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Abstract—Population density, natural and man-made disasters
make public safety a problem of growing importance. In this
paper we aim to enable the vision of smart and safe cities, by
exploiting mobile and social networking technologies to securely
and privately extract, model and embed real-time public safety
information into quotidian user experiences. We first propose
novel approaches to define location and user based safety metrics.
We evaluate the ability of existing forecasting techniques to
predict future safety values. We introduce iSafe, a privacy
preserving algorithm for computing safety snapshots of co-located
mobile devices as well as geosocial network users. We present
implementation details of iSafe, as both an Android application
and a browser plugin, that visualizes safety levels of visited
locations and browsed geosocial venues. We evaluate iSafe using
crime and census data from the Miami-Dade (FL) county as well
as data we collected from Yelp, a popular geosocial network.

Index Terms—Context aware safety, distributed algorithms

I. INTRODUCTION

Recent technological advances, in particular mobile devices
and online social networks, have paved the way toward a
smarter management of resources in today’s cities. As pop-
ulation density grows and natural disasters and man-made
incidents (e.g., hurricanes, earthquakes, riots [1], [2]) impact
increasing numbers of people, maintaining the safety of citi-
zens, an essential smart city component, becomes a problem
of paramount significance and difficulty.
We envision a system where users are seamlessly made

aware of their safety in a personalized manner, through quo-
tidian experiences such as navigation, mobile authentication,
choosing a restaurant or finding a place to live. We propose to
achieve this vision by introducing a framework for defining
public safety. Intuitively, public safety aims to answer the
question “Will location L present any danger for user A when
she visits L at a future time T ”?
An important challenge to achieving this vision is the need

to properly understand and define safety. While safety is
naturally location dependent, it is also inherently volatile.
It not only exhibits temporal patterns (e.g., function of the
season, day of week or time of day) but also depends on
the current context (e.g., people present, their profile and
behavior). Furthermore, as suggested by the above question,
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public safety has a personal dimension: users of different
backgrounds are likely to be impacted differently by the same
location/time context.
Previous attempts to make people safety-aware include the

use of social media to distribute information about unreported
crimes [3], or web based applications for visualizing unsafe
areas [4], [5]. The main drawbacks of these solutions stem
from the difficulty of modeling safety and of integrating it in
quotidian user experiences.
Instead, in this paper we investigate the combination of

space and time indexed crime datasets, with mobile tech-
nologies and online social networks to provide personalized
and context aware safety recommendations for mobile and
social network users. To achieve this, we first define location
centric, static crime and safety metrics, based on recorded
crime events. Given observed crime periodicities, we show that
timeseries forecasting tools are able to predict future crime and
safety index values of locations, based on past crime events.
We use statistical tools to show that dependencies exist

between the quantity and quality of reviews received by venues
in Yelp (a popular geosocial network) and the crime indexes of
the venue locations. We then use mobile devices and geosocial
networks to record user trajectory traces, that enable us to
provide personalized, context aware safety recommendations,
even when crime information is not available.
We introduce iSafe, a distributed algorithm that addresses

privacy concerns raised by the use of trajectory traces and
associated crime and safety index values. iSafe takes advantage
of the wireless capabilities of mobile devices to compute
real-time snapshots of the safety profiles of close-by users
in a privacy preserving manner. iSafe uses secret splitting
and secure multi-party computation tools to aggregate the
trajectories of co-located users without learning the private
information of participants.
We have extensively evaluated Android and browser plugin

implementations of iSafe, using crime and census data from
the Miami-Dade county (FL) as well as data we have collected
from the accounts of users and businesses in Yelp [6]. Our
conclusion is that iSafe is efficient: even on a smartphone, the
computation and communication overheads are a few hundred
milliseconds. The iSafe project can be found online [7],
providing downloadable Chrome plugin and Android app
executables.
The paper is organized as follows. Section II presents

the system model, the datasets and tools used in this work.
Section III proposes a static, location centric safety labeling
technique and Section IV compares the ability of existing
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forecasting tools to predict future crime and safety values.
Section V introduces the concepts of personalized and con-
text aware safety as well as the iSafe solution. Section VI
investigates relationships between social networks and crime
levels. Section VII describes the iSafe implementation and
Section VIII presents evaluation results. Section IX discusses
related work and Section X presents our conclusions.

II. MODEL AND BACKGROUND

We consider a framework consisting of three participants, (i)
a service provider, (ii) mobile device users and (iii) geosocial
networks. The service provider, denoted by S, centralizes
crime and census information and provides it upon request.
We assume that the mobile devices are equipped with wireless
interfaces, enabling the formation of transient, ad hoc con-
nections with neighboring devices. Devices are also equipped
with GPS interfaces, allowing them to retrieve their geographic
location. Devices have Internet connectivity, which, for the
purpose of this work may be intermittent. Users take advantage
of Internet connectivity not only to communicate with the
geosocial networks but also to retrieve safety information (both
described in the following). Each user needs to install an
application on her mobile device, which we henceforth denote
as the client.
Geosocial networks (GSNs) such as Yelp and Foursquare

extend classic social networks with the notions of (i) venues,
or businesses and (ii) check-ins. Besides user accounts, GSNs
provide accounts also for businesses (e.g., restaurants, yoga
classes, towing companies, etc). GSNs encourage and reward
user feedback, in the form of ratings and reviews, left for
visited venues. User ratings range from 1 to 5 stars and are
aggregated to produce an overall venue rating.

A. Data

Geosocial network data. We have collected Yelp information
from all the venues in the Miami-Dade county, Florida, for a
total of 7699 venues. For each venue, we have collected the
name, type and address, along with the list of reviews received.
For each review, we collected the home city and state of the
reviewer. The supplemental material includes plots showing
that (i) the number of reviews received by Miami-Dade venues
exhibits a long tail distribution and (ii) Yelp reviews are mostly
positive as most aggregate ratings are at or above 4 stars.
Crime and Census data.We use a historical database of more
than 2.3 million crime incidents reported in the Miami Dade
county area since 2007 [8]. Each record is labeled with a crime
type (e.g., homicide, larceny, robbery, etc), the time and the
geographic location where it has occurred. We mapped crimes
into 7 categories: Murder, Forcible Rape, Aggravated Assault,
Robbery, Larceny/Theft, Burglary/Arson, Motor Vehicle Theft.
We removed minor crime reports that did not fall into these
categories. Let c denote the number of crime types. In our
case, c = 7. Let CT = {CT1, .., CTc} denote the set of crime
types. We also use Census data sets [9], reporting population
counts and demographic information. The data is divided
into polygon shaped geographical extents called census block
groups. Each block contains information about the population
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Fig. 1. 1 week (July 13-19, 2011) evolution of the number of crimes reported
within one Miami-Dade block.

within (e.g., population count, various statistics). According to
the data, Miami Dade county has a population of 2, 496, 435.
The supplemental material includes more details of the data
classification process and a plot showing the Miami-Dade
population density, at block granularity.

B. Forecasting and Error Measurement Tools

We rely on time series forecasting tools, including Auto
Regressive Integrated Moving Average (ARIMA), Linear
(Double) Exponential Smoothing (LES) and Artificial Neural
Networks (ANN). The supplemental material briefly describes
each tool. Furthermore, we use the root mean squared error
(RMSE) and mean absolute percent error (MAPE) [10] as error
measurement metrics to evaluate the accuracy of the models
considered.

C. Attacker Model

We consider a semi-honest, or honest-but-curious service
provider. That is, the service provider is assumed to follow
the protocol correctly, but attempts to learn personal user
information as possible. We assume users can be malicious.
However, each participating user needs to install a provider-
signed client application.

III. LOCATION BASED SAFETY

We exploit the crime dataset to define an initial, location-
centric safety metric. We divide space into census blocks. We
divide time into fixed-length epochs, e.g., 1 hour long, 24
epochs per day. To understand the need for a time dependent
safety metric, we have studied the evolution in time of crimes
reported within blocks of the Miami-Dade county. Figure 1
shows the evolution over seven consecutive days (Wed.-Tue.,
July 13-19, 2011) of the number of crimes reported within
one such block, with a 3 hour time granularity. Most of the
events are larcenies. The plot shows that the number of crimes
reported varies abruptly throughout a day. Case in point, on
the depicted Saturday, 7 crimes are reported between hours
15-18, 3 crimes between 18-21 and 0 between 21-24. Thus,
a time-invariant aggregate of past crime events is unlikely
to accurately define the present. The supplemental material
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Crime Type Weight
Assault 0.176
Robbery 0.180
Rape 0.307

Homicide 0.336

TABLE I
CRIME WEIGHT ASSIGNMENT USING THE FCPC.

includes a similar plot, drawn for the same block, over an
interval of 18 consecutive weeks.
Block crime and safety indexes. For a census block B and
an epoch e denoted by the time interval ΔT , let C(B,ΔT )
represent a c-dimensional vector, where the i-th entry denotes
the number of crimes of type CT [i] recorded in blockB during
interval ΔT . Let W denote a c-dimensional vector of weights;
each crime type of CT (defined in Section II-A) has a weight
proportional to its seriousness (defined shortly). Let BC(ΔT )
denote the population count recorded for block B. We then
define the crime index of block B during interval ΔT as

CI(B,ΔT ) = min{
C(B,ΔT )W

BC(ΔT )
, 1} (1)

where C(B,ΔT )W denotes the vectorial product between
the number of crimes per type and the weights of the crime
types. That is, B’s crime index is the per-capita weighted
average of crimes recorded during interval ΔT . The safety
index SI of block B during interval ΔT is then defined as

SI(B,ΔT ) = 1− CI(B,ΔT ) (2)

Both the CI and SI metrics take values in the [0, 1] interval.
In the evaluation section we show that crime index values of
blocks in the Miami-Dade county are always smaller than 1.
Higher SI(B,ΔT ) values denote safer blocks.
Crime weight assignment. We need to assign meaningful
weights to the crime types CT . An inappropriate assignment
may make a large number of “lighter” offenses overshadow
more serious but less frequent crime events, (e.g., consider
larcenies vs. homicides). We propose to assign each crime
type a weight proportional to its seriousness, defined according
to the criminal punishment code, i.e., the Florida Criminal
Punishment Code (FCPC) [11]. The FCPC is divided into
levels ranging 1-10, and each level Lk contains different types
of felonies. The higher the level, the more serious is the felony.
Each felony has a degree, (i.e., capital, life, first, second and
third degree, sorted in decreasing order of seriousness), with
an associated punishment (years of imprisonment) [12].
Let Lk denote the set of felonies within level k and let Pk

denote the set of corresponding punishments. Let lk = |Lk|
denote the number of felonies within level k. Then, we define
the weight of crime type CT [i], wi, as

wi =

10∑

k=1

ρk
Pk[i]∑lk
j=1

Pk[j]
,

where ρk = k/
∑10

i=1
i is the weight assigned to level k

(normalized to the sum of the number of levels). Thus, the
weight of crime type CT [i] is the weighted sum of the per-
level punishment value (Pk[i]) associated with the occurrence

of CT [i] within the felonies of level k, normalized to the total
punishment of level k. Table I shows the resulting weights.
Example. We study the impact of level L8 on the weight of
the “Robbery” crime. Out of the felonies represented on level
8, two are related to “Robbery”: “Robbery with a weapon”
and “Home-invasion robbery”. Both are first degree felonies,
therefore punishable with up to 30 years of imprisonment. The
other represented felonies are “Homicide”, with 6 different
counts, for a total of 135 years penalty and “Rape”, with 1
count of up to 15 years penalty. Thus, the contribution of level
8 to the weight of “Robbery” is 8

55
× 60

60+135+15
= 0.0415.

Illustration. We use the Miami-Dade crime set to illustrate
the geographic distribution of block-level safety index infor-
mation, where the epoch, denoted by the interval ΔT , is the
year 2010. We use the census dataset to extract the population
count BC(ΔT ). Figure 2 shows the color-coded safety index
for each block group in the Miami-Dade county (FL) where
crimes have been reported during 2010. The safety index
considers only crimes against persons. Grey blocks have a very
low reported crime level. Green blocks denote safer locations
while darker yellow and red blocks denote areas with more
reported crimes.

Fig. 2. Safety index illustration for the Miami-Dade county: SI(B,ΔT )
values are mapped into color-coded “safety levels”: the higher the level, the
safer the block.

IV. PREDICTING SAFETY

The crime index computation of Equation 1 can only be
performed for past epochs, when all crime events have been
reported. Safety information however is most useful when
provided for the present or near future. One way to predict
the crime index of a block B for the next epoch (denoted
by the interval ΔT ), PCI(B,ΔT ), is the average crime
index of the block during the same epoch in the day for the
past d days, where d is a system parameter (e.g., d=7 for 1
week of recorded per-block history). This solution however is
unable to detect and factor in all crime periodicities, including
seasonal, weekly and daily fluctuations. As such, it may
include unnecessary errors – e.g., higher number of crimes in
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a past August may introduce inaccuracies in the crime index
considered in the current month of April.
We propose to address this issue through the use of the

time series forecasting techniques discussed in Section II-B.
Specifically, we use time series forecasting tools to compute
long and short term predictions of the number of crimes to
be committed within an area (e.g., census block, zipcode,
city, etc), based on the area’s recorded history. Section VIII-B
evaluates the ability of the time series forecasting tools to
accurately predict near-future crime counts.
Predicting crime and safety indexes. At the beginning
of each epoch (denoted by the time interval ΔT ), com-
pute predictions for the number of crimes of each crime
type to be reported at each census block B during the
epoch. Let PC(B,ΔT )[i] denote the predicted number of
crimes of type CT [i]. Using a formula similar to Equation 1
compute the predicted crime index for B during interval
ΔT as PCI(B,ΔT ) = min{PC(B,ΔT )W/BC(ΔT ), 1}.
The predicted safety index is then PSI(B,ΔT ) = 1 −
PCI(B,ΔT ).

V. PERSONALIZED, CONTEXT-AWARE SAFETY

The ultimate goal of defining crime and safety indexes is
to provide users with safety advisory information. People are
however not equally exposed and vulnerable to all crime types.
Age, gender and an array of personal features, preferences and
choices play a central role on the perception of an individual’s
safety. Since such information may not be readily accessible,
we use instead the localization capabilities of a user’s mobile
device to periodically record and locally store her trajectory
trace. This enables us to define the crime index level with
which a user is comfortable: the average crime index of the
locations in her trajectory. We then introduce personalized
safety recommendations both when enough crime information
exists to enable the prediction of the near-future crime index
of a location and when insufficient such information exists.
We propose to exploit the context of a location, through the

people located there. We use the trajectory trace of the user
to define the chance of a crime to occur around the user and
generalize this approach to compute the chance of a crime to
occur around groups of users. This enables us to introduce the
concept of context aware safety: a user is safe if the chance
of a crime to occur around her equals or exceeds the chance
of a crime to occur around her co-located users.

A. Personalized User Safety

We extend the crime and safety index definitions from
locations to users. We assume the device can capture the
location of the user with block level precision. Let TJU =
{[Bi, Ti, CI(Bi,ΔTi)]|i = 1..h} denote the trajectory trace
of user U , consisting of recorded [block, epoch, crime index]
tuples. ΔTi denotes the epoch containing time Ti, when U
was present at block Bi, Ti ∈ ΔTi. For privacy reasons, we
require each user to store her trajectory trace on her device.
We define the vicinity crime metric for a user U , VU to

be the percentage of the user’s trajectory places where crimes
have been reported around the time of her visit:

VU =

∑h

i=1
sgn(CI(Bi,ΔTi))

h
(3)

sgn(x) denotes the sign function, that is 0 when x is 0 , and
1 when x is larger than 0. For instance, if a user has 100
locations in her trajectory and crimes have been reported at
60 of those locations during the epoch of the user’s presence,
the user’s vicinity crime metric is 60%. We then define the
crime index of a user U to be the average crime index of
locations in her trajectory:

CIU =

∑h

i=1
CI(Bi,ΔTi)

h
(4)

1) Safety Decision With Accurate Crime Data: We assume
first that user U is located at time Tc in a block B, where
accurate past crime data exists. This allows the proper predic-
tion of the crime index, thus the computation of the predicted
crime index PCI(B,ΔT ), as specified in Section IV. ΔT
denotes the current epoch, Tc ∈ ΔT . We then introduce the
notion of personalized safety recommendation:
Definition 1: (Personalized safety). A user U is safe at a

block B within time interval ΔT , if CIU ≥ PCI(B,ΔT ).
Intuition. A user is safe if the user’s crime index equals or
exceeds the block’s crime index predicted for the duration of
the user’s presence. If the crime index of the user’s current
block, predicted for the epoch of the user’s presence, does not
exceed the user’s level of comfort, it means the user has spent
at least half of her time in locations with more crime than
the current location. Thus, the user is likely to be comfortable
with the crime level of her current location.
2) Safety Decision Without Accurate Crime Data: Certain

locations may have insufficient crime data to ensure an accu-
rate prediction of the location’s crime index. For instance, as
shown in Figure 1, the number of recorded events can quickly
spike or drop to 0 in short time intervals. Accurately predicting
event counts within a short time interval is difficult, as the
difference between 0 and 1 crimes is significant. This is the
case also during unexpected events (natural and man made
disasters) when the future does not reflect the past. To address
this issue, we propose to use existing context information,
collected from co-located users.
Our approach is the following. We define the safety index

of a user U to be the chance of no event being reported in her
vicinity: SIU = 1−VU . Let U1, .., Uk be the users co-located
with user U . We define a super user SUP1..k, as a fictitious
user whose trajectory trace encompasses the trajectories of
users U1, .., Uk. That is, TJU1..k

= TJU1
∪ ..∪TJUk

. We note
that both users and super users can be located in multiple
blocks during the same epoch. We then use Equation 3 to
compute the vicinity crime metric of SUP1..k, VSUP1..k

. We
define the safety index, SISUP1..k

= 1 − VSUP1..k
. These

definitions enable us to introduce the notion of personalized
safety recommendation:
Definition 2: (Context-aware safety). A user U is safe in

a context consisting of neighboring users U1, .., Uk, if SIU ≤
SISUP1..k

, i.e., VU ≥ VSUP1..k
.

Thus, a user is safe if surrounded by users whose aggregate
safety index is higher or equal to the user’s safety index.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



5

Intuition. The safety index of a user encodes the probability
that no event occurs around the user. The safety index of a
group of users (e.g., SUP1..k) is defined as the chance that
no event occurs around the group. Definition 2 states that a
user is safe if it is surrounded by a group of users whose
aggregated chance of no event occurring is higher or equal to
the user’s chance of no event occurring. A low safety index
value does not imply the user is unsafe, but merely the fact
that the user spends time in places where events do occur. If
the location sampling process is done periodically, the formula
naturally ensures that blocks where the user spends more time
have more impact on the user’s safety index. Being around a
group of users whose aggregated safety index is low suggests
that the place is likely to have a low safety level.
Factoring in duration of stay. The duration of a user’s
presence within a block needs to be considered when de-
termining the user’s safety. For instance, walking through an
unsafe block should be avoided. However, when driving on a
highway, an unsafe block raises lower safety concerns. One
way to address this issue is by using smaller epochs. Another
approach is, given a user’s trajectory trace, predict the time
the user will spend within the current block. The block should
raise safety concerns only if the predicted interval exceeds a
certain threshold.

B. iSafe

User trajectories contain sensitive information, including
blocks of interest and behavior patterns. We introduce iSafe, a
distributed algorithm that allows the aggregation of trajectory
traces of co-located users while preserving the privacy of
involved participants. iSafe achieves this by taking advantage
of the wireless communication capabilities of user mobile
devices to form short lived, ad hoc communities.
Overview. iSafe contacts the neighboring devices, reachable
over local wireless interfaces, that run iSafe. If their number
exceeds a (system wide) parameter value, iSafe initiates a mul-
tiparty computation. The procedure enables iSafe to privately
and distributively compute the total number of blocks visited
by the owners of those devices as well as the total number of
blocks visited that had crimes committed during their presence.
This enables iSafe to compute their aggregated vicinity crime
index, and rely on Definition 2 to decide the user’s safety.
Details. Algorithm 1 contains the pseudocode of iSafe. Its
main procedure is safetyDecision(ΔT ), executed periodi-
cally by a client C, at C’s current block, B. In the first
step, C contacts the service provider S, storing the crime
and Census datasets. C retrieves the predicted crime index
of the block B where the user is located. This operation is
performed privately, by using a private information retrieval
technique [13]. This prevents S from learning the current
location of C.
If the crime index of the block can be accurately predicted,

the operation returns the decision according to Definition 1.
Otherwise, it invokes the cas operation. cas first discovers all
the ad hoc neighbors of the user. If the number of neighbors
is below a system-wide threshold value, NThr, it returns
-1: not enough information exists to provide an accurate

Algorithm 1: iSafe pseudocode.
1.Object implementation iSafe;
2. neighbor[] N; #set of neighbors
3. double CI, SI; #crime, safety indexes
4. double V; #vicinity crime prob
5. BigInteger R; #random value
6. BigInteger[] shares; #set of shares
7. BigInteger[] NShares; #shares of neighbors

8. int BWC; #blocks with crime
9. int TBlk; #total blocks visited

10.Operation int safetyDecision(Epoch ΔT)
11. B := getCurrentBlock();
12 PCIB := S.getPCI(B, ΔT);
13. if (PCIB! = −1) then return (CI ≥ PCIB);
14. else return cas(); fi end
15.Operation int cas()
16. N := discoverNeighbors();
17. if (N.size < NThr) then return− 1;
18. BWCSUP := multiPartySum(0)− BWC;
19. TBlkSUP := multiPartySum(1)− TBlk;
20. return(V ≥ BWCSUP/TBlkSUP); end
21.Operation BigInteger multiPartySum(int type)
22. R := getRandom();
23. shares := split(R, N.size);
24. for i := 1 to N.size do
25. send(N[i], shares[i]);
26. NShares[i] := recv(N[i]); od
27. int order := electLeaderOrder();
28. BigDecimal S := 0; int count := 0;
29. while (count < N.size) do
30. count := count+ 1;
31. if (count = order) then
32. if (type = 0) then S := S+ BWC+ R;
33. else S := S+ TBlk+ R; fi
34. for i := 1 to |N| do S := S− NShares[i]; od
35. mcast(S);
36. else S := recv(); fi od
37 return S; end

recommendation, and not enough privacy is provided. Other-
wise, it invokes the multiPartySum operation twice, with
different input arguments. When invoked with argument 0,
multiPartySum calculates BWCSUP , the sum of the blocks
with crimes visited by all the user’s neighbors. When invoked
with argument 1, multiPartySum calculates TBlkSUP , the
sum of the total blocks visited by all the user’s neighbors.

ThemultiPartySum operation is a secure multi-party sum
evaluation. It achieves privacy through the use of (i) frequently
changing, random MAC addresses for user devices and (ii)
secret splitting. Each client generates a random value and splits
it into shares – one for each neighbor. That is, if the random
value is R, the shares sh1, .., shk are generated randomly
such that

∑k

i=1
shi = R. The client sends each share to one

neighbor and receives a share from each neighbor. The clients
engage in a leader election and order selection distributed
algorithm, where each client is assigned a unique identifier,
between 1 and k.

When a client’s turn comes, according to the order estab-
lished, it adds either the user’s BWC value (number of census
blocks with events visited by the user) or the user’s TBlk value
(total number of blocks visited), according to the input variable
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type, and adds its random value R to the overall sum (S). It
then subtracts all the shares of secrets of its neighbors and
sends a multicast of the result, reaching all its neighbors. If
it is not the user’s turn to transmit, the client waits to receive
the multicast values of its neighbors.
The ratio of the computed BWCSUP and TBlkSUP values

is the vicinity crime metric of the super user representing the
neighbors of C. cas returns the safety decision of Definition 2.

C. Analysis

We first define the notion of location privacy in terms of
the inability of an adversary A to guess the location of a user
with probability non-negligibly higher than 1/n, where n is
the number of blocks supported by the system.
Definition 3: (Location Privacy). Let A control the

provider S and any number of clients, such that the number of
clients controlled by A at any location is at most NThr− h,
whereNThr and h > 1 are integer parameters. The challenger
C controls one client, Client. A contacts C at any time T . C
invokes safetyDecision(ΔT ) on behalf of Client, where B
denotes the current block of Client and T ∈ ΔT . A outputs
B′, its guess of the block B where Client is located. We say
a solution provides location privacy if the advantage of A in
this game, AdvA = |Pr[B′ = B]− 1/n| is negligible.
We introduce several results whose proofs are included in

the supplemental material, along with techniques for prevent-
ing an adversary from tampering with safety information.
Theorem 1: An adversary A controlling k − h out of k

participants in the iSafe algorithm, can only find the sum of
the input values of the remaining h honest participants.
Theorem 2: iSafe provides location privacy.

An adversary can attempt to use iSafe to identify and target
areas considered to be safe. However, safety is personalized:
areas denoted “safe” for the adversary may not necessarily be
safe for other users, who may in effect avoid them. iSafe is
also adaptive: newly reported incidents as well as the lack of
incidents are used to continuously adjust block safety values.

VI. GEOSOCIAL NETWORK EXTENSIONS

Geosocial networks seem ideal candidates for augmenting
the spatio-temporal context of users. We first investigate re-
lations between crimes and geosocial networking activities.
We then propose to use geosocial network user location
trajectories to provide safety recommendations.

A. Crime vs. Geosocial Activity Dependencies

We conjecture that the crime activity recorded at a location
has a bearing on the quality and quantity of reviews recorded
at nearby venues. We investigate this hypothesis through the
combination of review data we collected from Yelp and the
Miami-Dade crime dataset. A first question is whether there
exists a relation between the rating of a venue and the safety
of its location. For this, we first mapped each venue in the
Miami-Dade county to its corresponding census block, then
computed CI values for each block using the crime events
of 2011. We needed to test for dependencies between two
different mixed variables, (i) categorical user ratings and (ii)
continuous CI values. Since linear regression or any other
method for continuous variables are not ideal, we discretized
the CI variable into 5 levels, using 1-dimensional k-means
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Fig. 3. Mosaic plot showing the relation between venue ratings and the
crime index (CI) levels of their location.

(k set to 5), that guarantees optimal partitioning for one-
dimensional data.
We have built a contingency matrix, by grouping venues

according to their ratings and assigning them to their corre-
sponding CI level: each cell in the contingency matrix contains
the number of venues that have the corresponding user rating
and belong to a block having the corresponding CI level. We
have used the χ2 test to test the dependency between the
two categorical variables [14]. We used the R [15] package
to compute the χ2 test and the p-value (the observed level
of significance), and corresponding standard residuals. The
standard residuals indicate the importance of the cell to the
ultimate χ2 value. Since the observed level of significance is
very close to zero we reject the null hypothesis and conclude
that there exists a dependence between CI values and user
ratings.
Figure 3 shows the corresponding mosaic plot, displaying

the relationship between ratings and CI values: the areas of
the rectangles are proportional to the probabilities of the user
ratings and to the conditional probabilities of the CI levels. It
shows that the bulk of the Yelp venues (even low rated ones)
are in places where crime levels are low. In the supplemental
material we confirm the existence of a relation between the
number of reviews a venue receives and the safety of the
venue’s location: Yelp venues with many reviews are located in
safer areas than venues with fewer reviews. We also provide
an analysis of the dependency sources, through specialized,
per crime type views of the data.

B. Geosocial iSafe

We extend iSafe with geosocial network information.
Specifically, for each geosocial network user U , we define the
trajectory trace TJU = {[Bi,ΔT,CI(Bi,ΔTi)]|i = 1..h}.
Each TJU record consists of (i) the block containing a venue
where U has written a review, (ii) the time epochΔT when the
user wrote the review and (iii) the crime index of the block
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during that epoch. In Yelp, the timestamps associated with
reviews have a 1-day granularity, thus, ΔT is 1-day long.
While geosocial network user trajectories are likely to

be more sparse than those collected from mobile devices,
their similar definition enables us to use Equations 3 and 4
over geosocial trajectories, to compute user vicinity crime
metrics and crime index values. These definitions allow us
to extend the personalized context aware safety decisions of
Section V-A. Furthermore, the vicinity crime metric and crime
index values of users who wrote reviews for a Yelp venue
can be used to compute per-venue aggregate crime index and
vicinity crime values.

VII. ISAFE IMPLEMENTATION

We implemented iSafe as a (i) web server, (ii) a browser
plugin running in the user’s browser and (iii) a mobile app.

A. Browser Plugin

We implemented a plugin for the Chrome browser using
HTML, CSS and Javascript. The plugin interacts with Yelp
pages and the web server, using content scripts (Chrome
specific components that let us access the browser’s native
API) and cross-origin XMLHttpRequests. The plugin becomes
active when the user navigates to a Yelp page. For user and
venue pages, it parses their HTML files and retrieves their
reviews. We employ a stateful approach, where the server’s
SQLite DB stores all reviews of pages previously accessed
by users. This enables significant time savings, as the plugin
needs to send to the web server only reviews written after the
date of the last user’s access to the page.
Given the venue’s set of reviews, the server determines the

corresponding reviewers. The crime index of blocks of venues
reviewed by each user generate the crime index of the user.
Crime indexes of reviewers are used to compute the crime
index of the venue. The server sends back this information,
which the plugin displays in the browser using color codes,
ranging from green (safe) to red (unsafe). The supplemental
material shows a snapshot of the browser plugin.

B. Mobile iSafe.

We have implemented the location centric static safety
labeling component of mobile iSafe using Android. We used
the Android Maps API to facilitate the location based service
employed by our approach. iSafe periodically retrieves the
user’s current GPS location, derives the current census block
and also the corresponding crime index. It stores the user’s
trajectory as one record [block, time, crime index] in a local
SQLite database. The initial threshold value for creating a new
record is 60 seconds.
iSafe uses Bluetooth [16] to compute the vicinity crime

metrics of the user’s neighbors. We implemented a client-
server Bluetooth communication protocol where each device
acts as a server and other connected devices act as clients per
P2P communication. When compared to Wi-Fi, Bluetooth has
drawbacks concerning the transmission range, complexity of
the pairing process and the number of communicating peers.
However, it also has an important advantage: energy efficiency.

(a) (b)

Fig. 4. Snapshots of iSafe on Android.
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Fig. 5. iSafe browser plugin overhead: Collecting reviews from venues, as
a function of the number of reviews.

Bluetooth consumes less energy than Wi-Fi interfaces, partic-
ularly when idle, thus motivating users to leave it always on.
iSafe has a separate background service that displays in the
status bar of the Android device, the safety color label of the
user’s current location. Figures 4(a) and 4(b) show snapshots
of the functionality of the mobile iSafe application.

VIII. EVALUATION RESULTS
A. Browser Plugin Performance

Figure 5 shows the overhead of the iSafe plugin when
collecting the reviews of a venue browsed by the user, as a
function of the number of reviews the venue has. It includes
the cost to request each review page, parse and process the
data for transfer. It exhibits a sub-linear dependence on the
number of reviews of the venue (under 1s for 10 reviews but
under 30s for 4000 reviews), showing that Yelp’s delay for
successive requests decreases. While even for 500 reviews the
overhead is less than 5s, we note that this cost is incurred only
once per venue. Subsequent accesses to the same venue, by
any other user, no longer incur this overhead.

B. Forecasting Accuracy

We investigate here the accuracy of the time series fore-
casting techniques discussed in Section II-B in predicting the
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Fig. 6. Crime Forecasting Experiments in Miami-Dade: (a) Prediction of assaults, 2011 monthly basis. (b) Prediction of robberies, 2011 monthly basis. (c)
Prediction of assaults in a given block for the last 10 weeks of 2011.

Figure 5.a Figure 5.b Figure 5.c
Model RMSE MAPE RMSE MAPE RMSE MAPE
ARIMA 158.80 6.42 38.77 7.08 1.27 43
LES 151.03 6.79 53.57 11.89 1.41 42.08
ANN 116.48 5.32 40.44 8.23 1.3 35.72

TABLE II
ERROR MEASUREMENT DATA FOR ARIMA, LES AND ANN. FIGURES

REFERENCE TO THE MAIN DOCUMENT.

number of crimes to occur at a location during the near future.
We used the R statistical software package [15] to generate the
ARIMA model and MATLAB toolboxes [17] for the LES and
ANN models. In the following, we analyze separately three
crime types: aggravated assault, robbery and larceny/theft that
make up for more than 75% of the total amount of crimes.
For ANN, we set the maximum lag to 12 (to cover the last
12 months/weeks in the lag structure), and the learning rate to
0.1. While a learning rate of 0.4 worked well, we set it to 0.1
to ensure convergence. The higher the learning rate, the faster
the network is trained.

We used crime data recorded between 2007 and 2010
to predict per-month categorized event counts for the year
2011, for the Miami-Dade county. Figure 6(a) compares the
predictions for the number of assaults made by ARIMA,
LES and ANN against the recorded values. For ARIMA,
we set p=1, q=1, d=1. Details for choosing the ARIMA
parameters are provided in supplemental material. All three
models correctly predict the downward trend from May until
December, with ANN achieving a slightly better accuracy than
LES and ARIMA. Figure 6(b) compares the predictions for
the number of robberies. For ARIMA, we set p=3, q=0, d=1.
All models accurately predict the initial increase followed by
a slight decrease in the number of robberies. ARIMA and
ANN outperform the LES model as confirmed by the RSME
and MAPE values (see Table II). ARIMA slightly outperforms
ANN.

We further focus on finer grained spatial and temporal
predictions: per-block, weekly events. For ANN, we partition
the input data into 95 training vectors and 10 test vectors.
Figure 6(c) compares the recorded data against the ARIMA,
LES and ANN predictions of assault events in the last ten
weeks of 2011, for one block in the Miami-Dade county. The
ARIMA parameters are p=1, q=1, d=0.

C. Yelp Safety Profiles

We have collected public information from the accounts of
2025 Yelp users, all residents of the Miami-Dade county. The
information collected for each user includes the number of
reviews, the venues reviewed, existing check-ins at any venues,
and the date when each review and check-in was recorded.
We build the crime index, CI , value for each Census block
from the Miami-Dade county in 2010. Figure 7(a) shows the
cumulative distribution function of the CI values (Figure 2
shows their spatial distribution). It shows that for the Miami-
Dade county, most blocks experience relatively low levels of
crime per-capita: 50% of blocks have a CI value smaller than
0.0015 and only 5% of blocks have CI values exceeding 0.01.
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Fig. 8. Distribution of safety index values of Yelp users.

Given the CI values of the blocks containing the venues
visited (reviewed or subject of a check-in) by a yelper (Yelp
user), we compute the user’s crime index value, as defined
by Equation 4, then the user’s safety index: SIU . Out of
the 2025 collected yelpers, 1194 had written reviews in 2010.
Figure 8 shows the distribution of the safety index values of
these 1194 yelpers. It shows that most Miami-Dade county
yelpers are safe: all have a safety index value larger than 0.96
(1 is the maximum value), with 90% of them exceeding 0.99.
We further compare the evolution in time of the safety index

SIB of a block B with the average safety index values over
the Yelp users that visited B (and left feedback). To this end,
based on the crime database, for each month we calculate the
SI value of each block in the Miami-Dade county. We then
compute the monthly average of safety index values of yelpers
that reviewed venues within B (during the month). Figure 7(b)
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Fig. 7. (a) Distribution of block crime index values in the Miami-Dade county. (b) Evolution in time of the SI value of a Miami-Dade block and the average
SI values of Yelp users that visited the block.

shows the monthly evolution of the SIB value of a Miami-
Dade block and the average safety index value of the Yelp
users that visited the block during 2010. For this block, the
two metrics have similar values. This shows that an average
of the safety indexes of the block’s visitors can be used to
replace a crime-based safety index for the block.

D. Android iSafe Evaluation

We have created a testbed consisting of 4 Android smart-
phones: Samsung Admire (OS: Gingerbread 2.3.4), HTC Aria
(OS: Eclair 2.1), Sony E10i (OS: Eclair 2.1) and Samsung
GALAXY S II (OS: Gingerbread 2.3.4). For single device
testing, we used the Samsung Admire smartphone with a
800MHz CPU. Thus, we set the NThr value to 3 and the
number of secret shares to 4. In the following, all reported
values are averages over at least 10 independent protocol runs.
We have first measured the overhead of the secret share

generation and reconstruction operation. Figure 9(a) shows
the overhead on the smartphone, when the modulus size ranges
from 64 to 1024 bits. Note that even a resource constrained
smartphone takes only 4.5 ms and 16 ms for secret splitting
and reconstruction even for 1024 bit long moduli.
Furthermore, we focus on the time and space communica-

tion overhead for a single device as well as for the 4 connected
devices in our testbed. Figure 9(b) shows the dependence
of the communication time on the modulus bit size. Even
for a modulus size of 1024 bits, the average end-to-end
communication overhead of a single device is 342ms and 1.3s
of our whole system. Figure 9(c) shows the dependency of the
communication overhead (in KB) on the modulus size ranging
from 64 to 1024 bits, for a single device and for the whole
system of 4 connected devices. Even for 1024 bit moduli, the
total communication overhead is around 3KB.

IX. RELATED WORK

This work extends our initial efforts [18] with additional
approach details and evaluations, attacks and defenses, and
extensive implementations and evaluations of iSafe including
a browser plugin and an Android application.
Smart cities have been the focus of recent efforts at

IBM [19] and several academic research groups at MIT [20]
and UCLA [21]. Caragliu et. al. [22] present a study on
the factors that determine the performance of a “smart city”.

They focus specifically on European cities by analyzing urban
environments, levels of education and different accessibility
modalities that are positively correlated with urban wealth.
Since one important aspect of smart cities is safety, Patton
[23] propose the use of audio sensors and cameras that allow
authorities to quickly respond in an emergency event without
receiving a 911 call. We note that we consider a preventive
angle, of making users aware of their surroundings.

Furtado et. al. [3] propose the use of social media in a
collaborative effort to inform people about crime events that
are not reported to police. Their wiki website spots areas on
the map where participant users have reported crime events.
Police departments also release tools to make citizens aware of
their safety, e.g., the Miami-Dade police department, deployed
an web application [24] that identifies crime areas based
on current crime reports. Instead, iSafe seamlessly integrates
context and time sensitive safety metrics into the everyday
user experience. Dynamic safety practices leveraging social
networks and GPS mobile phones have been introduced in [25]
to create a system for personalized safety awareness. The
definition of safety indexes that leverage crime, social and
mobile activities, as well as the use of safety predictions,
differentiate iSafe.

Participatory sensing is receiving increasing attention. Es-
trin [26] discuss advantages of participatory sensing in health
and transportation and provide insights on the architecture of
participatory sensing applications. Thiagarajan et. al. [27] pro-
pose cooperative transit tracking using mobile phones. Privacy
becomes a serious concern when the user personal information
may be compromised. Christin et. al. [28] present a survey on
the efforts made to preserve privacy in participatory sensing
systems. In contrast, iSafe does not collect user information,
but instead allows devices to aggregate information collected
from co-located users without learning personal information.

The problem of crime prediction has been explored in
several contexts. Hotspot mapping [29] is a popular analytical
technique used by law enforcement agencies to identify future
patterns in concentrated crime areas. Different methods and
techniques have been analyzed to review the utility of hotspot
mapping in [30], [31], [32], [33]. Hot spot analysis however,
often lacks a systematic approach, as it depends on human
intuition and visual inspection.

A variety of univariate and multivariate methods have
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Fig. 9. Android iSafe overhead. (a) Secret share generation and secret reconstruction time overhead. (b) iSafe communication overhead for single device
and for all 4 devices. (c) iSafe total communication size for single device and for 4 connected devices.

been used to predict crime. Univariate methods range from
simple random walk [34] to more sophisticated models like
exponential smoothing. While exponential smoothing offers
greater accuracy to forecast ”small to medium-level” changes
in crime [35], we have shown that ARIMA and ANN models
outperformed it on our data. We also note that the end goal
of our work is not intrinsically crime forecasting. Instead,
we incorporate crime forecasting techniques into our safety
metrics, in an attempt to provide to participating users a
dynamic framework for safety awareness.

X. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed several techniques for eval-
uating the safety of users based on their spatial and temporal
dimensions. We have shown that data collected by geosocial
networks bears relations with crimes. We have proposed a
holistic approach toward evaluating the safety of a user, that
combines the predicted safety of the user’s location with the
aggregated safety of the people co-located with the user. Our
Android and browser plugin implementations show that our
approach is efficient both in terms of the computation and the
communication overheads.
In future work we will develop solutions for detecting

and eliminating fraudulent information from data sources,
including reviews and check-ins. Furthermore, we will inte-
grate safety information in other user experiences, including
navigation directions and mobile authentication solutions.
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