
-

The 6th World Multiconference 
on Systemics, Cyb_ernetics 

and Informatics 

July 14-18, 2002 
Orlando, Florida, USA 

Volume VII 

Information Systems Development II 

Organized by IllS 
International 
Institute of 
Informatics and 
Systemics 

Member of 
International Federation of 
Systems Research IFSR 

EDITED BY 
N agib Callaos 

John Porter 
Naphtali Rishe 



Data Extractor Wrapper System* 

Dmitriy BERYOZA, Naphtali RISHE, Scott GRAHAM, Ian DE FELIPE 
High-performance Database Research Center 

School of Computer Science 
Florida International University 

University Park, Miami, FL 33199, USA 

ABSTRACT 

We describe a Data Extractor system for retrieving data from 
Web sites. This system represents Web sites as data tables that 
can be both integrated in a heterogeneous database framework 
and serve as data sources for standalone applications. We 
address issues involved in selection and analysis of Web data 
sources, and construction of wrappers for them. Data Extractor 
system design and implementation issues are discussed. 

Keywords 

Web Information Retrieval, Data Extraction, Web-based 
Interaction, Distributed I Heterogeneous Database Systems, 
Scripting Languages 

1. INTRODUCTION 

The explosive growth of the World Wide Web in recent years 
has provided users worldwide with unprecedented volumes of 
information. This wealth of information is, however, 
underutilized, because mechanisms for accessing it are limited. 
Users can browse Web pages, search for information and 
perform a predefined set of transactions on Web sites, but in the 
majority of cases, generated data is provided only for visual 
consumption. No convenient mechanisms exist 
for analysis and processing of the found data, DBA 
because users can only read what is shown in 
Web pages. There is no way for users to, for 
example, create complex queries to a travel 
agent's Web site-for each such query a special 
program would have to be implemented inside 
the agent's Web server. Even if the queries that 
are available meet user's needs there is no way 
to work with the data that they return. The stock 
quotes that are available on the financial Web 
sites most of the time cannot be imported into a 
spreadsheet for further analysis. The sites that 
do provide data in an easy-to-process form, 
such as XML, are still rare. Although this is 
expected to change in the future, large volumes 
of data are likely to remain in HTML for quite 
some time. 

In this work we describe a Data Extractor 
system that provides a mechanism for accessing 
data scattered across Web sites and using it in a 
variety of applications, such as database 
management systems, spreadsheets, and 
analytical tools. 

2. DATA EXTRACTOR 

Heterogeneous database Integration 

The majority of existing methods for accessing data on the Web 
specialize in extraction and purification of data, and channeling 
it to external applications and users. Some researchers ([1 0], 
[15]) approach Web data extraction as a part of a bigger 
problem of heterogeneous database integration. Such 
integration would let users access resources of multiple 
databases of different types via a unified interface. It will also 
allow them to pose queries over a unified schema of multiple 
data sources. 

In our research we are also investigating ways of integrating 
data extraction into a heterogeneous database system. We 
developed MSemODB [21 ), a heterogeneous database 
management system, whose general architecture is shown in 
Figure I. 

The system is using the Semantic Binary Object-oriented Data 
Model (Sem-ODM) [20] for data representation and the SQL 
query interface for communication between its components. 
Sem-ODM combines the simplicity of relational and power of 

Figure 1 MSemODB architecture 

'This research was supported in part by NASA (under grants NAGS-9478, NAGW-4080, NAG5-5095, NAS5-97222, and NAG5-6830), 
NSF (CDA-9711582, ffil-9409661, HRD-9707076, and ANI-9876409}, ONR (NOOOI4-99-1-0952), and the FSGC. 

425 



object-oriented data models. A major advantage of this model is 
its ability to use the standard SQL-92 query language 
interpreted over Sem-ODM schemas (called Semantic SQL) in 
a variety of relational and object-oriented databases. This 
feature makes MSemODB compatible with a number of 
existing tools developed for standard SQL. The communication 
between components in the system is done in CORBA, which is 
an efficient cross-platform and language-independent 
communication medium. 

The main module that controls execution in the system and flow 
tJf data is Query Coordinator. Its function is to collect database 
schemas from all member databases and dispatch user queries to 
the appropriate database sites. It gives a common user interface 
to all the databases in the system. Through it, users enter queries 
using SemSQL and view resulting datasets in a single data 
model. Query Coordinator consists of Integrator & Knowledge 
Reconciliator, Schema Catalog and Query Dispatcher. Schema 
Catalog collects schemas of individual relational, semantic and 
Web database sites. Integrator & Knowledge Reconciliator 
coordinates schemas to resolve conflicts. Database 
administrator can use it to manage and modify Schema Catalog, 
and to introduce new relations that are not apparent from mere 
collection of member schemas. Query Dispatcher optimizes and 
executes queries. It decomposes queries posed by user into sub
queries based on the knowledge stored in the Schema Catalog 
and dispatches these sub-queries to appropriate sites for 
execution. When the results are available, it assembles them and 
presents them to the user. 

The database sites are exposed in the system through their 
individual Semantic SQL and Semantic Schema modules. For 
the Relational Site a special knowledgebase and a reverse
engineering tool facilitate relational-to-semantic schema 
translation and storage. The majority of translation tasks are 
performed automatically. The database administrator can step in 
and make modifications and enhancements to the schema after 
the automatic convers\on is completed. The Semantic SQL 
module of the Relational Site implements an algorithm which 
automates conversion from Semantic SQL queries to relational 
SQL queries. With this functionality, virtually any RDBMS 
available today can be integrated with MSemODB. 

In the Semantic Site that wraps around Semantic Databases, 
integration is far more natural. The Semantic Object-oriented 
Database engine (Sem-ODB) already has Semantic Schema and 
Semantic SQL query facilities implemented. This database 
system is a multi-platform, distributed, fully functional client
server implementation that is suitable both for standard database 
applications and for large-volume data and spatial data 
applications. 

Web Data Site is built around a Data Extractor system and 
provides a framework for data extraction from the Web. 

Data Extractor architecture 

The Semantic SQL and Semantic Schema modules access Data 
Extractor through a standard interface that allows schema 
discovery, query execution and data retrieval. Together with 
these modules the system works as an integral part of an 
MSemODB system, capable of executing SQL queries and 
returning result datasets. Using Data Extractor external 
applications pose queries to Web sites and extract data from 
them. Data Extractor presents extracted data in two-dimensional 
tables that can be further processed and returned to the user. 

426 

Data Extractor system consists of several components (see 
Figure 2). 

Figure 2 Data Extractor system structure 

• Wrapper Controller. This is the main component, whose 
responsibility is to control and coordinate execution of 
other parts of the system. It is the entry point for 
communications with the Data Extractor from the outside. 
It loads, executes, and controls behavior of wrappers and 
redirects data that they generate to the user. It accesses the 
knowledgebase to become aware of the configuration and 
schema changes in the system. 

• Knowledgebase. This module stores system configuration 
information. It contains data on what wrappers are 
available, where they can be loaded from, what parameters 
are required to execute them, and what kinds of data they 
generate. 

• Wrappers . Wrappers are lightweight modules that execute 
in response to user requests. They extract data from Web 
sites and return it to the user in an easy-to-process form. 

• Data Extraction Library. This library contains extensive 
network access and HTML processing functionality. This 
functionality simulates behavior of the Web browser, 
allowing wrappers to traverse Web sites and extract data 
from HTML pages. 

Data Extractor is implemented in several versions: standalone, 
embedded, or mobile. As a standalone server it serves clients 
through a simple browser-based user interface, executes user 
queries, and delivers raw or processed data directly to the user. 
When embedded inside another application (as is the case with 
the MSemODB framework), Data Extractor acts as a data 
provider for that application. A lightweight mobile 
implementation of Data Extractor is shipped to the client side 
over the Internet and is executed there on behalf of the user. 



3. WRAPPER CONSTRUCTION 

Wrappers in Data Extractor execute on behalf of users and 
extract data from Web sites. Wrappers essentially simulate a 
user working with the site through the Web browser. They fill 
out and submit forms, "click" on links, or find data of interest 
inside of pages. To support this behavior, special functionality 
was developed that emulates browser interaction with the Web 
site. It allows us to create and play back a "scenario" of user 
navigation through the site. 

The process of creating a wrapper for a Web data source 
consists of multiple steps. It includes source selection, site 
analysis, and wrapper implementation. 

Source selection 

Selecting a Web site as a data provider in some applications 
may become a complex task by itself. Cases when only a single 
Web site is a source of necessary information are actually quite 
rare. Stock quotes, airline schedules and weather information
the kinds of information that are needed in business 
applications- are usually provided by dozens of sites on the 
Web. As a result, selecting a source of information often 
becomes the first step in generating a wrapper. 

There are many factors, that have an effect on the decision to 
select a particular Web site as an information provider, 
including site performance and availability, data completeness, 
data distribution {how few or how many Web pages must be 
retrieved to extract a data set), and others. 

-
Web site analysis 

Once a Web site is selected for data retrieval (but before a 
wrapper is created for it) a thorough analysis of the site must be 
performed. Good analysis usually makes the subsequent 
programming effort easier and the resulting code more efficient, 
less bulky, and easier to maintain. There are many properties 
and features of the Web site that the analyst has to identify in 
her research. All of them will influence how the resulting 
wrapper will behave and how effective it will be: 

• Starting page/deep linking. Identifying the starting page 
where the data retrieval process should begin is very 
important, as it allows the wrapper to skip unnecessary 
intermediate pages and go straight to data pages, or deep
link to them. This will primarily work for static URLs that 
do not change because of context. Dynamic URLs (URLs 
that contain changing parameters) can also be used for 
deep linking if their structure is well known. The wrapper 
can substitute parameter values in such URLs to get 
different data depending on user request. 

• Page identification. Before the data extraction can actually 
take place, the wrapper has to make sure that the page 
containing data was actually retrieved. Sometimes the page 
that is expected does not arrive. Network and site problems 
may generate HTTP error pages in response to legitimate 
requests. Site structure and layout changes could also cause 
generation of error pages. Finally, the query that the 
wrapper poses to the Web site might bring no results. For 
reliable wrapper execution it is important to check for all 
of these signs before attempting to perform data extraction. 

• Location markers. One of the ways to locate data inside 
HTML is to search for it with reference to some visible 
location marker (or "landmark"- [3], [4], [16]) inside the 

427 

• 

• 

• 

document. A location marker is any HTML element or 
group of elements that is uniquely identifiable and that is 
located close to the data that we are extracting. Once the 
wrapper finds such a marker inside the document, it could 
then "move" through the page relative to marker's location 
in order to find data. 

Data identification markers. These markers are unique 
characteristics of an HTML document that point to data 
elements and delimit distinct data records. Such markers 
are usually unique only inside some part of an HTML 
document and they must be used together with location 
markers and other search techniques. They can exist in 
many different forms, but HTML elements that highlight 
parts of the document are most commonly used for this 
purpose. Such elements include tags that specify fonts, 
paragraphs, record breaks, table cells and colors. Some of 
the HTML elements that are not visible in the browser are 
also useful for data identification. For example, comments 
and nonprintable symbols inside text records do not 
manifest themselves to the user in any way, but the 
wrapper can split data into records using them as 
delimiters. 

Tree search. One of the most powerful ways of locating 
data in HTML documents is through searching. We can 
search for a variety of pieces of information, such as tags, 
tag attributes, their values, text elements and comments. 
For the purposes of a particular application we can search 
for exact strings or substrings, searches can be case
sensitive or case-insensitive. 

In Data Extractor, HTML docume~ts are stored in the form 
of trees, similar to tree structures in [7]. In a tree structure, 
additional types of searches are possible. Searching can be 
done in the entire tree or in any of its subtrees. This means 
that the search can start from the root element or from any 
element inside the tree structure and only affect 
descendants of that element. This is a useful property, 
because it allows us to localize the search to specific 
logical parts of the HTML document, ignoring the rest. 
Additionally, we can search linearly. In a linear search, the 
document is treated like a flat stream of HTML elements. 
The search starts from a given position in the document 
and continues until its end or until the element is found. 
This is different from subtree search, because a subtree 
search finishes when the element is found or when every 
node in the subtree is visited by the search routine. 

The decision to select either type of search depends on 
application needs. For some applications, locating data 
inside isolated portions of the document is important (e.g. 
for searching inside tables). For other cases (like searching 
for location markers) it is easier to think of the document 
as a flat file and search linearly. 

Paths. The simplest yet the least reliable (in terrns of long
term stability of the wrapper) way to locate data inside a 
page is by specifying a path to it. A path is an ordered stA 
of nodes in the document tree that we have to traverse to 
reach our destination. For example, if, in order to reach a 
particular node in the tree, we need to start at the root 
element, go to the second child of that element, then go to 
its first child, and, finally go to the third child of that node 
then the resulting path will be encoded as {2,3, I} . 



Unfortunately, this approach is the leading cause of 
wrapper failure in the event of site changes. If a single 
node in the path is changed the whole path becomes 
invalid, requiring wrapper modifications. 

It might be tempting to use paths as the only method for 
locating data inside HTML because of their simplicity. 
Paths are also much easier to implement in tools that assist 
the analyst or developer in building wrappers. It is better, 
however, to concentrate on searching techniques, or to 
combine searching with short paths that do not originate at 
the root node, because this will improve wrapper 
robustness. 

• Multipage data. The flbsolute majority of sites that provide 
large volumes of data dispense it in portions, showing it to 
the user through sets of linked pages. Data extraction of 
multi-page results is done continuously. When the first 
page of results is processed, the wrapper follows the link to 
the next page. When that page is loaded, data extraction is 
done and the process repeats. The data that is extracted is 
returned as a single data table or data stream to the process 
that executes the wrapper. 

• Parallel page retrieval. Taking advantage of a parallel 
page retrieval technique can significantly increase wrapper 
performance, as page downloads are done by multiple 
concurrent threads of execution. This technique works well 
when data is distributed across multiple pages and links to 
several such pages are accessible from a single location, 
such as an index or summary page. 

• Hidden data extraction. Data extraction is usually done on 
textual portions of the HTML page. To be effectively 
communicated to the user, data has to be highly visible and 
occupy a prominent position inside the page. There are 
times, however, ~hen data can be extracted from other, 
hidden parts of HTML. Good candidates for this are 
comments, tag attributes and their values, URLs, and even 
scripts. Useful data might include IDs, prices, addresses, 
phone numbers, and other pieces of information. 
Extracting this information can save time on unnecessary 
page retrievals. 

• Scripting simulation. Web sites are often script-intensive
in other words, they make wide use of JavaScript and 
VBScript for a variety of tasks. Some of these tasks, such 
as various visual effects, are not of particular interest to 
data extraction. Others, such as navigation, or form 
validation and submission, are important. Script execution 
is beyond the current capabilities of the Data Extractor 
system, but a wrapper can be programmed to simulate 
some of the actions of the script without having to execute 
it. 

• Weak binding. By binding, we mean wrapper reliance on 
particular features of the Web site. In order to identifY and 
extract data from an HTML page a wrapper has to look for 
certain features and markers inside the page. Such binding 
has to be weak so a wrapper could withstand minor Web 
site changes without having to be rewritten or corrected. 

This issue is closely related to all of the site analysis and 
description techniques discussed so far and must be taken 
into account when applying them. Trying to find a balance 
between reliable data identification and weak binding has 
proved to be rather challenging. It is hard to come up with 
universal recipes on how to do this optimally, as these two 

428 

tasks are inherently contradicting. The weaker the binding, 
the less reliable data identification within the site is. The 
stronger the binding, the better data identification is, and 
the greater the chance that the wrapper will not withstand 
the next site change. 

In the absence of a clear-cut solution to this problem, we 
suggest that the site analyst try to identify the smallest set 
of site features that will help pinpoint data location inside 
the site. When selecting these features, the analyst also has 
to make sure that they are content-dependent (could be 
searched for) rather than structure-dependent (are located 
at specific positions inside markup trees), as the latter is 
more likely to change. When such set of features is 
identified, it can be used to create a wrapper that is more 
tolerant to site changes. 

Wrapper implementation 

When the Web site analysis has been completed, the next step is 
to implement the wrapper. In the Data Extractor project, 
wrapper code is implemented in Java using the functionality of 
the Data Extraction Library. The results of site analysis that 
describe steps to traverse the site and acquire data are 
implemented in Java and debugged using the wrapper executor. 
Wrapper executor is a Java application that, through a simple 
interface, allows a programmer to specify wrapper parameters, 
execute them and step through the wrapper code in any Java 
development environment. Debug information about network 
communications and returned data is given as feedback to the 
programmer during wrapper execution. When the wrapper is 
debugged and tested, it can be integrated into the Data Extractor 
system through the knowledgebase. 

Data output: The data that is extracted from Web 
sites is either returned directly to the user or fed into the calling 
application that analyzes and processes it. For a wrapper to be 
integrated into heterogeneous and other database systems its 
interface has to act as a mini-database system that produces data 
in response to queries. Therefore, one of the major tasks of 
wrapper analysis and implementation is the definition of the 
structure of the wrapper' s output, or schema. Schema 
description and registration is done through the knowledgebase. 

We define a schema by specifying names and types for pieces 
of data, or fields , that the Web site provides. The wrapper is 
then programmed to output data using the field information 
defined in the schema. 

In the Data Extractor system, wrappers can return data both 
row-by-row and in complete tables. In the row-by-row 
approach, a row can be output as soon as the data for it is 
extracted from the Web site. This simplifies concurrent 
execution of wrapper and applications that process and consume 
data. As soon as the wrapper has extracted and returned the first 
record to the calling application, data can immediately be 
filtered, modified or otherwise processed by that application. 
Building and returning a table might be the only option in cases 
when complete data for each row is not available until the end 
of the extraction process. 

There are problems associated with schema definition. Data 
available on a Web site is usually taken from a data source or 
database internal to that Web site. Only a small portion of that 
database is displayed to the user. Knowledge about the database 
schema is not exposed: no information is given on how data is 
decomposed into tables internally or what relations exist 
between tables. Some fields (e.g. internal codes or product IDs) 



are rarely shown to the user. Finally, ~he size ~f the data set 
displayed is often less than the one that ts stored tn the database. 
All of these factors make schema definition complicated. 

Wrappers in the Data Extractor project return da!a in si~ple 
two-dimensional tables similar to the ones used tn relatiOnal 
databases. There is a single table defined for each wrapper. In 
the future we plan to use more complex data structures and 
generate multiple tables from a single wrapper. 

Wrapper parameters: Some of the advantages .of 
wrappers lie in their ability to shield the user from Web stte 
complexity, and to generate data in response to requests made 
through a simple interface. In order to be truly useful, a wrapper 
has to be able to execute a class of queries, not just a single 
query (i.e. a wrapper that extracts weather informatio.n for major 
cities is more valuable than wrapper that can only gtve weather 
for New York City). 

In the Data Extractor system, wrappers can have parameters 
that let users modify their behavior. In the example above, a 
wrapper would receive the name of the city as a parameter and 
then pass that information to the Web site to get weather for that 
city. 

4. IMPLEMENTATION 

Data Extraction Library 

The purpose of the Data Extraction Library is to provide Web 
document retrieval, parsing and data extraction functionality for 
wrappers, ensuring full interoperability with any Web site and 
full browser simulation. 

The Data Extraction Library provides four main groups of 
functionality: 

• Page retrieval functionality. Fast and reliable page 
retrieval from the Internet is crucial to wrapper operation. 
In Data Extraction Library page requesting and retrieval is 
done through sessions. A session is a conversation with a 
Web server, the result of which is a stream of data. This 
data can be read as a stream or (when data is actually an 
HTML page) can be converted into a document. Sessions 
are more than simple HTTP request/response pairs--they 
provide rich functionality for building requests and 
modification of parameters (similar to filling out forms in 
browsers). 

• HTML processing functionality. The contents of the 
retrieved HTML pages are stored internally in the form of 
a tree that consists of markup, or tags, and text elements. 
Each HTML page that is retrieved from the Web is 
automatically converted into an HTML tree. The parsing 
and document storage functionality was built to parse 
HTML and any other markup language that is based on 
SGML. It is, for example, capable of storing and 
processing XML and other XML-based formats. HTML 
processing functions give wrappers access to every detail 
of the document and feature powerful tree search and 
manipulation capabilities. Special functionality allows the 
creation of page downloading sessions from HTML forms 
and links, and automates data extraction from hierarchies 
of tags and HTML tables. 

The HTML parser that we implemented is not a general
purpose parser because it is lacking the validation 
mechanism. The validation functionality is not necessary 
in Data Extraction Library, because we only need to store 

429 

documents in memory, traverse them and search them for 
information. Tags are treated equally regardless of their 
type. This makes the parser fast, more robust (because it 
does not refuse to process documents that are syntactically 
incorrect), and able to build a tree for almost any 
document. 

• Data representation functionality. When data is extracted 
from the Web, it is shipped to the consumer. There are two 
ways to store data in the Data Extraction Library- in rows 
and in tables, with tables being collections of rows. This 
model allows us to create wrappers that generate data in 
either block or stream fashion . For the majority of 
wrappers, stream is the preferred way to output data 
because it allows portions of data to be processed by a 
higher-level application while the rest of it is still being 
extracted. 

• Wrapper interface functionality. Wrapper interface 
functionality provides a simple communication and control 
mechanism that simplifies the implementation of wrappers 
and transmission of data. It allows the calling process to 
fully manipulate wrapper execution, pass input parameters 
into the wrapper and control the flow of data out of it. 
Through this interface, a wrapper reports errors to the Data 
Extractor system, which tells systems administrator that 
the wrapper needs to be updated. 

Challenges 

Some difficulties were encountered while implementing the 
functionality for HTML parsing and page retrieval. 

• Syntax errors. In the course of ~ilding wrappers for a 
variety of sites we found a large portion of HTML pages to 
be syntactically incorrect. Shockingly, an estimated 90% of 
all Web pages on commercial Web sites we have analyzed 
so far have contained syntax errors. The high quality of 
modem Web browsers is partially to blame for th is. In 
order to accommodate the widest possible variety of Web 
sites and make an effort to display any Web page, no 
matter how badly structured, the browsers were made 
extremely forgiving. HTML page authors can miss or 
mismatch closing tags, put end tags in the wrong order, not 
close comments or make other mistakes- and browsers 
will not alert her to the problem. 

Syntax errors, however, had little impact on the work of 
our parsing functionality. A wrapper could not be built due 
to hopelessly incorrect HTML pages for only one site out 
of over a hundred we analyzed. For all other sites the 
parser did a satisfactory job of building markup trees out of 
pages. Such trees weren't always correct semantic 
representations of documents, but they provided a data 
structure that is adequate for traversing and information 
extraction. 1 

• Slowness of core network functionali ty. Java is an 
interpreted language and this takes its toll on the 
performance of time-critical routines in the standard Jav• 
libraries. Slowness of the network functionality in Java 
contributed the most to the overall slowdown of the 
wrapper operations. In our tests between 40% and 70% of 
the overall wrapper execution time was spent connecting to 
Web servers, sending requests for pages and receiving 
pages. In comparison, only about 5-l 0% of the time was 
spent on parsing and processing, and the rest--{)n 



.. 

operations associated with data extraction and control of 
wrapper _execution. 

Network operations were somewhat sped up when the 
standard Java HTTP protocol implementation was re
written using sockets and when other optimizations were 
applied as suggested in [II]. This way a lot of unnecessary 
operations were eliminated, making the implementation 
leaner, faster, and more flexible, accommodating redirects, 
cookies, and other protocols. 

In the future we expect the slowness of the network 
functionality to remain one of the stumbling blocks for 
successful wrapper implementation. Slowness of such 
operations is not inherent to Java-the same operations 
implemented in C'+-+ for comparison purposes performed 
only insignificantly faster. This decreased performance 
significantly reduces the usefulness of the applications 
written using wrapper technology because the speed of 
data set generation is slow and sometimes insufficient for a 
satisfactory user experience. 

Data Extraction Scripting Language 

As the Data Extractor project was progressing, two things soon 
became apparent. First, the majority of the Web sites which 
were analyzed and for which wrappers were implemented had a 
simple structure and did not need the full power of Java for data 
extraction. Second, maintenance of Java wrappers became 
cumbersome in some cases, where Web sites would change 
their structure once in three months or even more often, which 
in turn required changing the Java source of the appropriate 
wrapper. These observations initiated the work on a Data 
Extractor Scripting Language (DESL), a simple scripting 
language that will make fast definition of wrappers possible for 
the majority of Web sites. 

We followed severa~ requirements when we designed DESL. 
First, it had to be simple, expressive, and cover only the 
functionality necessary to extract data from HTML. It was not 
necessary to create another programming language similar in 
power to Java. Simplicity and expressiveness of the language 
improve understandability and reduce code size, thus reducing 
overall maintenance time. Java can still be used in cases when a 
site is too complex for a scripting language. 

Second, we had to be able to generate scripts in this language 
using a user-friendly GUI. One of the plans for future 
development of Data Extractor is to build a GUI environment, 
where a designer could create and update wrappers quickly, 
using a WYSIWYG ("What You See Is What You Get") 
interface. A wrapper would be a result of a "macro recording" 
of the steps the designer takes through the Web site and the data 
extraction instructions would be generated in response to the 
data fields that the designer highlights inside the site. Because 
of the demands of the GUI, DESL must support "round trip 
engineering." This means that we should not only be able to 
generate the script based on designer actions, but also import it 
into the GUI afterwards and modify it if the need arises. 

DESL syntax is currently being fmalized. We will report on it 
as soon as the development and testing of the working prototype 
is completed. 

Related work 

Over the past several years, many researchers have studied 
ways for collecting and processing data available on Web sites. 
Although a fully automatic extraction and labeling of data on 

430 

arbitrary sites is currently beyond the capabilities of computer 
science, assisted, learning-based data extraction has been quite 
successful in some systems ([1], [9], [13]). 

An alternative approach to data extraction is based on custom 
wrappers built around Web sites. Wrappers are coded manually 
or generated through special wrapper-generating browsers, such 
as the ones described in [12], and [22]. In our research we used 
a wrapper-based approach because it gives the highest accuracy 
of results and can be used to cover virtually any problem 
domain. As many researchers have noted, these advantages are 
sometimes offset by the costs of continuous wrapper 
maintenance. To help reduce those costs, we intend to further 
develop a two-fold approach to generating wrappers, where 
wrappers are written in a simple scripting language and 
wrappers for complex sites are written in Java. 

Specialized languages dominate wrapper development, with 
implementations ranging from Prolog-like predicate logic ([5], 
[14]) to SQL flavors ([2], [3], [17]). We have not seen wrapper 
implementations based on a general purpose programming 
language like Java. 

Some of Data Extractor's features can be found in existing 
systems. These features include, in particular, regular 
expressions for searching, data extraction and navigation 
through HTML documents ([2], [17], [18]), tree representation 
of HTML documents ([2), [4], [8]) and form processing ([3], 
[6]). XML query languages (e.g. XSLT [23]) have also 
influenced our research. 

S. CONCLUSIONS AND FUTURE WORK 

In this work we have described a Data Extractor system that 
facilitates data retrieval from Web sites. Data Extractor plays an 
important role as a data provider for the MSemODB 
heterogeneous database system. The ability to access data not 
only from relational and semantic databases, but also from the 
unstructured Web data sources significantly increases the power 
of MSemODB and extends the range of applications it could be 
applied to. The solution is portable and can be used both as a 
standalone data provider and embedded into applications. 

We defined custom functionality for implementing wrappers 
using a high-level programming language and a library of 
specialized data extractions. A description of a wrapper 
construction process and a number of techniques and guidelines 
for site analysis and wrapper design were presented. Data 
Extractor fully simulates user interaction with a browser and 
can fill out forms and extract data from complex sets of linked 
Web pages. 

In our future work we will focus on simplification of wrapper 
design process by building wrapper generation tools and further 
developing DESL. The problem of purity of extracted data also 
needs serious attention, because data frequently needs to be 
cleaned to filter out erroneous records. Translation that helps 
reconciliation of data from different sources is also necessary. 
We are also experimenting with data output formats similar to 
OEM [19] and XML. 

6. ACKNOWLEDGEMENTS 

We would like to thank the entire Data Extractor team at 
HPDRC for the invaluable help and stimulating discussions 
during the writing of this paper. 



7. REFERENCES 

[I] Adelberg, B. and Denny, M. Nodose version 2.0. 
Proceedings of the 1999 ACM SIGMOD International 
Conference on Management of Data, 1999, Pages 559 -
561 

[2] Arocena, G. and Mendelzon, A. WebOQL: Restructuring 
Documents, Databases, and Webs. Proceedings of 
ICDE'98, Orlando, February 1998. 

[3] Bauer, M. and Dengler, D. InfoBeams--configuration of 
personalized information assistants. Proceedings of the 
1999 International Conference on Intelligent User 
Interfaces, 1999, Pages !53- 156 

[4] Bauer, M., Dengler, D. and Paul, G. Instructible 
information agents for Web mining. Proceedings of the 
2000 International Conference on Intelligent User 
Interfaces, 2000, Pages 21 - 28 

[5] Cohen, W. A Web-based information system that reasons 
with structured collections of text. Proceedings of the 2"d 
International Conference on Autonomous Agents, 1998, 
Pages 400 - 407 

[6] Doorenbos, R., Etzioni, 0., Weld, D. A Scalable 
Comparison-Shopping Agent for the World-Wide Web. 
Autonomous Agents '97 

[7] World Wide Web Consortium. Document Object Model 
(DOM). http://www.w3.org/DOM 

[8] Embley, D. W., Jiang, Y. and Ng, Y.-K. Record-
boundary discovery in Web documents. Proceedings of the 
1999 ACM SIGMOD International Conference on 
Management of Data, 1999, Pages 467-478 

[9] Grumbach, S., Mecca, G. In Search of the Lost Schema. 
In Proceedings of International Conference on Database 
Theory (ICDT'99), 1999 

[10] Hammer, J. , Garcia-Molina, H., Ireland, K., 
Papakonstantinou, Y., Ullman, J., and Widom, J. 
Information Translation, Mediation, and Mosaic-Based 
Browsing in the TSIMMIS System. In Exhibits Program of 
the Proceedings of the ACM SIGMOD International 
Conference on Management of Data, page 483, Sari Jose, 
California, June 1995. 

[II] Heydon, A., and Najork, M. Performance Limitations of 
the Java Core Libraries. In Proceedings of the 1999 ACM 
Java Grande Conference, pages 35-41, June, 1999. 

[12] Liu, L., Han, W., Buttler, D., Pu, C. and Tang, W. An 
XJML-based wrapper generator for Web information 
extraction. Proceedings of the 1999 ACM SIGMOD 
International Conference on Management of Data, 1999, 
Pages 540 - 543 

431 

[13] Lim, S.-J. and Ng, Y.-K. An automated approach for 
retrieving hierarchical data from HTML tables. 
Proceedings of the 8th International Conference on 
Information Knowledge Management, 1999, Pages 466 -
474 

[14] Lakshmanan, L., Sadri, F., and Subramanian, I. A 
Declarative Language for Querying and Restructuring the 
World-Wide-Web. Post-ICDE IEEE Workshop on 
Research Issues in Data Engineering (RIDE-NDS'96), 
New Orleans, February 1996. 

[15] Mecca, G., Atzeni, P., Masci, A., Sindoni, G. and 
Merialdo, P. The Araneus Web-based management 
system. Proceedings of ACM SIGMOD International 
Conference on Management of Data, 1998, Pages 544 -
546 

[16] Muslea, M., Minton, S. and Knoblock, C. A hierarchical 
approach to wrapper induction. Proceedings of the 3n1 
Annual Conference on Autonomous Agents, 1999, Pages 
190- 197 

[17] Mende1zon, A., Mihaila, G., Milo, T. Querying the World 
Wide Web. PDIS 1996, December 1996, pages 80-91 

[18] Neven, F., and Schwentick, T. Expressive and efficient 
pattern languages for tree-structured data (extended 
abstract). Proceedings of the 19th ACM SIGMOD
SIGACT-SIGART Symposium on Principles of Database 
Systems, 2000, Pages 145- 156 

[19] Papakonstantinou, Y.-, Garcia-Molina, H., Widom, J. 
Object exchange across heterogeneous information 
sources. In Proceedings of '\he Data Engineering 
Conference. Computer Society of IEEE, Taipei, Taiwan, 
March 1995. 

[20] Rishe, N. Database Design: the semantic modeling 
approach. McGraw-Hill, 1992, 528 pp. 

[21] Rishe, N., Yuan, J., Athauda, R., Lu, X., Ma, X., 
Vaschillo, A., Shaposhnikov, A., Vasilevsky, D. and Chen, 
S.C. SemanticAccess: Semantic Interface for Querying 
Databases. The International Conference on Very Large 
Data Bases (VLDB 2000), September 10-1 4, 2000. 

[22] Sugiura, A. and Koseki, Y. Internet scrapbook: 
automating Web browsing tasks by demonstration. 
Proceedings of the 11th Annual ACM Symposium on User 
Interface Software and Technology, 1998, Pages 9- 18 

[23] World Wide Web Consortium. XSL Transformations 
(XSL T). W3C Recommendation. 
http://www.w3.org/TR/xslt 


