
Web Service Security

Malek Adjouadi1, Armando Barreto1, Dinesh Tenneti1, Md Raoof1, Rama Krishna.K1, Yixis Cejas1,
Norris Milton II2, Scott Graham1, Naphtali Rishe1

Florida International University of Illinois at Florida Memorial
 University1 Chicago2 University3

Abstract

Authentication is the process of making sure that the
person who is requesting a web service is really the person
that they claim to be. This is done by requiring the user to
provide a set of credentials. In return, they will receive a
security token that can be used to access the server. The
credentials usually take the form of a user id and
password. On the other hand, the security token that is
returned is usually more conceptual than physical. It can
take the form of a cookie placed on their browser, a
session id stored on the server or an actual string of
characters.

Architects and developers responsible for Web service
security have a considerable number of options available.
These options are further complicated by the fact that
different projects and different organizations have
different security requirements. This paper proposes a
scheme for taking these requirements into consideration
when proposing secure web service access methods.

1. Introduction

Web Services are self-contained, modular applications
that can be described, published, located, and invoked over
a network, generally, the World Wide Web. Below we
have a definition from IBM and Microsoft

“Web service acts as application components whose
functionality and interfaces are exposed to potential users
through the application of existing and emerging Web
technology standards including XML, SOAP, WSDL, and
HTTP. In contrast to Web sites, browser-based
interactions or platform-dependent technologies, Web
services are services offered computer-to-computer, via
defined formats and protocols, in a platform-independent
and language-neutral manner.”
Stages of Web service Development and usage

1) Service Provider develops service and a
document interface

2) Publishes the service in Universal Description
and Discovery and Integration(UDDI)

3) Service requestor/subscriber finds a service
provider in UDDI

4) Then the UDDI informs the requestor/subscriber
the list of services and services provided.

5) The requestor/subscriber develops an application
to the service

6) The service subscriber/requestor request the
service provider for the service

7) The service provider delivers the service to the
requestor/subscriber.

Web Services generally uses the HTTP and SSL ports
(TCP ports 80 and 443, respectively) in order to pass
through firewalls. Most firewalls are unable to distinguish
Web Services traffic, traveling over HTTP and SSL ports,
from Web browser traffic. With some firewalls it is
possible to block Web Services traffic altogether, but not
possible to set up different rules for separate Web Services

Service-Oriented Architecture: Publish, Find, and
Bind. UDDI, WSDL, and SOAP— enable an SOA to run
on the open Internet. The main advantage of SOAP is its
loose coupling. SOAP can either be used for Remote
Procedure Calls or for messaging between applications.
We have to choose a firewall that supports SOAP filtering.
A firewall should be capable of blocking SOAP messages
based on endpoint and based on the payload of the SOAP
message, validated against an XML Schema.

UDDI is used to publish services to the entire world,
allowing anybody to connect to the UDDI registry, find a
Web Service published, and bind to it. This clearly does
not match real-world business scenarios, in which business
is rarely done between complete strangers (—especially in
the absence of credential checks such as credit
worthiness). But this view does UDDI a disservice. That is
why UDDI sometimes gets a bad reputation.

Most uses of UDDI involve cases where the
transacting parties already know each other. It provides a
way to publish information about newly available Web
Services, or to provide information about a Web Service
whose interface has changed. UDDI is also useful inside
an organization (that is, “behind the firewall”) in order to
publish information used by internal applications to bind to
each other using SOAP.

Web services security: It is about making a process
(not an entity) secure

Web services application Security is broader than we
might expect because these services cut across many
business models (like Ecommerce sites, Supply chain
Management, cross selling and Customer management).

Security is always seen as just protecting (or dealing
with) Networks, Os, Cryptography and firewalls, but
where as in web services since there is an increase in the
amount of access to the data. So there is a change in the
risk levels associated with Web Services. Therefore we
need new kinds of architectures to secure Web service
applications where Risk Management holds the key and
Information Security has to be taken care.

Table 1 tells us that the blocks of security stands on
flow down through the Communication layers and not
horizontally

Table 1 General layers of security & Web services
layers of security Table OSI Layers

Layer
Name

Example of
Technology that uses
this Layer.

Web Services
Technology

Application E-mail, directory
services

HTTP, SMTP,
SOAP

Presentation Encrypted data,
compressed data
POP/SMTP

Encrypted data,
Compressed data

Session POP/25, SSL POP/25, SSL
Transport TCP, UDP TCP, UDP
Network Packets IP, ARP IP Packets
Data Link PPP, 802.11 PPP, 802.11, etc.
Physical ADSL, ATM ADSL, ATM, etc.

Security standards that are fundamental for multi-tier end
to end applications are Authentication, Authorization,
Cryptography, Accountability, and Security
Administration

2. XML Security:

WS-Security defines how security tokens are
contained in SOAP messages, and how XML Security
specifications are used to encrypt and sign these tokens, as
well as how to sign and encrypt other parts of a SOAP
message.
The different types of XML Securities used are
1) XML signature,
2) XML Encryption,
3) SAML (Security Assertion Markup language),
4) XACML

5) XKMS (XML Key Management Specification)
6) XACML (extensible Access Control Markup
Language.)It is used in WS-Authorization.

2.1 SAML

SAML is one the important XML type security
provided. SAML explains how security assertions may be
expressed in XML format. SAML is used at application
level to support authentication and across domains. SAML
specification concentrates on perimeter Web SSO.
However, the broader problems that it is designed to solve
pertain to end-to-end security, company-to-company
security, SSO, and privacy. SAML addresses a specific,
important aspect of these problems. One of the primary
problems that SAML solves is defining a standard format
for passing authentication, attribute, and/or authorization
proof from process to process. As long as the different
models understand SAML, we can have interoperability
between security models. SAML’s open platform and
language-neutral constructs make it acceptable to most
security models.

2.2 Public Key Algorithms used

Public Key Algorithms are divided into two general
approaches
Digital Signatures: RSA, Digital Signature Algorithm
(DSA) or Elliptic Curve DSA (ECDSA)
Encryption: RSA, Diffie-Hellman (DH) or Elliptic Curve
Diffie-Hellman (ECDH), and here each have different
operation

3. Web services Security Architectures

WS-Security, by contrast, is primarily for securing

SOAP messages. WS-Security is arguably the most
important Web Services security specification, because it
explains how XML security relates to SOAP, and will
underpin many later specifications.

3.1 WS-Security

WS-Security explains how security information is
contained in SOAP messages. It provides a means of how
to encrypt information (using XML Encryption and XML
Signature) and for enclosing security Tokens to the SOAP
Message to represent the claims.

From security conversation- ->WS-Security defines
the use of security tokens within SOAP messages, when
combined with XML Signature and XML Encryption, to
provide proof of possession and confidentiality of the
claims that these tokens encapsulate. When a SOAP
message is received, the security token is evaluated and

checked against a security policy. However, this process
must be repeated for each incoming SOAP message. This
is obviously a performance issue, because there is no
concept of a session for a group of SOAP messages.

Figure 1. IBM and Microsoft Web Services security
specifications

3.2 WS-Policy

WS-Policy allows organizations that are exposing

Web Services to specify the security requirements of their
Web Services {algorithms for encryption and digital
signatures, privacy attributes (such as which parameters
must be encrypted)}, and how this information may be
bound to a Web Service.

It allows organizations initiating a SOAP exchange to
discover what type of security tokens are understood at the
target, in the same way that WSDL describes a target Web
Service.

 For example, one organization may only consume
Kerberos tickets while another organization may only
understand X.509 certificates.

3.3 WS-Trust

It is built on WS-Security to both provide a

framework for requesting and issuing security tokens and
broker trust (directly/indirectly) for establishing a Trust in
Web Services Environment.

WS-Security layer is used to transfer the Tokens
making use of XML Signature and XML Encryption (to
have Integrity and confidentiality).

3.4 WS-Privacy

It uses a combination of WS-Security, WS-Policy, and
WS-Trust for communication privacy policies, which are
stated by the organization that deploy Web services, and it
sees that the incoming SOAP request contains claims that
the sender accepts (conforms) to these Privacy policies.
The Privacy Policies are given to the WS-Security which
encapsulates these into Security Tokens which can be
verified.

WS-trust is used to evaluate the privacy claims that
are encapsulated using WS-Security within SOAP
messages against user preferences and organization policy

3.5 WS-SecureConversation

WS-Secure Conversation uses asymmetric encryption
and is built over WS-Security and WS-trust to exchange
content securely (claims about security attributes and
related data) across messages, and for deriving keys
(session keys, derived keys, and per-message keys) from
established security contexts .It is designed for the SOAP
Message layer where message may traverse a variety of
transports and intermediaries not all of whom can be
trusted.

3.6 WS-Federation

How to support federation (that is, how to make

dissimilar security systems interoperate) Like WS-
SecureConversation, WS-Federation also builds upon the
specifications that underpin it. It explains how federated
trust scenarios may be constructed using WS-Security,
WS-Policy, WS-Trust, and WS-SecureConversation.
“Federation” in this case involves brokering between
different security specifications—for example,
communication between a party who understands Kerberos
and another party who understands X.509 digital
certificates to allow an end user to authenticate to one
party, but then use a Web Service exposed by the other
party. WS-Policy and WS-Trust are used to determine
which tokens are consumed, and how to apply for tokens
from a security token issuance service. WS-Federation acts
at a layer above WS-Policy and WS-Trust, indicating how
trust relationships are managed.

3.7 WS-Authorization

This specification has a number of overlaps with
XACML. WS-Authorization describes how access policies
for a Web Service are specified and managed. This
specification is flexible and extensible with respect to both
authorization format and authorization language. It

supports both ACL-based authorization and RBAC-based
authorization.

3.7.1 SOAP Security. SOAP is a unidirectional, XML-
based protocol for passing information. (As of draft
version 1.2, SOAP is no longer an acronym.). SOAP
messages can be combined to implement request/response
processes, or even more sophisticated interactions (and
intermediary nodes).

4. Core Web Service Security Patterns

4.1 Authentication patterns

Authentication is the process of identifying an

individual using the credentials of that individual.
Authentication allows Web services to verify the identity
of entities within the SOA. For direct authentication,
traditional X.509 and its XML counterpart, the XML Key
Management Specification (XKMS), provide mechanisms
for identifying users and individual Web services within a
SOA. Brokered trust mechanisms, such as WS-Trust and
SAML, allow Web services to rely on trusted third parties
to perform authentication.

4.1.1 Authenticating the user. A Web service security
configuration should specify authentication policies that
define how the user credential (or authentication data) is to
be retrieved as well as how it is to be verified. In the Web
service security model, the log-in configuration should not
only address authentication of immediate clients who
submit the request directly to the service, but also address
indirect clients i.e. an end client’s identity may be part of
the request, which can traverse through many
intermediaries.

4.1.2 Asserting the user identity. The identity of the user
must be securely associated with the context of execution
to be used in the downstream requests. To do so, the
authentication handler asserts the identity of the user
within the request.

4.1.3 Service-to-Service Authentication. Service-to-
service authentication can be performed using a variety of
methods from HTTP-based token authentication to
SSL/TLS-certificate based authentication, or by passing
tokens along with the SOAP request.

4.1.4 WS-Security for Authentication. Authentication in
WS-Security is performed by including claims in the WS-
Security header of a SOAP message. Claims provide
information about the identity of the SOAP message
sender, which can then be used to determine whether or
not the sender is authorized to access the resources
requested. Claims can be any form of security token: an

X.509 certificate, a username/password pair, a Kerberos
ticket, or an XML security token (such as a SAML
assertion). Claims can either be endorsed or unendorsed.

4.1.4.1 Direct Authentication. When both the client and
service participate in a trust relationship that allows them
to exchange and validate credentials including passwords,
direct authentication can be performed. Direct
authentication requires the presentation of credentials,
which are typically a user name and password. Direct
authentication is used where the Web service acts as an
authentication service to validate credentials from the
client.

4.1.4.2 Brokered Authentication. Brokered
Authentication is used where the Web service validates the
credentials presented by the client, without the need for a
direct relationship between the two parties. An
authentication broker that both parties trust independently
issues a security token to the client. The client can then
present credentials, including the security token, to the
Web service. This same token could be used to access all
services within an organization.

4.1.4.3 X.509. X.509 certificates can be used across
organizational boundaries. Most X.509 implementations,
such as SSL, exchange a symmetric session key that is
used for encryption. Signatures created using X.509
certificates can be mapped to a particular participant in a
conversation, assuming both participants have unique
certificates.

4.1.4.4 Kerberos Token. The Kerberos protocol is used to
authenticate clients within a domain. Cross-domain trusts
can be established but are typically limited within an
organization. Kerberos tokens can be used for
impersonation and delegation.

4.1.4.5 Custom Security Token. Custom security tokens
can be used for session based operations. It supports
confidentiality and data origin authentication at the
message layer only. Windows impersonation or delegation
is not supported.

4.2 Message Protection Patterns

Message Protection prevents sensitive data be
intercepted, viewed and/or modified for malevolent
purposes while messages are sent and received between
Web Services and Clients using Internet Protocols.
Message protection comprises three main categories: Data
Integrity, Data Origin Authentication, and Data
Confidentiality. Data integrity is the verification that a
message has not been changed in transit, Data Origin
Authentication supports the ability to identify and validate

the origin of a message, and Data Confidentiality is the
encrypting of message data so that unauthorized people
cannot view the contents of the messages.

Microsoft has developed patterns and practices for
Data Confidentiality and Data Origin Authentication, but
there is no pattern for Data Integrity. Data Integrity is
included in the patterns "Implementing Transport and
Message Layer Security" and allows the verification that a
message has not been changed in transit.

4.2.1 Data Confidentiality. Encryption can be used to
protect sensitive data that is contained in a message.
Unencrypted data, known as plaintext, is converted into
encrypted data known as ciphertext. An algorithm and a
cryptographic key are used to encrypt the data. Ciphertext
or encrypting data is then converted back to plaintext at its
destination.

To apply Data Confidentiality: first, the data is
encrypted, the sender converts plaintext to ciphertext,
leaving it unintelligible to parties other than the expected
recipient. Second, the data is decrypted by the desired
recipient by converting it back to plaintext.

Two types of cryptography can be used to provide
data confidentiality: symmetric and asymmetric. With
symmetric cryptography, both the sender and recipient
share a key that is used to perform both encryption and
decryption. Before communication can occur, the sender
and the recipient must exchange a shared secret key.
Symmetric cryptography is commonly used to perform
encryption.

With asymmetric cryptography or public key
cryptography, the sender encrypts data with one key, and
the recipient uses a different key to decrypt cipher text.
The encryption key and its matching decryption key are
often referred to as a public/private key pair.

In addition to providing encryption, we can use public
key cryptography to provide digital signatures.

The public key of the recipient is used to encrypt data.
It can be openly distributed to those who want to encrypt a
message to the recipient. The private key of the recipient is
used to decrypt messages, and only the recipient must be
able to access it.

4.2.2 Data Origin Authentication. Using Data Origin
Authentication enables the recipient to verify that
messages have not been altered with in transit (data
integrity) and that they originate from the expected sender
(authenticity).
We can use digital signatures to provide evidence that a
client has performed a particular action that is related to
data. A digital signature is a mechanism to capture a
client's association to data. With Proof-of-possession a
client demonstrates knowledge of either a shared secret or
a private key to support client authentication.

Proof-of-possession using a shared secret can be
established using the actual shared secret, such as a user's
password.
Two types of signatures can be used to sign a message:
symmetric and asymmetric.
A symmetric signature is created by using a shared secret
to sign and verify the message. A symmetric signature is
commonly known as a Message Authentication Code or
MAC. A MAC is created by calculating a checksum with
the message content and the shared secret and can be
verified only by a party that has both the shared secret and
the original message content that was used to create the
MAC.

4.3 Implementing Transport and Message layer
Security

Implementing transport and message layer security
demonstrates the implementation of "Authentication
Patterns" and "message Protection Patterns" .Here we have
two sections one is Message layer security and Transport
layer Security and some times we choose between these
layers based upon the protection scope, support for
protocols, and flexibility provided.
We have different types of implementations in both layers
of security which are given below, and we choose one of
them according to the specifications

4.3.1 Message layer Security
1) Direct Authentication with Username Token
2) Message Layer Security with Kerberos,
3) Message Layer Security with X.509 Certificates)

4.3.2 Transport layer security. There is already lot of
information available about securing Transport layer

1) Brokered Authentication Using Windows Integrated
Security on IIS
2) Transport Layer Data Confidentiality Using HTTPS,
Transport Layer Security Using HTTP Basic over HTTPS,
3) Transport Layer Security Using X.509 Certificates and
HTTPS.
4) Transport Layer Security with Kerberos and IPSec on
Windows Server 2003

4.4 Resource Access pattern

Authentication, authorization, and auditing, along

with other environmental and operational requirements,
should combine to influence the security solution that you
use to help secure access to resources of particular Web
service or multiple interacting Web services.

Authentication credentials and what protocol was used
for protecting the data from directly being accessed by
using authentication as and when needed. Decide whether

we need client's identity/credentials for accessing the
resource which may be located on the same domain (or
even may be the same computer) or another domain (here
domains mean security domains), and does the web service
using connection poling a resource sharing Technique. We
use Trusted Subsystem, Impersonation & Constrained
Delegation for different Security considerations.

4.5 Service Boundary Protection Patterns

When Message Protection Patterns are not enough to

protect sensitive data we need to provide additional
protection at the service's boundary to protect Web
services, to ensure that when a Web service operation fails
we do not disclose confidential information in the SOAP
Fault that is returned, and to prevent somebody to intercept
a message and replay it forcing a Web service operation to
execute more than one time. Service boundary protection
comprises Message Replay Protection, Message Validator,
and Exception Shielding.

4.5.1 Message Replay Protection. We can store a unique
identifier for incoming messages, and use message replay
detection to identify and reject messages that match an
entry in the replay detection cache.Web services can
implement message replay detection by having the client
signing the message, then sending the signed message to
the recipient. When the message is received, the service
verifies the client's signature and the message timestamp
to ensure that the message contents have not been altered
during transit. The Web service can also compares the
message timestamp to its own current clock value.
Finally, the service checks the replay cache for the
SignatureValue field. If the SignatureValue is already in
the cache, the message is rejected as a duplicate. If the
message signature is not in the cache, the message
signature and timestamp are added to the cache.
The Web service must only accept messages that are
younger than the messages that have already been
removed from the cache to ensure that a hacker will not
be able to replay a message that has been already deleted
from the replay cache.

4.5.2 Message Validator. For the message validation
mechanism the client sends a request message to the
service; the service validates the message comparing the
size of the request against the maximum allowable size
that is specified for request messages. Also, if the
message is signed, verifies the signature to ensure that the
message has not been altered within transit, checking that
the message matches a predefined schema, with
acceptable data types and ranges of values. Since
malicious content can appear in the SOAP message or in
the message payload, both are checked. Finally, if the
request passes all the validation checks that are performed

by the message validator, the service processes the
message and sends a response to the client.

4.5.3 Exception Shielding. Exception details may contain hints
that a hacker can use to take advantage of resources used by the
system. Detailed fault messages can disclose information about
the Web Service or resources accessed by the Web Service code
that threw the exception. If an unhandled exception is thrown by
the Web Service, sensitive information, such as connection
strings, server names, SQL queries, XPath commands, stack
traces, and data schemas can be obtained for hackers.
Information related to anticipated exceptions needs to be
returned to the client. In cases where an exception is expected,
an error message that does not contain sensitive information can
be returned to the client. A service may provide information
about the cause of the fault, where the information is not
considered a security risk.

Exceptions that occur within a Web service should be
analyzed during troubleshooting. Information within an
exception can be used by monitoring tools to automatically
notify system administrators when an exception occurs,
can be used by application developers to diagnose
exceptions that occur within the logic of the service or
with resources that the service is dependent on.

The Exception Shielding pattern is used to clean
unsafe exceptions, replacing them with exceptions that are
safe by design. It returns only exceptions that have been
cleaned or exceptions that are safe by design. Exceptions
that are safe by design do not contain sensitive information
about the Web Service in the exception message.

In the exception shielding process the client submits a
request to the service. The service attempts to process the
request and throws an exception. The exception can be
safe or unsafe by design. Exception shielding logic
processes the exception. If the exception type is safe by
design, it is already considered cleaned and is returned to
the client as is. If the exception is unsafe, the exception is
replaced with an exception that is safe by design, which is
returned to the client. The service wraps the exception in a
SOAP fault and returns it to the client.

4.6 Service Deployment Patterns

Service Deployment patterns are used in web services
in situations where there is need for services in a private
network be available to external applications without
exposing resources in the private network, which can be
achieved by designing a intermediary web service that acts
as a perimeter service router, that can provide an external
interface for internal web services using which messages
from external applications are routed to the appropriate
Web service on the private network.

The functionality of the perimeter service router is
described in the following steps:

http://msdn2.microsoft.com/en-us/library/aa480573.aspx
http://msdn2.microsoft.com/en-us/library/aa480591.aspx
http://msdn2.microsoft.com/en-us/library/aa480598.aspx
http://msdn2.microsoft.com/en-us/library/aa480600.aspx
http://msdn2.microsoft.com/en-us/library/aa480591.aspx

1. The external application sends a request
message to the service’s external interface on the
perimeter service router. This “hides” the internal
endpoint address by accepting requests through an
external endpoint address.
2. The perimeter service router forwards the
request message to the service to the appropriate
endpoint address that will route the request to the
appropriate service request based on the specific
address where the request was sent.
3. The service sends a response and performs
security checks, such as authentication, and then
processes the request; the service may send a response
back to the external application.
4. The perimeter service router forwards the
response to the external application if the server
sends a response in Step 3.

Usage of the Perimeter Service Router pattern
includes the following:
● Security can be maintained at the perimeter service
router.
● Servers that host internal Web services can be taken
offline for maintenance without affecting the external
interface, which can be accomplished by configuring
the perimeter service router to start routing messages
to a backup server
● The perimeter service router represents a single
point of entry for external clients. This allows it to be
extended to support additional operations that external
clients require. These requirements could include:

● Protocol Transition: External clients are
authenticated using X.509 certificates, or custom
authentication and then is validated against a database
and later it can be transitioned into an internal
protocol, such as the Kerberos version 5 protocols to
access internal Web services.
● Message Validation: Before sending request
messages from the external clients to an internal
service validation is done. To detect tampering
message signatures are also validated.
● Replay Detection: Duplicate requests that are sent
to the interface are rejected by performing a check in
the cache of requests that the perimeter service router
keeps track of.
● Auditing: For accounting or auditing purposes all
activities may need to be attributed to a specific user
or organization.

5. Conclusion

In this paper we study various security protocols for
ensuring security in accessing the web services over the
internet .We can use each of these above mentioned

protocols for the specific purposes as needed by the clients
or the users. Depending upon the environment and the
level of security needed by the clients we use different
protocols as per requirements. Protocols are applied at
various levels from lower level to the highly complicated
organizational level, per the needs. Further work has to be
done as there are many security considerations and
liabilities for each of the protocols. On further work on
these security issues we can refine the existing web
services enhancements and we achieve the better security
that can be applied and handled in a simpler fashion.

6. Acknowledgement

This research was supported in part by NSF grants
HRD-0317692, CNS-0220562, CNS-0320956, and CNS-
0426125, and NATO grant SST.NR.CLG:G980822.

7. References

[1]Web Service Federal Language
www.ibm.com/developerworks/webservices/library/ws-
fed/?S_TACT=105AGX04&S_CMP=LP

[2]SAML http://xml.coverpages.org/saml.html

[3] Web Service Trust
http://www.ibm.com/developerworks/webservices/library/specifi
cation/ws-trust/?S_TACT=105AGX04&S_CMP=LP

[4]Web service core specification
 www.oasis-pen.org/committees/download.php/16790/wss-v1.1-
spec-os-SOAPMessageSecurity.pdfI.

[5] Username Token Profile 1.1
www.oasis-open.org/committees/download.php/16782/wss-v1.1-
spec-os-UsernameTokenProfile.pdfI.

[6] X.509 Token Profile 1.1
www.oasis-open.org/committees/download.php/16785/wss-v1.1-
spec-os-x509TokenProfile.pdf

[7] SAML Token profile 1.1
www.oasis-open.org/committees/download.php/16768/wss-v1.1-
spec-os-SAMLTokenProfile.pdf

[8] Kerberos Token Profile 1.1
www.oasis-open.org/committees/download.php/16788/wss-v1.1-
spec-os-KerberosTokenProfile.pdf

[9] Web Services Security: SOAP Message Security V1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0.pdf

[10]Web services Enhancements
 http://msdn2.microsoft.com/en-us/webservices/aa740663.aspx

[11] IBM Web Service Security
http://www.ibm.com/developerworks/library/ws-secure/

http://xml.coverpages.org/saml.html
http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/?S_TACT=105AGX04&S_CMP=LP
http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/?S_TACT=105AGX04&S_CMP=LP
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

