose role could even played by a standard HTTP proxy

server) the applet would be able to download pages from the third party Web sites.

This approach, however, does not solve the problem of data export-applet will still

be prohibited from exporting the data that it extracts to anywhere on the user's

computer, becoming, essentially, just a viewer for such data. Also, the proxy

application will become a bottleneck that will affect system performance in high-

volume data extraction applications. Disadvantages in this case will outweigh the

positive features.

Another solution-applet signing-appears to be more feasible. Applet signing is a

technology that allows developer to "sign" the applet with a digital certificate

purchased from a certification authority. Browser automatically detects a signed

applet and by checking the certificate can verify the applet's origin and make sure

that it was not maliciously modified during transmission. Signed applets are allowed

certain degree of freedom inside the browser. They can, for example, request

additional permissions from the user, such as permission to access network resources

or the file system. When applet requests such permission browser asks user if she

wants to grant or deny the request. If he permission is granted the applet will have

146

the same degree of freedom as regular applications installed on user's computer. This

freedom, however, applies only to functionality that was requested.

To use this functionality the applet that contains MDRA will be signed before

delivery to the client computer, and the code that requests permissions from browser

will be inserted in applet initialization routines.

5.6 Conclusions

In this chapter we have introduced an approach to distributing data extraction

functionality to the client side in a form of Mobile Data Retrieval Agents. This

technology is based on Web site analysis and data extraction techniques described

earlier in this work. We have reviewed the agent support architecture, and agent

composition and execution specifics. Possible implementation problems were

reviewed and solutions to them suggested.

147

6 Conclusions and future work

6.1 Contributions of this study

In this work we have described a number of new ideas and techniques, and

emphasized some that are not new but are commonly overlooked in data retrieval

solutions.

" Heterogeneous databases. We have reviewed HPDRC research efforts in the area

of heterogeneous database integration. The Data Extractor system is an integral

part of MSemODB heterogeneous database system. The ability to access data not

only from relational and semantic databases, but also from the unstructured Web

data sources significantly increases the power of MSemODB and extends the

range of applications it could be applied to.

* Wrapper construction. We introduced a novel two-fold approach for wrapper

design overage of simple Web sites by data extraction scripts that are easy to

create and maintain, and data extraction from complex sites using compact Java

wrappers.

A number of techniques and guidelines for site analysis and wrapper design for

Web data sources were reviewed in this work:

148

+ Site analysis and data extraction techniques. Many researchers concentrate on

schema discovery and definition, and do not give enough exposure to methods

for site analysis. We attempt to rectify this by describing a set of methods and

techniques for site analysis and data discovery.

+ Session and document concepts. We feel that the ability to view the Web site

data extraction process as a sequence of communication sessions and

document processing steps is important. This approach introduces clarity and

well-defined steps into data retrieval, and makes wrappers easier to

understand and maintain.

+ Document structure trees. Researchers commonly suggest doing simple

searches on HTML document text, thus ignoring its structure. We feel,

however, that the document structure can be instrumental in data identification

and detecting data boundaries. Our parsing of documents into tree structures

facilitates this approach.

+ No validation necessary. Relaxed handling of documents, sometimes even at

risk of creating incorrect tree representation, simplifies and speeds up parsing

algorithms, and makes them tolerant to syntax errors in documents.

+ Processing of linked pages. Not all research prototypes of wrapper

technologies that we have reviewed can traverse multiple linked documents

and extract data from them. Such limitation may severely affect quality of

149

data extraction, because the majority of data providers today publish data in

sequences of linked pages.

+ Form filling. We feel that being able to fill out forms is one of the most

important features of a wrapper system, because without it data from the

majority of providers would have been unavailable for extraction. Many of the

research projects that we have reviewed lack this functionality.

+ Embeddability. The ability to embed Data Extractor server as part of another

application opens up many potential uses for this technology. It can act as a

data provider for virtually any application without having to deploy a separate

server.

+ Portability. The Data Extractor is being implemented in Java and contains no

ties to any particular platform. This makes it highly portable to any platform

on which Java is supported.

Mobile Data Retrieval Agents (MDRA). A novel approach of developing and

deploying data retrieval agents was introduced. Such agents significantly increase

performance of the Web data extraction mechanism by moving it off the

centralized server and to client site. This distributed approach allows us to free-up

server resources and increase overall system performance.

150

Some of the methods used in this study were weaker than the ones suggested by other

researchers. The relative complexity of wrapper construction and maintenance is high

(which is noted in virtually every research paper on the subject). The scripting

language DESL that we have introduced is not as simple as SQL-like wrapper

definition languages that some of the research projects use. The GUI that would allow

interactive generation and correction of wrappers has not yet been implemented and

we do not know how effective it will be. Another issue is related to tree

representation of data - although it simplifies document processing, it also uses

precious processor cycles and is not 100% reliable on poorly written HTML. We

intend to work on these issues to simplify and speed up wrapper construction.

6.2 Future improvements

The Data Extractor and MDRA systems are being implemented and we anticipate

some improvements to be introduced:

* Wrapper design and maintenance time. As we already stated before, wrapper

design time is one of the major problems that might slow down projects where

hundreds of wrappers have to be maintained up to date. Current design time for a

Java-based wrapper for an experienced developer is around 2-3 days for a Web

site of average complexity. Because the majority of that time is taken by coding

and debugging, and not by Web site analysis, we introduced a simple scripting

language DESL which does not require strong programming skills from the

analyst. DESL reduces wrapper size and makes them more maintainable. We

151

anticipate the script design and maintenance time to be cut down to several hours

or one day for a skilled analyst. Additionally, we have touched on the importance

of creation of a specialized GUI tool which, through the simplicity of point-and-

click interface, will facilitate semi-automatic wrapper construction. Such tool will

in most cases eliminate the need for hand coding of wrappers. The benefit of this

tool will be twofold: it will be used by analysts that do not possess programming

skills and will cause the majority of analyst's time will be spent on analysis and

data labeling, rather than coding and debugging.

Further research has to be done on the issue of wrapper expiration. We feel that

machine-assisted monitoring of wrapper quality and notification of analysts when

wrapper becomes outdated will cause additional cuts in maintenance costs. Good

error diagnostics and maintenance mechanisms will help analysts with speedy

error resolution.

Finally, the issue of weaker binding of wrappers to site features has to be

investigated in greater detail. Currently, we are lacking comprehensive

methodology on minimization of the document feature set that is used for reliable

data identification and extraction.

Performance issues. Java has its advantages and disadvantages as an

implementation platform. A major disadvantage is the comparatively low speed of

interpreted Java bytecode applications in comparison to equivalent programs

written in languages that are compiled into a machine code for a given platform.

152

While abandoning Java as an implementation platform might not be a valid option

for a variety of reasons, serious consideration has to be given to optimizing the

critical parts of the system functionality, especially the one that deals with

expensive memory allocation operations, text processing and networking. As it

was shown in [HN99] there is hope for speeding up some common Java

operations to the point where their speed rivals that of a C++ application. What

particularly encourages us is the fact that optimizations described there were

applied to the development of a high-speed Java Web crawler, which is certainly

an application similar in spirit to the Data Extractor project. While some of the

recommendations given in [HN99] were successfully implemented by us there is

still room for further improvement.

Agents. MDRA technology is currently being developed and is still at an early

stage of implementation. The exact algorithms for dynamic applet construction

are yet to be finalized. MDRA implementation will be one of the primary topics

of our research in the near future.

Protocols and standards. The Data Extraction Library currently supports a

number of Internet protocols and standards, but this support can certainly be

enhanced, because some of them are not implemented to the fullest extent. This

was done intentionally in order to save development time on features that are

almost never used and to reduce the resulting code size. However, in the future

the implementation can be revised in order to ensure stricter compliance with

standards. For example, while the Data Extraction Library supports virtually any

153

SGML-based markup language (of which the two most prominent examples are

HTML and XML) such support might require extending the library functionality

to support import of Document Type Definition (DTD) for correct tree parsing.

Current support for these languages is based on a built-in DTD.

Another example is Secure Sockets Layer (SSL) support. Most of the e-commerce

sites today support SSL for secure transactions and data transfer. We too have

experimented with SSL and were successful in integrating it with our library and

were able to effectively perform data extraction from secure Web pages. However

SSL is not currently a part of our functionality, owing primarily to various patent

and royalty issues associated with SSL. When these issues are resolved SSL will

be incorporated into the library.

Finally, the implementation of popular Web scripting languages such as

JavaScript should be seriously considered as it will allow wrappers to much better

simulate user actions when accessing the Web site. This will also simplify

wrapper construction and extend the number of sites supported by the Data

Extraction Library.

6.3 Future research directions

XML Today, XML is taking the business world by storm. It is quickly becoming

the data interchange format of choice for many areas of business communications

as well as a favorite data storage format. The main goal of the Web wrapper

154

technology is to restore semantics and database schema for the data that is

"hidden" in the HTML pages. XML keeps the semantics of the data that it

presents intact. It might seem that wide use of XML on the Web sites will render

wrapper technology useless, because no data extraction is necessary in it, We

think, however, that there will still be a need for wrapper technology for quite

some time to come. There are multiple reasons for this:

+ XML rendering to HTML. Many of today's XML-based applications use XML

on the back end while rendering the data into HTML using XSL for display in

client browsers. Data extraction will be needed for such sites.

+ Restricted access to data. Some vendors will be hesitant to open their data to

the world and will prefer to use XML to communicate to their partners while

showing HTML-only versions on the Web sites.

+ Proliferation and simplicity of HTML browsers. The HT ML-only browsers

still constitute the majority of the browsers in the world and it might take a

while for the browsers with XML support to be distributed widely. Also, a lot

of the browsers with limited sets of functionality, like browsers in PDAs and

cell phones might consider XML support unnecessary in order to maintain

small code footprint.

+ Legacy HTML Web ites. Finally, even as more and more XML-only Web

sites appear there will still be a sizeable number of sites that will continue

155

publishing information in HTML. For example, publishing documents that are

not generated from a data source but rather composed by a human operator

will probably be easier in HTML. Such sites might find it difficult or

unnecessary to make switch to XML.

There might be a strong case for applying wrapper technology to XML. We

intend to research this, as our parsing algorithms already support it and the

existing software framework should be able to accommodate it without a major

overhaul. Of course, the efficiency of the algorithms and the variety of

functionality currently used will have to be reviewed with XML characteristics in

mind.

Semistructured data. A significant number of Web sites today contain data that is

semistructured, that is, its structure is irregular and does not fit well in the two-

dimensional table concept of relational databases. Often this is caused by the loss

of original data source at the time of HTML generation. Whatever information

was originally stored in a database in a set of linked tables, it is now a single

HTML page full of data.

There can be several approaches to representing semistructured data once it has

been extracted. One of the ways to do this is for wrapper to present data in

multiple linked tables, instead of one, thus attempting to recreate the original

relational schema. Another approach is to change the data presentation format

156

from a two-dimensional table to XML or other. Whatever the solution, further

research is required to tackle this issue.

Other document types. Data on the Internet is stored not only in HTML or XML,

but also in flat files, word processor documents, raw data files and other formats.

We see a benefit in extending the Data Extractor project to handle these data

sources. This, however, will involve making significant changes to system design

and researching data representations and processing techniques suitable for such

sources.

Wrapper construction simplification. Wrapper programming and maintenance are

the most time-consuming tasks in data collection on the Internet. Of the time

spent on these tasks only a fraction is spent on site analysis-the rest is used

programming and debugging code. The dynamic nature of the Web and the

frequency with which the Web sites change only exacerbate this problem.

From the conception of the Data Extractor project we were searching for ways to

simplify wrapper definition. Scripting language DESL is a good first step in that

direction. The future research, however, should concentrate on simplifying the

process even further. Automatic, "round-trip," development of scripts using the

GUI of the site analyst is one of the directions that we would like to explore.

Further simplifications and increase in power of the language syntax are also

being considered.

157

* Automated wrapper construction. While we feel that automated wrapper

construction for an arbitrary Web data source is unlikely to be successful in the

near future, some researchers ([DEW97]) have been successful in this area. They

produced automated wrapper generators, capable of extracting data from selected

types of sites, such as online stores. This approach is certainly interesting and

deserves further attention. Being able to produce wrappers for large classes of

sites automatically will definitely simplify the process of data extraction

tremendously and make it less costly in terms of development time and resources.

* Data purification. An issue that requires close attention is data purification. To

successfully integrate Web site sources in a heterogeneous database system we

have to make sure that the data that comes from those sources is pure and

uniform. By purity we mean the validity of data supplied by the wrapper to the

calling process from the semantic point of view. Such data has to be free from

incorrect entries or misplaced records. In reality, impure data is occasionally

extracted due to imperfections in wrappers and fluid nature of Web site structure.

Uniformity of data across different data sources is a more complicated issue. By

uniformity we mean the semantic similarity of data coming from different Web

sources. For example, to be successfully used in a heterogeneous system

geographical data corning from several air ticket reservation sites has to be

uniform. In practice however, cities, states and airport names are often spelled

and abbreviated differently in different source, which makes it hard to unite

records coming from different sites. One can imaging how hard it is for the

158

heterogeneous system to extract all flights coming to Fort Lauderdale from

several Web sources if one of them encodes it as "Fort Lauderdale", the other-as

"Ft. Lauderdale", and yet another-as "FLL". Introduction of special translation

tables or other purification techniques for such mixed data might be necessary and

has to be thoroughly investigated.

Issues of both purity and uniformity of data can be addressed on many different

levels, from wrapper to the heterogeneous database system modules. While

research into the ways to purify data has been started with some promising

preliminary results, these issues have to be investigated further.

Complete data extraction solution. The site wrappers play an important role in

integrating Web data sources with other types of data sources in a heterogeneous

database system. However one can certainly imagine a variety of additional uses

for the wrapper technology. There are many applications, both academic and

commercial, for the wrapper system being used as a standalone tool or embedded

into software systems. This is particularly important for the applications for which

the heterogeneous approach is "too heavy", that is when there is no need to unite

data sources of different types. In such applications the primary need might be to

have dynamic access to data on the Internet as if it was stored in a local database

table. There are many types of applications that may fit this description: portal

integration services, stock quote analysis, comparison shopping systems, travel

agent integration intelligent search engines and many others. We are currently

159

working on designing a standalone solution that will incorporate the wrapper

technology and make it available to a wide variety of applications.

6.4 Conclusions

In this work we have described a heterogeneous database model that is currently

being developed at HPDRC, with particular attention paid to the mechanism of

integrating Web data sources into this model. Challenges of Web site analysis and

wrapper construction were addressed. We defined custom functionality for

implementing wrappers using a high-level programming language and data extraction

library, as well as a powerful special-purpose scripting language. We presented a

description of a wrapper construction process and its end result. Finally a new scheme

for distribution of data extraction functionality was introduced.

160

7 Appendix

7.1 DESL syntax in EBNF

desl-script first-doc doc*

first-doc id doc-params brace-block

doc : = id brace-block

doc-params '(' string-expr (',' doc-req-param)? ')'

brace-block '{' statement* '}'

block : = statement
brace-block

statement ::= match-pattern block
command? ' ;'
'@foreach' '(' parameter ')' block

command assign-expr

append-expr
doc-request
'@endrow'
'@end'
'@break'

'@continue'
'@error' ' (' string-expr (',' parameter)? ')'

doc-request ('@follow' I '@spawn') '(' (string-expr ',')? id
(',' doc-req-param)? ')'

doc-req-param := '@method' '(' ('get' I 'post') ')'

' @par' ' (' string-expr (' ,' string-expr)+ ')'

('@selectbytext' I '@selectbyval')
' (' string-expr ',' string-expr ')'

'@submit' ' (' string-expr (' ,' string-expr)? ')'

match-pattern : : ' .'? (((','? I movement*)
(node-match (separator I movement+))*

node-match movement*)

movemen t+)

node-match : '~'? '!'? '''

((id attr? | match-text I match-comment)
(index-expr I repeat-num)?

I _nde-expr)

match-text : : (string-const | var)+

161

tcOmment ::= comment-const (comment-const I var)*

separator

movement : '? '''? ('<' ' * '^') index-expr? '!'? X

index-expr :: ' ' number-expr ']

atter : : 'C attr-expr (' ,' atrep) ')

attr-expr id (=' string-expr)?

repeat -n um : *

' number-expr ',' number-expr? '}

var : : parameter
output-field
temp-var

parameter : %' id

output -field : id

temp-var =$' id

assign-expr ::= (output-field | temp-var) '=' string-expr

append-expr : := output-field '+=' string-expr

string-expr : := str-element ('+' str-element)*

str-element ::= string-const
var

'@text'

'@alltext'
' url'
' @trim' (string-expr ')

'@sub' ' (' string-expr ' ,' number-expr

(,' number-expr) ? ')'

'@attrval' ' (' string-expr ')'
'@match' (' 'string-expr ',' string-expr

(',' number-expr)?)

string-const : ''P string '"'

omment-const : ''' string ' '

string : : anys-char*

xin -e : (0-9]+

id [A-Za-zJ [A-Za-zO-9 *

162

any-char : [.\n]

Note: White space is allowed between terminals and non-terminals of this grammar

except inside the following rules and their descendants: "string", "id", "number-expr",

"match-patter", "parameter", "output-field", "temp-var".

163

[AD99] Adelberg, B. and Denny, M Nodose version 2.0. Proceedings of
the 1999 ACM SIGMOD International Corference on Management
of Data, 1999, Pages 559 561

[AM97] Atzeni, P. and Mecca, G. Cut and paste. Proceedings of the 1 6 1h

ACM SIGACT-SIGAJOD-SIGART Synposium on Principles of
Database Ssterns, 1997, Pages 144 - 153

[AM98] Arocena, G. and Mendelzon, A. WebOQL: Restructuring
Documents, Databases, and Webs. Proceedings of ICDE'98,
Orlando, February 1998.

[AMM97] Atzeni, P., Mecca, G., Merialdo, P. To Weave the Web. In
Proceedings of the 3d International Conference on Very Large
Databases (VLDB 97), 1997

[Ath00] Athauda, R., Heterogeneity Resolution in MSemODB, Technical
Report 2000-02, School of Computer Science, Florida International
University, 2000.

[BD99] Bauer, M. and Dengler, D. InfoBeams--configuration of
personalized information assistants. Proceedings of the 1999
International Conference on Intelligent User Interfaces, 1999,
Pages 153 - 156

[BD99a] Bauer, M. and Dengler, D. TrIAs: trainable information assistants
for cooperative problem solving. Proceedings of the 3'd Annual
Conference on Autonornous Agents, 1999, Pages 260 - 267

[BDHS96J Buneman, P., Daidson S. Hillebrand, . Suciu D. A query
lan uage and optimization techniques for unstructured data
U niversit of Peia mia. Connfluer and Inrnation Science
Departnent Technkal Report Number %-09, 1996

[BDKM99] Barish, G., DiPasquo, D.. Knoblock C. and Minton, S. An
efficient plan exeutin sytem for information mnagement agents.

Proceedings of the Second International Workshop on Web
Information and Data Management, 1999, Pages 1 5

[BDPOo] Bauer, M., Dengler, D. and Paul, G. Instructible information
agents for Web mining. Proceedings of the 2000 International
Conference on Intelligent User Interfaces, 2000, Pages 21 - 28

[BGL+99] Baru, C., Gupta, A., Ludascher, B., Marciano, R.,
Papakonstantinou, Y., Velikhov, P. and Chu, V. XML-based
information mediation with MIX. Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, 1999,
Pages 597 - 599

[CCSOO] Christophides, V., Cluet, S., and Simeon, J. On wrapping query
languages and efficient XML integration. Proceedings of the 2000
ACM SIGMOD on Management of Data, 2000, Pages 141 - 152

[CDS+98] Cluet, S., Delobel, C., Simeon, J. and Smaga, K. Your mediators
need data conversion! Proceedings ofACM SIGMOD International
Conference on Management of Data, 1998, Pages 177 - 188

[CDTW00] Chen, J., DeWitt, D., Tian, F., and Wang, Y. NiagaraCQ: a
scalable continuous query system for Internet databases.
Proceedings of the 2000 ACM SIGMOD on Management of Data,
2000, Pages 379 - 390

[CM98] Crescenzi, V., Mecca, G. Grammars Have Exceptions.
Information Systems, Special Issue on Semistructured Data, 1998

[Coh98] Cohen, W. A Web-based information system that reasons with
structured collections of text. Proceedings of the 2 nd International

Conference on Autonomous Agents, 1998, Pages 400 - 407

[DEW97] Doorenbos, R., Etzioni, 0., Weld, D. A Scalable Comparison-
Shopping Agent for the World-Wide Web. Autonomous Agents '97

[DF96] Dharap, C. and Freeman, M. Information agents for automated
brwsing. Proceedings of the 5' International Conference on

Iformation and Knowledge Management, 1996, Pages 296 - 305

165

[DFF98] Deutsch, A., Fernandez M. Florescu D., Levy, A., Suciu, D.
XML-QL: A Query Language for XML htt /wm r/R/
NOTE-xml-gl

[DFKR99]j Davulcu, H., Freire, T, Kifer, M. and Ramakrishnan, I. V. A
layered architecture for querying dynamic Web content.
Proceedings of the 1999 ACM SIGMOD International Conference
on MVlanage nent of Data, 1999, Pages 491 - 502

[DOM] World Wide Web Consortium. Document Object Model (DOM)
http:// w, ,;.w3.org/DOM

[DYKR00] Davulcu, H., Yang, G., Kifer, M., and Ramakrishnan, I.
Computational aspects of resilient data extraction from
semistructured sources (extended abstract). Proceedings of the 19 '4
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, 2000, Pages 136 - 144

[ECJ99] Embley, D., Campbell, D., Jiang, Y., Liddle, S., Lonsdale, D., Ng,
Y.-K., Smith, R. Conceptual-Model-Based Data Extraction from
Multiple-Record Web Pages. Data and Knowledge Engineering,
11/99

[EJN99] Embley, D. W., Jiang, Y. and Ng, Y.-K. Record-boundary
discovery in Web documents. Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, 1999,
Pages 467 - 478

[FS99] Frank, M., Szekely, P. Collapsible user interfaces for information
retrieval agents. Proceedings q/ the 1999 International Conference
on Intelligent User Interfaces, 1999, Pages 15 - 22

[FSW+99] Fernandez M., Simeon J Wadler, P., Cluet, S., Deutsch, A.,
Florescu. D., Levy, A., Maier, D. McHugh, J., Robie, J., Suciu, D.,
Widom J. XML Query Languages: Experiences and Exemplars

[FVM97] Fiebig, T., Weis J. Moerkotte G. RAW: A Relational Algebra
for the Web. Workshop on aaaement of Semistructured Data,
1997, Tucson Arizona

UM99] Grumbach, S., Mecca, G. In Search of the Lost Schema. In
Proceedings of Internat onal Conference on Database Theory
(ICDT99), 1999

[HGC+97] Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R., and Crespo, A.
Extracting Semistructured Information from the Web. In
Proceedings of the Workshop on Management of Semistructured
Data, Tucson, Arizona, May 1997.

[HGI+95] Hammer, J., Garcia-Molina, H., Ireland, K., Papakonstantinou, Y.,
Ullman, J., and Widom, J. Information Translation, Mediation,
and Mosaic-Based Browsing in the TSIMMIS System. In Exhibits
Program of the Proceedings of the ACM SIGMOD International
Conference on Management of Data, page 483, San Jose,
California, June 1995.

[HLM+97] Harie, S., Le Maitre, J., Murisasco, E., Veronis, J., Bruno, E.
SgmlQL Language Reference http://www.univ-tln.fr/-gect/simm/
SgmlQL/DocfMQL2.html

[HN99] Heydon, A., and Najork, M. Performance Limitations of the Java
Core Libraries. In Proceedings of the 1999 ACM Java Grande
Conference, pages 35-41, June, 1999.

[HTML] World Wide Web Consortium. HyperText Markup Language
(HTML) http://www.w3.org/MarkUp

[HTTP] World Wide Web Consortium. HTTP - Hypertext Transfer
Protocol http://www.w3.org/Potocols

[JAVI Java Programming Language http://www.javasoft.co

[K598] Konopnicki, D., Shmueli, 0. Information Gathering in the WWW:
The W3QL Query Language and the W3QS system. ACM TODS
23(4), Dec. 1998.

[LC99] Lee, D. and Chu, W. Semantic caching via query matching for
web sources. Proceedings o the 8 International Conference on
Information Knowledge Ianagment, 1999, Pages 77 - 85

167

[LD96J Loke, S. W. and Davison, A. Lo ic programming with the World
Wide Web. Proceedings 4f the 7' ACI Conference on Hypertext
1996, Pages 235 - 245

[LHB+99 Liu, L., Han, W., Buttler, D., Pu, C. and Tang, W. An XJML-
based wrapper generator for Web information extraction.
Proceedings of the 1999 ACM SIGMOD International Conference
on Management of Data, 1999, Pages 540 - 543

[LN99] Lim, S.-J. and Ng, Y.-K. An automated approach for retrievin
hierarchical data from HTML tables. Proceedings of the 8'
International Conference on Information Knowledge Management,
1999, Pages 466 -474

[LSS96] Lakshmanan, L., Sadri, F., and Subramanian, I. A Declarative
Language for Querying and Restructuring the World-Wide-Web.
Post-ICDE IEEE Workshop on Research Issues in Data
Engineering (RIDE-NDS96), New Orleans, February 1996.

[MAM+98] Mecca, G., Atzeni, P., Masci, A., Sindoni, G. and Merialdo, P.
The Araneus Web-based management system. Proceedings ofACM
SIG MOD International Conference on Management of Data, 1998,
Pages 544 - 546

[MMK99] Muslea, M., Minton, S. and Knoblock, C. A hierarchical approach
to wrapper induction. Proceedings of the 3 Annual Conference on
Autonomous Agents, 1999, Pages 190 - 197

[MMM96] Mendelzon, A., Mihaila, G., Milo, T. Querying the World Wide
Web. PDIS 1996, December 1996, pages 80-91

[MS99] Milo, T., and Suciu, D. Type inference for queries on
semistructured data,. Proceedings of the 18 'h ACM SIGMOD-
SIGACT-SIGART S posium on Principles of Database Systems,
1999, Pages 215 - 226

S99 Mattox, D., Seligan, L. and Smith, K. Rapper: a wrapper
generator with linguistic knowledge. Proceding of the 2 nd

International Workhop on Web hormat on and Data
Management, 1999, Pages 6- 11

168

[NQL] Network Query Language ttp://w;w. orkqu g

[NS00] Neven, F., and Schwentick, T. Expressive and efficient pattern
languages for tree-structured data (extended abstract). Proceedings
of the 19' ACM SIGMOD-SIGACT-SIGA RT Symposium on
Principles of Database Systems, 2000, Pages 145 - 156

[OMNI] OmniMark Documentation htt:/www.omnimarkcom/doc

[PERL] Perl Programming Language httt://www.perlcomnpub/v/
documentation/

[RAYC00] Rishe, N., Athauda, R., Yuan, J. and Chen, S.C. Knowledge
Management for Database Interoperability. Submitted to the
International Conference on Information Reuse and Integration,
Honolulu, Hawaii, November 1 - 3, 2000.

[RAYCOOa] Rishe, N., Athauda, R.I., Yuan, J. and Chen, S.C. Semantic
relations: The key to integrating and query processing in
heterogeneous databases. To appear in The 4 'a World
Multiconference on Systemics, Cybernetics and Informatics,
Orlando, Florida, July 23 - 26, 2000.

[Ris92] Rishe, N. Database Design: the semantic modeling approach.
McGraw-Hill, 1992, 528 pp.

[RL598] Robie, J., Lapp, J., Schach, D. XML Query Language (XQL).
http://www.w3.org/TandS/QL/QL98/pp/xcl.html

[RYA+00] Rishe, N., Yuan, J., Athauda, R., Lu, X., Ma, X., Vaschillo, A.,
Shaposhnikov, A., Vasilevsky, D. and Chen, S.C.
SemanticAccess: Semantic Interface for Querying Databases. To
appear in The International Conference on Very Large Data Bases
(VLDB 2000), September 10-14, 2000.

[RYA+O0a] Rishe, N., Yuan, J., Athauda, R., Lu, X. and Ma, X. SemWrap: A
semantic wrapper over rela ional databases, with substantial size
reduction of user's SQL queries. In the Pr oceeding of the 7th

Extending Database Technolo x (EDBT 2000) - Sofiare
Demonstrations Track, 2000, pp 13-14.

169

[SK98] Sugiura, A. and Koseki, Y. Internet scrapbook automating Web
browsing tasks by demonstration. Proceedings of the lit! 4nnual
ACM Symposiun on User Interface Software and Technolog
1998, Pages 9 - 18

[W4F] W4F toolkit httF//wx Vtropea-inc~comlti.hnolgy4

[WEBL] WebL: A programming language for the Web http://research.
comagconSRC/WebL

[XML] World Wide Web Consortium. Extensible Markup Language
(XML) http://wwwv.w3.org/XML

[XPATH] World Wide Web Consortium. XML Path Language (XPath).
V3C Recommendation. http://www,3. or /TR/ ath

[XPTR] World Wide Web Consortium, XML Pointer Language
(XPointer). 13C Candidate Recommendation. http.//www.w3.org/
TR/xptr

[XSLT] World Wide Web Consortium. XSL Transformations (XSLT).
W3C Recommendation. http;//www.w3.org/TR/xslt

170

VITA

DMITRIY BERYOZA

1973 Born
Moscow, Russia

1994 B.S. with honors in Computational Mathematics
Rochester Institute of Technology
Rochester, NY

1996 M.S. in Computer Science
Rochester Institute of Technology
Rochester, NY

1995-1996 Software Engineer
Lenel Systems International Inc.
Rochester, NY

1996-1997 Senior Systems Analyst
Powernet International Inc.
Miami, FL

1997-2000 Ph.D. student in Computer Science
Florida International University
Miami, FL

1997-2000 Researcher, Technical Team Lead
High Performance Database Research Center
Florida International University
Miami, FL

1998-2000 Presidential Fellowship Award Recipient
Florida International University
Miami, FL

1999 Winner of ACM/Microsoft "Quest for Windows CE
application contest

171

PUBLICATIONS AND PRESENTATIONS

[RSC+99] Rishe, N., Sun, W., Chekmasov, M., Prabhakaran, N., Beryoza, D.,
and Chekmasova, M. Infrastructure for Research and Training on
High-Performance Heteroueneous Distributed DataIbase
Management. Inf tructure 99: , CISE EIA, RI and Mu PI'
ITO /k hp. New Mexico State University, Las Cruces, New
Mexico. August 7-9, 1999, pp.42-46.

[BUPR98] Beryoza, D., Uppal, J., Pardo, P., and Rishe, N. Interfacing Java to
Semantic DBMS. Proceedings of Worhksop on Next Generation
Database Design and, pplications, Miami, May 1998.

[Ber92] Beryoza, D. Graphic fonts by Borland Inc., PC World/R ss an
edition, No. 8, 1992.

[Ber99] Beryoza, D. Microsoft Data Access Technologies and Sem-ODB,
Internal HPDRC Presentation, April 1 4 th, 1999.

[Ber99a] Beryoza, D. Common Gateway Interface (CGI), FIUACM Student
Chapter Presentation, September 2 2nd, 1999.

172

	Florida International University
	FIU Digital Commons
	10-23-2000

	Dynamic data retrieval on the world wide web
	Dmitriy Beryoza
	Recommended Citation

	tmp.1440017632.pdf.xEX2P

