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Abstract- The need to provide computers with the ability to 
distinguish the affective state of their users is a major 
requirement for the practical implementation of Affective 
Computing concepts. The determination of the affective state of a 
computer user from the measurement of some of his/her 
physiological signals is a promising avenue towards that goal. In 
addition to the monitoring of signals typically analyzed for 
affective assessment, such as the Galvanic Skin Response (GSR) 
and the Blood Volume Pulse (BVP), other physiological variables, 
such as the Pupil Diameter (PD) may be able to provide a way to 
assess the affective state of a computer user, in real-time. This 
paper studies the significance of pupil diameter measurements 
towards differentiating two affective states (stressed vs. relaxed) 
in computer users performing tasks designed to elicit those states 
in a predictable sequence.  Specifically, the paper compares the 
discriminating power exhibited by the pupil diameter 
measurement to those of other single-index detectors derived 
from simultaneously acquired signals, in terms of their Receiver 
Operating Characteristic (ROC) curves. 

 

I. INTRODUCTION 
New developments in human-computer interaction 

technology seek to close the communication gap between the 
human and the machine. A key component needed to meet 
these requirements is the ability of computer systems to 
address user affect. Picard and others have described the 
importance of the emotional and affective factors in human-
computer interaction [1]. The knowledge of a user’s affect can 
provide useful feedback regarding the degree to which a user’s 
goals are being met, enabling dynamic and intelligent 
adaptation. Since physiological variables in humans are 
inherently controlled by their autonomic nervous system, these 
expressions of emotion are less susceptible to environmental 
interference or voluntary masking than others, such as, for 
example, facial expression or speech activity. Previous 
attempts to recognize emotions from physiological changes 
have analyzed a variety of autonomic activities such as the 
Electroencephalogram (EEG), the Electrocardiogram (ECG), 
the Electromyogram (EMG), Blood Pressure (BP), Blood 
Volume Pulse (BVP), Galvanic Skin Response (GSR), Skin 
Temperature (ST), Heart Rate Variability (HRV), etc. Many of 
these physiological variables have been chosen because they 
can be monitored in non-invasive and non-intrusive ways. 
However, one physiological variable that has not been studied 
extensively for the purpose of affect recognition is the pupil 

dilation. In an isolated fashion, it has been verified that 
variations of the Pupil Diameter (PD) reflect the emotional 
changes driven by auditory emotional stimulation [2].  

From human physiology studies, it is known that the 
Sympathetic Division of the Autonomic Nervous System 
(ANS) significantly influences these physiological variables. 
The sympathetic division prepares the body for heightened 
levels of somatic activity. When fully activated, this division 
readies the body for a crisis that may require sudden, intense 
physical activity, which is known as the “fight or flight” 
response. Generally, an increase in sympathetic activity 
stimulates tissue metabolism and increases alertness. The heart 
rate, skin resistance, blood pressure and pupil diameter are all 
affected by branches of the sympathetic division of the ANS. 
In this study, we monitored four physiological variables (GSR, 
BVP, ST and PD) simultaneously and compared the 
significance of signals derived from these measurements 
towards the detection of sympathetic activation associated 
with a multifaceted emotional state — ‘Stress’. 

When a subject experiences stress and nervous tension, the 
palms of his/her hands become moist. Increased activity in the 
sympathetic nervous system will cause increased hydration in 
the sweat duct and on the surface of the skin. The resulting 
drop in skin resistance (increase in conductance) is recorded as 
a change in electrodermal activity (EDA), also called Galvanic 
Skin Response (GSR). So, in everyday language, 
electrodermal responses can indicate ‘emotional sweating’. 
The GSR is measured by passing a small current through a 
pair of electrodes placed on the surface of the skin and 
measuring the conductivity level. In spite of its simplicity, 
GSR measurement is currently considered one of the most 
sensitive physiological indicators of psychological 
phenomena. GSR is also one of the signals used in the 
polygraph or ‘lie detector’ test. A GSR2 module, by Thought 
Technology LTD (West Chazy, New York) was used in our 
research to measure GSR. The resistance found in between its 
two electrodes determines the oscillation frequency of a 
square-wave oscillator inside the device. We have used a 
“frequency-to-voltage-converter” integrated circuit 
(LM2917N) to obtain output voltages that are proportional to 
instantaneous skin conductance. This modified device was 
calibrated by connecting several resistors of known resistance 
to it and measuring the output voltage of the frequency-to-
voltage converter in each case. 
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The measurements of Blood Volume Pulse (BVP) in this 
project were obtained using the technique called 
photoplethysmography (PPG), to measure the blood volume in 
skin capillary beds, in the finger. PPG is a non-invasive 
monitoring technique that relies on the light absorption 
characteristics of blood. Traditionally, the Blood Volume 
Pulse has been used to determine the heart rate only. However, 
if measured precisely enough, it can be used to extract 
estimates of the heart rate and its variability. In our 
experiment, the sampling rate used to record the BVP signal 
was 360 samples/second.  

Changes of acral skin blood flow are also a commonly used 
indicator for sympathetic reflex response to various stimuli. 
When sympathetic stimuli are applied to a person, the blood 
volume in the finger vessels is expected to decrease due to the 
vasoconstriction in the hairless areas of the hand but not in the 
hairy skin of the hand. If this assumption is true, the finger 
temperature should transiently decrease according to this 
effect. A thermistor can be attached to the subject’s finger to 
sense the temperature changes. In our experiment, the 
subject’s skin temperature was measured with an LM34 
integrated circuit that provided a linear output between –50 
and 300 degrees Fahrenheit. The output of the sensor was 
buffered and fed into a differential amplifier (with a gain of 31 
V/V) to amplify the temperature changes in the range of 75-
100 ˚F. This sensor was attached to the distal phalanx of the 
left thumb finger with the help of Velcro. The signal was 
recorded at the sampling rate of 360 samples/second. The 
experiments were performed in an air-conditioned room, to 
minimize the potential impact of environmental temperature 
changes on this experimental variable. 

The diameter of the pupil is determined by the relative 
contraction of two opposing sets of muscles within the iris, the 
sphincter and dilator pupillae, and is determined primarily by 
the amount of light and accommodation reflexes [3]. The pupil 
of the human eye can constrict and dilate such that its diameter 
can range from 1.5 to more than 9mm. The pupil dilations and 
constrictions in humans are governed by the ANS. Several 
researchers have established that pupil diameter increases due 
to many factors. Anticipation of solving difficult problems, or 
even thinking of performing muscular exertion will cause 
slight increases in pupil size. Hess [4] indicated that other 
kinds of anticipation may also produce considerable pupil 
dilation. Previous studies also have suggested that pupil size 
variation is also related to cognitive information processing. 
This, in turn, relates to emotional states (such as frustration or 
stress) since the cognitive factors play an important role in 
emotions [5]. Partala and Surakka have found, using auditory 
emotional stimulation, that the pupil size variation can be seen 
as an indication of affective processing [2]. All these previous 
results found in the literature prompted us to attempt to use the 
pupil size variation to detect affective changes during human-
computer interactions. There are several techniques available 
to quantify pupil size variations [5]. Currently, automatic 
instruments, such as infrared eye-tracking systems, can be 
used to record eye-related information, including pupil 
diameter and point of gaze. In our study, the subject’s left eye 

was monitored with an Applied Science Laboratories series 
5000 eye tracking system running on a PC computer to extract 
the values of pupil diameter. The sampling rate of the system 
was 60 samples/second. To minimize the potential impact of 
illumination changes on the subject’s pupil diameter, the 
lighting of the experimental environment and the average 
brightness of the stimulus computer were kept constant during 
the complete experimental sequences and across all the 
subjects. 

 
II. METHODOLOGY 

A. Stress Elicitation 
Our aim in this research is the detection of mental stress, as 

physical stressors occur far less frequently in the context of 
human-computer interaction. Therefore, in order to elicit 
mental stress at controlled intervals a computerized “Paced 
Stroop Test” was used. The Stroop Color-Word Interference 
Test [6], in its classical version, requires that the font color of 
a word designating a different color be named. In our research, 
the classical Stroop Test was adapted into an interactive 
version that requires the subject to click on the correct answer 
rather than stating it verbally. Since adding task pacing to the 
Stroop Test might intensify the physiological responses [7], 
each trial was designed to only wait 3 seconds for a user 
response.  If the subject could not make a decision within 3 
seconds, the screen automatically changed to the next trial. 
This modified version was implemented with Macromedia 
Flash® and also programmed to output bursts of sinusoidal 
tones through the sound system of the laptop used for 
stimulation, at selected timing landmarks through the protocol 
to time-stamp the recorded signals at those critical instants. 

 

 
Figure 1. Sample Stroop Test  interface 

       
Figure 2 is the audio output schedule for the experiment, 

from the beginning of the session to its end. The complete 
experiment comprises three consecutive sections. In each 
section, we have four segments including:  1) ‘IS’ - the 
Introductory Segment to let the subject get used to the task 
environment, in order to establish an appropriate initial level 
for his/her psychological state, according to the law of initial 
values (LIV) [8]; 2) ‘C’ – is a Congruent segment, comprising 
45 Stroop congruent word presentations (font color matches 

BARRETO ET AL. 60



the meaning of the word), which are not expected to elicit 
significant stress in the subject; 3) ‘IC’ – is an Incongruent 
segment of the Stroop Test in which the font color and the 
meaning of the 30 words presented differ, which is expected to 
induce stress in the subject; 4) ‘RS’ – is a Resting Segment to 
let the subject relax for some time. The binary numbers shown 
in Figure 2 represent the de-multiplexed output of the audio 
signaling used in the system to time-stamp the four 
physiological signals, BVP, GSR, PD and ST. Our previous 
report on the instrumental setup [9] provides more details on 
this audio scheme.     
 

IS1 C1 IC1 RS1 IS2 C2 IC2 RS2 IS3 C3 IC3 RS3
Start End

Binary 01 01 10 11 01 10 11 01 10 11 01
1 1 2 3 1 2 3 1 2 3 1

IS – Introductory Segment, IC – Incongruent Segment
C – Congruent Segment,  RS – Rest Segment

Section 1 Section 2 Section 3

 
 

Figure 2. Audio output schedule. 
 

B. Physiological Recording Setup 
The complete instrumental setup developed for this research 

is illustrated in Figure 3. The stimulus program (interactive 
paced Stroop Test) described above runs in a laptop PC. While 
performing the Stroop Test, the subject has the GSR, BVP and 
ST sensors attached to his/her left hand. These three signals 
are digitized, using a multi-channel data acquisition system, 
NI DAQPad-6020E for USB, a product of National 
Instrumentation Corp, and the samples are read into Matlab® 
directly at rate 360 samples/sec.  Additionally, the eye gaze 
tracking system (ASL-504) records PD data to a file on its 
own interface PC, at a rate of 60 samples/sec. The software for 
this system allows the extraction of selected variables (in this 
case the pupil diameter and the marker channel) to a smaller 
file, which in turn can be read into Matlab® also, where it can 
be aligned with the BVP, GSR and ST signals, thanks to their 
common timing marks for the start and stop events. At this 
point the pupil diameter data can be upsampled (interpolated) 
by six, to achieve a common sampling rate of 360 samples/sec 
for all four measured signals.     

Figure 4 shows an example of the four signals recorded 
from a subject through the complete length of the 
experimental session, after all of the signals have been 
synchronized (at a sampling rate of 360 samples per second). 
The gaps in the pupil diameter signals, due to blinking, have 
been compensated by automatic interpolation. 

Signals from 32 experimental subjects were collected and 
divided into 192 data entries, since each participant generated 
data under three relaxed (congruent Stroop) segments and 
three stressed (incongruent Stroop) segments. 
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Figure. 3. .Instrumental Setup. 
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Figure. 4.  Four physiological signals after synchronization. From top to 

bottom: GSR, BVP, ST, and PD. 
 

C. Definition and Normalization of Individual Detection 
Signals 

In this study our goal is to compare the potential of single-
index indicators derived from the four physiological signals 
measured in terms of their individual discriminating power to 
differentiate between the congruent Strop segments 
(associated with a “relaxed” affective state in the user) and the 
incongruent Stroop segments (which are assumed to have 
caused a “stressed” state in the subject).  The following 
paragraphs describe how the sample values of each of the 
signals were consolidated in a single feature value for each 
congruent or incongruent segment in the test.   

The average value of the GSR samples collected during the 
whole extent of a congruent or incongruent Stroop segment 
was used as a representative response for this variable for each 
segment:  GSRmean.  Increased sweat production during 
“stressed” segments would predict a noticeable change of this 
average value during those segments. 

From the BVP signal the interbeat interval (IBI), defined as 
the time in milliseconds between two normal, consecutive 
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peaks in the BVP signal was defined for each two consecutive 
beats. The inverse of the IBI, expressed in beats per minute 
(BPM) is the heart rate, which is known to be altered by 
autonomic activation.  The single index value defined from the 
BVP signal for each (congruent or incongruent) segment was 
the average of the IBI values in the segment: BVPIBImean . 

For the skin temperature signal, it was expected that the 
temperature in the finger surface would display transient 
decreases when the stressor stimuli occur. To extract this 
information, the amplified ST signal was first filtered to 
remove recording noise. The slope of the filtered skin 
temperature in each segment was then used as a feature 
element of this signal. We found that the patterns of 
temperature slope provided more indicative information than 
the patterns of mean value of this signal. One possible 
explanation for this finding is that the skin temperature seems 
to obey much longer time constants in its variation, and, as 
such, its instantaneous value does not necessarily reflect well 
the “current” affective status of the subject, at any given time. 
In a protocol that included alternation between two types of 
stimuli (congruent and incongruent Stroop), the ST level 
during one given interval may still reflect the response to the 
previous interval. However, the derivative of the changing 
signal showed an interesting pattern. When the stressor stimuli 
occur, the slope of the temperature signal was generally 
negative.  The slope of the ST signal was estimated using the 
digital low pass differentiation algorithm 1f3, as defined in 
[10], to yield the detection signal STslope. 

The raw pupil diameter (PD) signal was recorded separately, 
as previously described. The artifact gaps due to blinking were 
automatically detected and filled by interpolation. The single-
index signal extracted from the pupil diameter samples in each 
segment was simply the average value of PD, which we have 
labeled: PD. According to previous knowledge from the 
literature, we expected the mean PD should increase during 
the stress segments. 

Prior to attempting to use these single-index signals to 
identify “stressed” (incongruent) and “relaxed” (congruent) 
experimental segments, they underwent a process of 
normalization. Let Xs represent the feature value for any of 
the raw features defined from the signal sample values during 
congruent and incongruent segments of the experiment. Let Xr 
represent the corresponding feature value extracted from the 
signals samples that were recorded during the relaxation 
period, prior to the first congruent Stroop segment.  To 
eliminate the initial level due to the individual differences, 
Equation (1) was first applied to get the corrected feature 
signals (Ys)  for each of the subjects. 

r

s
s X

XY =          (1) 

For each subject, there were three congruent segments and 
three incongruent segments. Therefore, six values of any of 
the features were obtained from the signals recorded during 
these segments. Equation (2) normalizes each feature value 
dividing it by the sum of all six segment values. 

∑
=

= 6

1

'

i
is

is
s

Y

Y
Y                       (2) 

These two stages of normalization aimed at minimizing the 
impact of individual subject responses on the affective state 
identification process. After this pre-processing, all features 
(GSRmean, BVPIBImean, STslope and PD) were normalized 
to the range of [0, 1] using max-min normalization, as shown 
in Equation (3), to be considered as detection signals and 
compared against a threshold that spanned a uniform range of 
possible values: [0,1], for a fair comparison. 
 
 
 

 
 

 
(3) 

 
III. RESULTS AND DISSCUSION 

A. Comparison of single detection signals 
The four physiological signals monitored in our experiments 

are expected to exhibit different characteristics during the 
intervals when the subject was not under stress (i.e., during 
congruent Stroop segments) and during the intervals in which 
the subject was being stressed by incongruent Stroop word 
presentations. It is possible to summarize the information 
contained in each physiological signal by extracting one or 
several numerical features from each. In previous studies we 
have developed affective state classifiers that combine the 
information from several features extracted from each of the 
four physiological signals monitored, by means of machine 
learning systems [11][12][13]. 

In this study, however, our goal was to compare the 
discriminant power of information derived from the Pupil 
Diameter mean in a given interval (PD), with respect to other 
single detection signals GSRmean, BVPIBImean and 
STslope). Therefore, these three signals, as well as the PD 
measurements, were normalized as indicated by equations (1), 
(2) and (3).  

 
B. Receiver Operating Characteristic (ROC) Curves 

Next we present the comparison of the Receiver Operating 
Characteristic (ROC) curves for the four chosen normalized 
detection signals (PD, GSRmean, BVPIBImean and STslope), 
as a way to compare the levels of affective state discrimination 
power associated with them.  

Receiver Operating Characteristic (ROC) curves show 
graphically the trade-off that a classifier must make between 
its “false positive rate” (which reflects the false alarm level, 
i.e., fraction of negative cases incorrectly classified as 
positive) and its “true positive rate” (i.e., the fraction of all 
positive cases correctly classified), by means of adjusting a 
threshold.  The ROC is a plot of false positive rate vs. true 
positive rate for a classifier as different settings for the 
threshold are considered. At the lowest sensitivity level (i.e., 
setting the threshold at the highest possible value of the 
detection signal) the classifier produces no false alarms but 
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detects no positive cases. This is represented by the origin of 
the coordinate axes in the ROC plot. As the sensitivity is 
increased, (i.e., as the threshold is lowered) the classifier 
detects more positive examples but may also start generating 
false alarms (false positives). Eventually the sensitivity may 
become so high (threshold set at the lowest possible value of 
the detection signal) that the classifier always claims each case 
is positive.  So the classifier gets all positive cases right (true 
positive rate = 1), but it gets all the negative cases wrong, 
because it raises a false alarm on each negative case  (false 
positive rate = 1). This corresponds to the top right-hand 
corner of the ROC. While all ROC curves “start” at the 
coordinate origin, (0,0) and “end” at the upper-right corner 
(1,1), the trajectory between these points followed by a  given 
ROC, and consequently, the “Area under the ROC”  are 
indicators of the discriminant  power of the classification 
signal being thresholded. A “random classifier” (i.e., a process 
that produces uniformly distributed random numbers, without 
any relation to the input which is supposedly being classified) 
would display a ROC that follows approximately a 45o 
diagonal ascent from (0,0) and (1,1). The “area under the 
ROC” (AUROC) would, therefore, be close to 0.5 (half the 
area of the 1.0-by-1.0 square). On the other hand, a 
classification system that produces a highly discriminating 
detection signal will have one or several threshold levels that 
map close to the upper-left corner of the ROC, at (0,1) 
indicating a high sensitivity (large true positive rate) and also 
a high specificity (low false positive rate). If that is the case, 
the AUROC will come close to encompassing the full 1.0-by-
1.0 square. That is, the AUROC will approach the ideal value 
of 1. 
 
C. ROC comparison for Pupil Diameter and other signals 

In the light of the background provided by the previous sub-
section, our interest is to compare the discriminant power of 
the Pupil Diameter with those of the other 3 normalized 
physiological measures chosen to represent each (congruent or 
incongruent) interval (GSRmean, BVPIBImean and STslope).  

The ROC curve for each of these detection functions has 
been estimated using the values for the 6(segments) x 
32(subjects) = 192 segments analyzed in our experiments. 
Only half of these segments correspond to “stressed” states 
induced by incongruent Stroop stimulation (ideal classifier 
output = 1), while the other half are known to be associated 
with “relaxed” (congruent Stroop) intervals (ideal classifier 
output = -1). Each point of the ROC curves is determined by 
comparing the value of the detection signal to a specific 
threshold level and determining which portion of the “positive 
classifier outputs” match the ideal (1) and which portion of the 
“negative classifier outputs” are in disagreement to the ideal 
output (-1). These “portions”, expressed as fractional numbers, 
yield the coordinates of the ROC point (false positive rate, true 
positive rate) for the threshold value tested. The process was 
carried out using the ROC Matlab ® scripts provided by Dr. 
Gavin C. Cawley (University of East Anglia, Norwich, UK) in 
his web site http://theoval.sys.uea.ac.uk/matlab/default.html. 
These scripts not only sweep the complete range of 

normalized threshold values, [0,1], and draw the ROC, but 
additionally estimate a “convex  hull” that fits the actual ROC 
points calculated. The convex hull is shown with dashed lines 
in the following plots. 

Figures 5 through 8 show the ROC computed for the 
GSRmean, BVPIBImean, STslope and PD detection signals, 
respectively. The area under the ROC curve computed in each 
case is stated in the caption for each figure. It should be noted 
that both the ROC curves for GSRmean and for BVPIBImean 
show a convexity that makes them depart from the random 
classification diagonal to some extent. However, their areas 
under the ROC are only moderately better than 0.5: 
AUROC_GSRmean = 0.6519 and AUROC_BVPIBImean = 
0.6455 . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

 ROC and ROCCH for GSRmean

 
 

Figure 5. GSRmean ROC curve (AUROC = 0.6519) 
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Figure 6. BVPIBImean ROC curve (AUROC = 0.6455) 

 
The ROC curve for STslope shown in Figures 7 is actually 

very close to the random classification diagonal and, in 
general terms, follows a straight line at an angle just slightly 
larger than 45o. As such, the area under this curve is not much 
higher than ½ :  AUROC_STslope = 0.5849 . 
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Figure 7. STslope ROC curve (AUROC = 0.5849) 

    In contrast, the ROC curve for PD, shown in Figure 8, 
exhibits a sharp slope from the coordinate origin, almost 
immediately reaching into high levels of true positive rate. 
Then the curve exhibits a number of intermediate points 
(threshold levels) for which the true positive rate is better than 
0.8 while simultaneously having a false positive rate of less 
than 0.2. Accordingly, the area under this curve is large: 
AUROC_PD = 0.9647. 
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Figure 8. PD ROC curve (AUROC = 0.9647) 

    If a figure of merit indicating the Discriminating Potential 
of a given detection signal, X, calculated as:  

DP = (AUROC(X) – 0.5) x 200%                (4) 

is considered (such that a random classifier will yield 0% and 
a detection signal for which AUROC approaches 1.0 will yield 
approximately 100%), we would find that: DP(GSRmean)  = 
30.38%;  DP(BVPIBImean)=29.10%;  DP(STslope)=16.98%  
and, significantly,  DP(PD)=92.94% . This indicates that, at 
least in terms of its ROC curve, the PD detection signal has 
significantly more potential to help identify one state from the 
other, while STslope shows particularly limited discriminating 
potential. 

IV. CONCLUSION 
  We have investigated the potential of four detection signals 
derived from physiological measurements, GSRmean, 
BVPIBImean, STslope and PD, to act as individual 
classification signals for the differentiation between stress and 
relaxation in computer users. Our results indicate that two of 
the signals (GSRmean and BVPIBImean) derived from two of 
the physiological variables most commonly monitored for 
affective sensing exhibited only moderate discriminating 
potential. The STslope signal exhibited limited potential for 
this detection problem. In contrast, the mean value of the pupil 
diameter, PD, displayed a strong potential for single-signal 
discrimination between relaxed and stressed user states. Of 
course, this analysis has only addressed the potential of these 
signals for discrimination, and the actual performance of a 
detector based on any of these signals will be strongly 
influenced by the definition of the actual threshold used. 
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