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Abstract: Geographic datasets are usu-
ally accompanied by spatial non-stationarity –
a phenomenon that the relationship between
features varies across space. Naturally, non-
stationarity can be interpreted as the under-
lying rule that decides how data are gener-
ated and alters over space. Therefore, tra-
ditional machine learning algorithms are not
suitable for handling non-stationary geographic
datasets, as they only render a single global
model. To solve this problem, researchers of-
ten adopt the multiple-local-model approach,
which uses different models to account for dif-
ferent sub-regions of space. This approach has
been proven efficient but not optimal, as it is
inherently difficult to decide the size of sub-
regions. Additionally, the fact that local mod-
els are only trained on a subset of data also
limits their potential. This paper proposes an
entirely different strategy that interprets non-
stationarity as a lack of data and addresses it
by introducing latent variables to the original
dataset. Backpropagation is then used to find
the best values for these latent variables. Ex-
periments show that this method is at least
as efficient as multiple-local-model-based ap-
proaches and has even greater potential.

Index Terms: Back-propagation, Geograph-
ically Weighted Regression (GWR), Latent
Variable, Machine Learning Algorithm, Non-
stationary, Random Forest
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1. Introduction

Geographic data is defined as information
that is implicitly or explicitly associated

with a location on the surface of the Earth
[1]. With advancements in remote sensing
technologies and the widespread use of GPS-
enabled devices, the number of available phys-
ical and human geography datasets has vastly
increased in recent years [2]. These data are
studied and utilized for social good, such as
mitigating damages caused by natural disasters
[3], discovering mineral resources [4], prevent-
ing crimes [5], improving traffic conditions [6],
and many other scenarios.

However, when dealing with geographic
datasets, researchers find that many tradi-
tional machine learning algorithms do not per-
form very well due to the presence of non-
stationarity. In such data, the relationship
between features does not necessarily remain
the same everywhere, meaning the underly-
ing model that governs the data changes over
space. To address this issue, a natural solution
is to replace the global model with many local
models. Each local model is only responsible for
describing a much smaller region within which
the data is supposed to be relatively station-
ary. Most studies that have taken this approach
(such as [7], [8] and [9]) have observed signif-
icantly better results compared to traditional
algorithms, which are not specifically designed
to handle non-stationarity.

These multiple-local-model based ap-
proaches all face similar challenges. First, the
dataset used to train local models is only a
subset of all available data. Previous research
has shown that the accuracy of a model is
strongly correlated with the amount of data
used to train this model. There can be a



significant decrease in model performance if
the training data size drops below a certain
threshold [10]. Second, determining the size of
sub-regions to which local models correspond
is difficult. A larger size means more data
can be used to train local models, but the
region is more likely to exhibit non-stationary.
Conversely, a smaller size implies the opposite.
As a result, compromise is always necessary.

Our insight is that the source of non-
stationarity can be explained as a lack of data,
i.e., some dimensions of the data are not be-
ing collected. For example, a crime dataset
could exhibit strong non-stationarity, as crime
patterns in New York could be fundamentally
different from those in Washington DC. Even
within New York, it is hard to imagine that
Brooklyn shares the same crime pattern as
Manhattan. Ultimately, these differences are
caused by various factors such as household
income, population composition, culture, and
the number of police officers per capita, among
others. If one were able to collect data on every
single aspect of an area, the dataset would ulti-
mately become stationary. This theory is also in
accordance with the fact that non-stationarity
is quite often observed in human geography
datasets but rarely found in physical geography
data. Since physical geography data – which
is generated by Earth’s natural processes - has
fewer determining factors and is usually simpler
to collect, it is less prone to non-stationarity. In
contrast, human geography data focuses on hu-
man activities and is much more complex. Even
seemingly simple datasets can have countless
deciding factors that are impossible to collect
comprehensively. For example, house sale price
data generally includes features of the house
itself and its nearby areas, but other factors -
such as school, traffic, population, and crime -
are usually not included, even though they are
important and would certainly affect the pricing
model. The lack of these data would then be
observed as non-stationarity in the dataset and
would impact the final model in some way.

Based on this insight, we propose an en-
tirely different strategy that addresses non-
stationarity by introducing latent variables to
the original dataset. These latent variables
would account for all the missing factors that

not collected by the original dataset but ob-
servable as non-stationarity. Theoretically, as-
suming we have unlimited calculating power,
the optimal values of the latent variables could
be easily found through a brute-force search of
the entire vector space. However, this solu-
tion is obviously impossible due to the tremen-
dous size of the vector space. Thus, inspired
by neural networks, we use a back-propagation
algorithm to find the optimal values of the la-
tent variable. Experiments demonstrate that
this new approach can build models as accurate
as the state-of-the-art algorithms while offering
the potential for further improvement.

2. Background and Study Area

2.1 Background

The first renowned method for exploring spa-
tial non-stationarity, known as Geographically
Weighted Regression (GWR), was proposed by
Brunsdon, Fotheringham, and Charlton in 1996
[7]. The “main characteristic of GWR is that
it allows regression coefficients to vary across
space, and so the values of the parameters can
vary between locations” [11]. The motivation
for inventing GWR was that “a single global
model cannot explain the relationship between
some sets of variables” [7]. To address non-
stationarity, GWR allows relationships between
features and labels to differ across spaces. The
basic idea of how GWR works is to learn a
regression equation for every feature in the
dataset, during which dependent and explana-
tory components are accounted for by exam-
ining neighboring data points. The neighbors
contribute differently to this process according
to their distance, which is why it is called a
“weighted” regression. The closer a data point
is, the more weight it is assigned. This de-
sign complies with Tobler’s first law of geogra-
phy, “everything is related to everything else,
but near things are more related than distant
things” [12]. Later, in 2002, Brunsdon fur-
ther improved this algorithm to Semiparametric
GWR (SGWR) [13], which allows some features
to have fixed regression equations across space,
while others can still be variable.

Due to the success of GWR, many later



studies followed this multiple-local-model de-
sign. One example is Multiscale GWR
(MGWR), which was introduced in 2017 by
Fotheringham, Yang, and Kang. This method
“is similar in intent to Bayesian nonseparable
spatially varying coefficients (SVC) models, al-
though potentially providing a more flexible and
scalable framework in which to examine multi-
scale processes” [9]. It improves upon GWR
in a way that not only adapts to datasets on
different levels of non-stationarity but also pro-
vides the necessary information to evaluate the
scales of different processes. The latest re-
search using this approach is Geographical Ran-
dom Forest (GRF), proposed by Stefanos, Tais,
et al. in 2019. It adopts Random Forests [14]
as the base algorithm to create local models.
The principle idea of this method is the “disag-
gregation of RF into geographical space in the
form of local sub-models” [8], which is basically
another version of the multiple-local-model ap-
proach.

In conclusion, all these methods are di-
rectly or indirectly based on the multiple-local-
model approach and consequently suffer from
the same problems mentioned in the previous
section. In this work we propose a completely
different approach with the goal of better un-
derstanding and accounting for the intrinsic na-
ture of non-stationarity.

2.2 Study Area

We selected housing sales data from King
County, US as the target study area (ob-
tained from [15]). The dataset contains 21,613
records, with each record being a real estate
transaction that occurred between May 2014
and May 2015, a period during which the hous-
ing market remained relatively stable in King
County.

In this dataset, there are 20 features related
to the house’s location (latitude, longitude, zip
code), its basic information (size, number of
stories and rooms, garage, air conditioning),
and transaction-related information (sale date
and price). Some of the features have missing
values. This is not a problem for our algorithm,
which is based on the Random Forests algo-
rithm and can handle missing values. However,

Figure 1: Distribution of the King County hous-
ing data.

some other algorithms we use for performance
comparison are incapable of doing this. There-
fore, during the data preparation stage, we fill
in the missing values with the average value of
that column.

The goal of this dataset is to build a predic-
tive model that can estimate house sale prices,
given the house’s location and some of its basic
information. It is a well-researched topic that
has been studied for a long time. However,
even state-of-the-art algorithms in this area still
have ample room for improvement due to the
complicated nature of this task. Additionally,
it is a very typical human geography dataset
in which data availability varies depending on
the amount of human activity. Figure 1 shows
the distribution of the dataset on the map. As
depicted in the figure, the downtown area in
Seattle is populated with data, with some areas
left blank which are mostly parks or commer-
cial zones. Rural regions have much less data
scattered all over the place. The fact that this
dataset is distributed extraordinarily unevenly
across the space presents additional challenges
when using the previously mentioned multiple-
local-model approach, as local models which
correspond to rural areas will have fewer train-



ing samples, leading to inaccurate results. In
urban areas, overcrowded data points will only
bring marginal improvement to models built for
that area.

Another issue with this dataset is that the
house sale price spans over a fairly large range
with a long tail, as shown in figure 2, which is
undesirable. To eliminate the tail, we convert
Price to log(Price), which follows the normal
distribution and is a much better target variable
to deal with.
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Figure 2: Distribution of Price vs. log(Price)

3. Latent Variable Random Forests

In this section, we provide a detailed descrip-
tion of the key designs of the Latent Variable
Random Forests as follows.

3.1 Key Design of the Latent Variable

By introducing a new latent variable, we aim
to use it to represent the hidden factors that
cause non-stationarity. In our housing price
model example, it would be a combination of
various unknown factors that could affect how
house prices should be modeled. For instance,
the security level of a community obviously has
an impact on house value. Although we don’t
have any information on which area is more se-
cure and which is not, its influence on the sale

price will be observable via non-stationarity. It
is important to note that the target variable
might be affected by multiple hidden factors
such as security, traffic, nearby schools, and so
on. But no matter how many hidden factors
there are, they will influence the target variable
together. It is impossible to know which fac-
tor has a larger impact. Fortunately, we don’t
need to care about that. Our primary focus is
on how these hidden factors as a whole would
affect the target variable we want to predict.

To better describe the problem, let
(f1, f2, ..., fn) denote the features in the
dataset and t denote the target variable to be
modeled and predicted. After adding a la-
tent variable lv, the feature vector becomes
F (lv) = (f1, f2, ..., fn, lv). Thus, the task is
converted to finding the best l⃗v that makes
the model trained from F (lv) (using a prede-
termined regular machine learning algorithm)
achieve the highest accuracy.

The vector space l⃗v is obviously unlim-
ited. Thus we introduce a value range of [0, 1]
to lv and define a minimum step interval of
0.01. The reason why we limit the value range
to [0, 1] is that the value range of lv actu-
ally doesn’t play an important role in the fi-
nal model. If lv is multiplied by 2, the result-
ing model will still be the same. So, only the
relative value matters and is what we should
care about. Also, during the machine learning
stage, all the features of the original dataset
need to be standardized and normalized any-
way, thus a standardized lv will, in fact, benefit
the entire procedure. For the minimum step,
the smaller it is, the more fine-grained the fi-
nal model would be. However, setting it too
small will also considerably increase the calcu-
lation time and may not be worth the marginal
return. So we recommend setting it to 0.01 as
a balance between speed and accuracy.

Theoretically, the value array of latent vari-
able l⃗v can be inferred by an exhaustive brute-
force search of the entire vector space. The
time complexity of doing so is as follows:

O(n) = (R

S
)n ∗ (Ttrain + Ttest) (1)

where n is the number of data points in the
dataset, R is the value range, S is the step size,



Ttrain and Ttest are the time needed for training
and testing the model, respectively. Note that
the value of n is usually very large. Even for a
very small dataset, n will probably be greater
than 1000. Thus, this brute-force method is
completely impractical considering the amount
of calculation needed.

3.2 Grid Based Latent Variable System

To solve the time complexity problem, we
clearly need a smarter algorithm, for example, a
heuristic search, which could greatly reduce the
search space. But before that, let’s examine the
possibility of reducing the size of the potential
vector space, which would greatly benefit the
entire procedure even if a heuristic search is to
be adopted.

Here we introduce a grid-based latent vari-
able system. Let (xmin, xmax, ymin, ymax) de-
note the minimum bounding box that contains
the entire dataset. A step size of s will evenly
divide the space into this many grids:

G(s) = ⌈xmax − xmin

s
⌉ ∗ ⌈ymax − ymin

s
⌉ (2)

For each intersection of the grid system,
we assign an Influence Center (abbreviated as
IC) to it. For a data point with a coordinate
of (x, y), we first determine which grid it is
located in. Then calculate its latent variable
value from all the nearby ICs located at the
four corners of grid. Here we use an inverse
distance weighted method to combine the val-
ues from nearby ICs, in accordance with the
idea that nearby ICs should have a stronger in-
fluence on the latent variable than remote ones.
The detailed formula is as follows:

v(x, y) =
∑N

i=1 W (ICi)V (ICi)∑N
i=1 W (ICi)

(3)

where W (ICi) is the weight for the ith in-
fluence center which equals the inverse of the
Euclidean distance between the data point and
the IC.

This design simulates how the hidden fac-
tors create non-stationarity in the dataset. No
matter what hidden factors there are, as a

general rule, they would affect nearby data
points more than remote ones. Thus we simu-
late this procedure by introducing the concept
of Influence Centers and making them impact
nearby records in a similar way. Another benefit
brought by this design is that now the search
space is greatly reduced down to the number
of ICs. Instead of finding the best values for
all the records, we only need to optimize the
values for ICs now, which is way less than the
total number of records.

3.3 Random Forests as the Base Algorithm

Before proceeding, we still need to decide which
base machine learning algorithm is to be used
to train models. Here, our choice is the Ran-
dom Forests [14] algorithm. As suggested in
the name, Random Forests will create many
randomly generated decision trees to perform
the prediction task together. For classifica-
tion tasks, the final result would be a major-
ity vote of results from all the decision trees.
For regression, this would be an average of all
results. The core idea of RF is to create a
bagging procedure where the variance of the
model is decreased but the bias remains un-
changed, thus generating a better result from
sub-optimal models.

There are multiple reasons why we choose
RF as our base algorithm. First, RF is based
on decision trees which are naturally good at
handling coordinates in geographic datasets.
Then, Random Forests is among the top ma-
chine learning algorithms available and often
shows exceedingly good results when handling
spatial data, as proven by [16] and [17]. We
will be able to inherit all of these advantages
by using RF as the base algorithm.

3.4 Back Propagation

With a reduced search space, the time complex-
ity is still massive as we are only replacing (R

S )n

in Formula 1 with Xn (X is the total number
of influence centers) if a brute-force search is
to be used. Thus we must find a way to further
reduce the search space, i.e., a heuristic-search
like method.

Here, inspired by the backpropagation al-
gorithm in Neural Networks [18], we have de-



signed a backpropagation process to search for
the best values for influence centers, as de-
tailed in Algorithm BackPropagation(). In
this function, a learning rate α is introduced,
which determines how fast the backpropa-
gation converges. A large value will cause
BackPropagation() to converge faster, but
the generated result will be more likely to be
coarse-grained and thus less than optimal. Con-
versely, a smaller value will converge slower but
produce better results. Generally speaking, the
best α value is recommended to be set to the
smallest value within acceptable training time.

1 Function BackPropagation()
2 Initialize IC Array
3 while IC Array has not converged

do
4 foreach IC in IC Array do
5 foreach learn rate in [α, -α]

do
6 IC new = IC +

learn rate
7 if Trained model sees

improvement in
accuracy then

8 IC = IC new
9 else

10 continue
11 end
12 end
13 end
14 end
15 return IC Array
16 end

The converge condition in the BackProp-
agation() algorithm is a bit tricky. Ideally, if
IC Array remains the same after an iteration,
the algorithm is considered converged as fu-
ture iterations will produce the same results.
However, this does not necessarily happen as
IC Array may always change slightly with pretty
much the same results. So, we insert a pro-
cess at the end of each iteration, which will
evaluate the test accuracy under the current
IC Array. If the test accuracy does not improve
for more than 5 iterations, we consider the algo-

rithm converged and stop the backpropagation
iteration. Although this extra calculation slows
down the entire algorithm, it is worth the cost.

3.5 Prediction

The prediction process is relatively simple. Af-
ter the IC Array is returned by BackPropaga-
tion(), the final Model is trained from the orig-
inal dataset plus the latent vector generated
from IC Array. When predicting an unknown
observation, the latent variable is first calcu-
lated by using the inverse distance weighted
method from Formula 3. Then, Mode is ap-
plied to get the final prediction result.

3.6 Assessment Measurements and Results

One thing that wasn’t mentioned in the previ-
ous sections is that a proper assessment mea-
surement must be chosen. This actually plays
an important role in the algorithm, as the eval-
uation result generated by the measurement
will be used to determine how the backprop-
agation process runs and guide it to gener-
ate a better result for each iteration. Some
of the most commonly used measurements
are [19]: mean absolute error (MAE), mean
squared error (MSE), and root mean squared
error (RMSE). In our case, MAE is preferred
as the other ones will penalize large errors and
cause bias in our algorithm.

Now that the algorithm is complete, we
have run LVRF on the King County housing
dataset and achieved an MAE of 0.263. As a
comparison, we also experimented with unmod-
ified Random Forests on the same dataset and
obtained a result of 0.289. This means that the
learned latent variables were able to offset some
of the non-stationarity and made it easier for
the standard RF to generate a more accurate
model. To compare with the others, we also
evaluated the same dataset using two state-
of-the-art algorithms, RFsp [20] and MGWR
[9], which are specifically designed to handle
geographic datasets and non-stationarity. The
results for RFsp and MGWR were 0.261 and
0.272, respectively. These results suggest that
the idea of using latent variables to capture
hidden factors that cause non-stationarity is at



least as effective as the best results achieved
using the multiple-local-model approach.

4. Conclusion

This paper presents LVRF, a machine-learning
algorithm that can create predictive models
for non-stationary geographic datasets. Un-
like other algorithms, LVRF adopts a latent
variable based approach, instead of the widely
used multiple-local-model strategy. Experi-
ments show that LVRF can build models as
accurately as state-of-the-art algorithms while
avoiding the common disadvantages of the
multiple-local-model approach. First, LVRF es-
tablishes grid-based influence centers. The la-
tent variable value of any data point is decided
by the nearby influence centers using an inverse
distance weighted method. Then it uses a back-
propagation algorithm to train the values of the
influence centers until they converge. To pre-
dict unknown observations, the data point’s la-
tent variable is calculated from the converged
influence centers, and fed into the model with
its other features.

The insight of LVRF is that the design of
the influence center can mimic the hidden fac-
tors which affect nearby data points in differ-
ent ways depending on the location. By learn-
ing these hidden factors with a backpropaga-
tion algorithm and then including them in the
model creation stage, the impact brought by
non-stationarity will be offset. This approach
allows for a single global model to be used to
describe the features plus the hidden factors.

It is also worth mentioning that, although
Random Forests is selected as the base algo-
rithm, LVRF is capable of using any other reg-
ular machine learning algorithm as the base al-
gorithm. Doing so may bring advantages in
certain scenarios when there is preknowledge
regarding the dataset.
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Abstract: Extensive prior work has provided 
methods for the optimization of routing based on 
the criteria of travel time and/or on the cost of 
travel and/or the distance traveled.  A typical 
method of routing involves building a graph 
comprised of street segments, assigning a 
normalized weighted value to each segment, and 
then applying the weighted-shorted path algorithm 
to the graph in order to find the best route.  Some 
users desire that the routing suggestion include 
consideration pertaining to the reduction of risk of 
encountering violent crime.  For example, a user 
desires a leisure walk via a safe route from her 
hotel in an unknown city.  Here we present a 
method to quantify such user preferences and the 
risks of encountering crime and to augment the 
standard routing methods by giving weight to 
safety considerations.  The proposed method’s 
advantages, in comparison to other crime-
avoidance routing algorithms, include weighing 
crime types with respect to their potential 
detrimental value to the user, with temporal 
qualification and quantification of crime and its 
statistical aggregation at the geographic resolution 
down to a city block. 

Index Terms: Crime-avoidance, Crime 
classification, Crime data, Crime impact weighting, 
Multi-parametric routing, Navigation, Routing, 
Spatiotemporal analysis of crime 

1. INTRODUCTION 
Previous research [1-9] has developed 

methods for the optimization of routing based on 
the criteria of travel time and/or on the cost of  
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travel and/or the distance traveled. Routing can 
be in various modalities, such as by car, on foot, 
by bicycle, via public transit, or by boat.  A typical 
method of routing involves building a graph 
comprised of street segments, assigning a 
normalized weighted value to each segment, and 
then applying the weighted-shorted path 
algorithm to the graph in order to find the best 
route.  

Routing can take into account preference 
parameters in addition to time and distance.  For 
example, routing suggestions can include c 
consideration pertaining to the reduction of the 
risk of encountering violent crime.  For example, 
a user desires a leisure walk via a safe route 
from her hotel in an unknown city.  Here we 
present a method to quantify such user 
preferences and the risks of encountering crime 
and to augment the standard routing methods by 
giving weight to said safety considerations.  

Galburn et al.[4] have utilized crime data to 
optimize the safety aspect of navigation within a 
city.  Their case study involved urban crime data 
from Illinois and Pennsylvania.  Their proposed 
risk model for the street network within a city 
facilitated estimating probabilities of criminal 
incidents that the traveler may encounter on any 
road segment.  In their approach, the same 
importance is assigned to the path traversal time 
and the crime incident risk.  Their method solves 
a dual-objective shortest-path problem.  

Here we presented an improved method to co-
optimize crime avoidance with other criteria.  The 
proposed method’s advantages, in comparison to 
other crime-avoidance routing algorithms, include 
weighing crime types with respect to their 
potential detrimental value to the user, with 
temporal qualification and quantification of crime 
and its statistical aggregation at the geographic 
resolution down to a city block. 

The following figure shows traditional routing 
optimizing the time and/or distance.
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Figure 1:  Routing that optimizes time and/or distance 

Here we present an improved method to co-
optimize crime avoidance with other criteria.  The 
proposed method’s advantages, in comparison to 
Galburn [4] and the other crime-avoidance 
routing algorithms, include: 
(1) weighing crime types with respect to their 
potential detrimental value to the user, 
(2) with temporal qualification,   
(3) quantification of crime and its statistical 
aggregation at the geographic resolution down to 
a city block, and 
(4) evaluation of the crime detriment to the user 
in each segment by considering the needs, 
exposure, and preferences of the user rather 
than merely considering the general crime 
incidence statistics.  For example, violent crime 
committed outdoors have a higher impact, and 
severe violence, such as homicide in the street, 
have the highest impact. Crimes without a direct 
unrelated victim, such as code violations or 
embezzlement, have no impact on travelers. 
Pick-pockets have an impact on travelers in 
walking mode but minimal impact on travelers by 

car. Non-statutory rape may be of high concern 
to a woman walking alone.  For each type of 
traveler and travel modality, the present method 
provides default formulas for the evaluation of 
crime detriment in each segment. Additionally, 
the user may modify the formula by assigning 
greater or lesser importance to various types of 
crimes.  

2. METHODOLOGY 
 In order to quantify crime risks for each street 
segment, we count police reports that occurred 
close to that segment during a set period of time, 
e.g., a particular year of reference, counting only 
violent and property crimes of the type that would 
directly affect the traveler (e.g., exclude domestic 
violence, exclude insider trading, exclude code 
violations, exclude statutory rape) and can further 
assign weights to various crime crimes based on 
the impact it may have in the traveler.  The 
following is an example of a query to a crime 
database for an area in mid-Miami Beach. 



 

 
Figure 2: A sample query to a crime database 

The above query may result in a set of 
incidents shown in the following map. 

  

 
Figure 3:  Map of incidents 

The following is a tabular output of the query: 



 

 
Figure 4: Report of incidents 

The mid-Miami Beach area of the previous 
example did not have homicide reports during the 
sampling period.  To see homicide reports, which 

should be considered with a higher weight than 
battery, we need to query an area further west: 

 
Figure 5: Homicide query 

The results are shown in the following map and 
table. 



 

 
Figure 6: Map of homicide incidents 

 
Figure 7: Table of homicide incidents 



 

The importance of querying for only specific 
types of crime (and weighting them) is 
demonstrated by the following query, whose 

results are mostly crimes that have no bearing on 
the prospective traveler. 

 
Figure 8: Query not restricting crime types 

 
Figure 9: Map of the output of a query not restricting crime types 



 

 
Figure 10: Tabular output of a query that does not restrict crime types, including crimes irrelevant for the traveler, e.g., credit card 

fraud 

Turning back to routing, the following is a route 
optimizing travel time, which traverses segments 

where relevant crimes have occurred during the 
sampling period: 



 

 
Figure 11: Time-optimized routing path, going through segments with higher crime potential 

By co-optimizing the walk duration and crime 
encounter probability reduction, we get a slightly 
different route: 

 
Figure 12: Routing co-optimizing time and crime avoidance 



 

The routing may be different based on the mode of walking or transportation: 

 
Figure 13: Time-optimized routing path, going through segments with higher crime potential, for various transportation modalities 

 



 

 
The relative importance of time, cost of travel, 

and crime avoidance can be determined by the 
user utilizing a prior-art technology of weight 
selection triangle: a touchable triangle allows the 
user to assign importance weights to three 
interrelated decision optimization objectives using 
a single gesture [Oliver Ullrich, Naphtali Rishe, 
Daniel Luckerath. U.S. Patent US10061501B2 
“User Interface for Co-Optimizing Weight 
Factors” issued on: August 28, 2018]: 

 
Figure 14:  A weighting triangle with values along one side 

 
Figure 15:  A weighting triangle with weighting values along 

all three sides 

 
Figure 16:  A smart device with the weighting triangle 
displayed thereon, showing a user selecting different 

weighting points 

 
Applying said prior-art method to the herein 
proposed weighting selection problem, three 
objectives (A=time, B=cost of travel, and C=crime 
avoidance) are presented in a triangular fashion 
on a touch screen.  Sub-figure 1 shows the 
underlying principle of the establishment of a 
single weight wA for Objective A; Sub-figure 2 
combines three objectives into a single triangle, 
allowing for the establishment of a tri-variable 
weight function (wA, wB, wC).  By applying a finger 
gesture, the user moves an indicator freely inside 
the triangle (see Sub-figure 3).  The position of 
the indicator establishes a tri-variable weight 
function, which in further steps, is then used as 
input for a co-optimization algorithm.  When the 
user is satisfied with the established weights, she 
indicates this, e.g., by pressing a touch screen 
button labeled “Go.” 
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Abstract: In the past few years, there have been 
many research studies conducted in the field of 
Satellite Image Classification. The purposes of 
these studies included flood identification, forest 
fire monitoring, greenery land identification, and 
land-usage identification. In this field, finding 
suitable data is often considered problematic, and 
some research has also been done to identify and 
extract suitable datasets for classification. 
Although satellite data can be challenging to deal 
with, Convolutional Neural Networks (CNNs), which 
consist of multiple interconnected neurons, have 
shown promising results when applied to satellite 
imagery data. In the present work, first we have 
manually downloaded satellite images of four 
different classes in Florida locations using the 
TerraFly Mapping System, developed and managed 
by the High Performance Database Research Center 
at Florida International University. We then develop 
a CNN architecture suitable for extracting features 
and capable of multi-class classification in our 
dataset. We discuss the shortcomings in the 
classification due to the limited size of the dataset. 
To address this issue, we first employ data 
augmentation and then utilize transfer learning 
methodology for feature extraction with VGG16 and 
ResNet50 pretrained models. We use these features 
to classify satellite imagery of Florida. We analyze 
the misclassification in our model and, to address 
this issue, we introduce a location-based CNN 
model. We convert coordinates to geohash codes, 
use these codes as an additional feature vector and 
feed them into the CNN model. We believe that the 
new CNN model combined with geohash codes as 
location features provides a better accuracy for our 
dataset. 

 
Index Terms: CNN (Convolutional Neural 

Network), Data Augmentation, Geohash Code, 
Satellite Image, Transfer Learning 

1. INTRODUCTION 

HE classification of remotely sensed data has 

numerous practical applications, including 

forest fire detection, landslide detection, and 

environmental monitoring. In recent years, several  
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machine learning and deep learning algorithms, 

including but not limited to K-Nearest Neighbor 

(KNN), Random Forest (RF), Support Vector 

Machine (SVM), and Neural Networks (NNs), have 

been applied to the classification of remotely 

sensed data. In the Deep Learning field, CNNs 

have demonstrated the capability to learn complex 

models [1]. One of the key reasons for CNNs’ 

success is their ability to extract features 

automatically, which greatly benefits researchers 

in achieving generalized and efficient 

classification. Comprehensive reviews of various 

models, architectures, and classifications related 

to CNNs can be found in references [1]–[3]. 

In general, image classification is performed 

based on pixel-wise feature extraction and 

assigning them to certain classes. Mnih proposed 

a CNN architecture for aerial image classification 

using a patch-based framework[4]. In that paper, 

the CNN network outputs a dense classification 

patch rather than a single categorical value. As a 

result, the patch-based CNN architecture 

increases the number of unproductive trainable 

parameters, potentially leading to inefficiencies in 

classification. To provide a solution to this issue, 

Maggiori et al. [5] proposed a fully convolutional 

architecture that only incorporates the convolution 

and deconvolution norms of CNN, producing 

classification maps that can be used for satellite 

image classification. In [5], the authors have 

created a more efficient CNN architecture, but 

their focus was on binary classification with only 

one class, i.e., buildings. The authors have not 

addressed the importance of using image location 

to enhance classification accuracy. The CNN 

architecture we use in this paper is based on the 

architectures described in [4] and [5], and we 

focus on multi-class image classification by 

integrating the location concept. In [6], coordinates 

were integrated into CNN to enhance remote 

sensing image classification. During the training 

phase, they directly fed spatial information, such 

as longitude and latitude, as an additional feature 

to the CNN for feature extraction. Similarly, Tang 

et al. [7] proposed a GPS encoding idea that 

incorporates location information into CNN for 

extracting features and improved image 

classification. They represented location as a 
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binary code, with each bit corresponding to a 

specific geographic location. They devised a 

method for creating a set of grid cells covering the 

Earth’s geographical area, primarily focusing on 

regions within the United States. 

 In the present work, we first downloaded 

satellite images of Florida using TerraFly Map’s 

raster API, which incorporates a predefined tile 

system utilizing the Microsoft Bing projection. The 

images are all 256 * 256 pixels and have three 

color channels (Red, Green, and Blue). We have 

grouped the images into four different classes: 

Building, GreeneryLand, House, and 

WaterResource. Here, by a “house” we mean a 

structure of 1-2 stories, and by a “building” we 

mean a structure of 3 or more stories. We have 

developed our CNN architecture based on the 

idea mentioned in [4] and [5]. However, CNNs 

require large datasets to learn features and make 

efficient predictions, and our CNN may not be able 

to generalize efficient classification from manually-

collected datasets due to the lack of a large 

number of images. To improve the efficiency of our 

classification, we first use data augmentation 

presented in [8]. Then, we adopt transfer learning 

strategies presented in [9] to extract features using 

pre-trained models, such as VGG16 and 

ResNet50. Finally, we enhance the CNN’s feature 

set by converting each longitude and latitude to 

geohash codes and feeding them as extra 

features. Geohash is a process that converts 

coordinates into strings of data, which are easy to 

handle; more information on geohash codes can 

be found in [10]–[12]. We then evaluate the 

accuracy of our model with these additional 

features. 

The paper is structured as follows. In Section 2, 

we describe the mechanism of CNN and how we 

have prepared the dataset. In Section 3, we 

propose a CNN architecture and analyze the 

shortcomings of the lack of a large dataset. In 

Subsection 3.1, we set up a transfer learning 

architecture to obtain an efficient classification 

model. In addition, we integrate coordinates as 

geohash codes into our model. Section 4 presents 

the computational results achieved from all the 

models, including the results obtained after the 

integration of location information. Finally, we 

summarize our findings and outline future 

research directions in Section 5. 

2. CNN INTRODUCTION AND DATASET 

CNNs are a special type of neural networks that 

have been invented to mimic the mechanism of 

human brain for identifying or recognizing objects. 

They contain numerous interconnected neurons, 

each of which responds only to their own receptive 

field. The interesting part of the neurons in CNNs 

is that they possess the ability to automatically 

extract features from an image. In a CNN, each 

neuron undergoes input and output procedures to 

learn the pattern of the model. The common 

mathematical interpretation of the neural 

operation to obtain an output ‘o’ can be expressed 

as follows: 

      o = σ (∑ 𝑤𝑘 .𝑛
𝑘=1  𝑥𝑘 + 𝑏)                    (1) 

where σ is an activation function that helps the 

CNN to learn an intricate pattern by encompassing 

non-linearity in the output. Similarly, xk and wk are 

kth input and kth weight, respectively, and b denotes 

a scalar parameter added to each output, which 

helps the CNN to extract complicated patterns 

from data. Biases should be carefully addressed; 

otherwise, they may lead to overfitting or 

underfitting in the model.  

 In general, the CNN architecture has three 

different layers: a convolutional layer, a pooling 

layer, and a connected layer. In the convolutional 

layer, the dot product between the kernel and the 

input image is calculated by sliding a filter over the 

image. This aids the architecture in extracting 

features from the images in the dataset. The 

sliding of the filter around the image can be 

controlled with a specific stride size. Let’s say we 

have an image of dimension D*D with C channels. 

We define the size of the stride as S, the size of 

the kernel or filter as K, and X as the amount of 

padding to maintain the same size of images in 

both the input and output sectors. The output of 

the convolutional layer can be stated as follows: 

                Cout = 
𝐷−𝐾+2𝑋

𝑆
+1                             (2) 

Once the output is calculated, it is passed through 

an activation function. A pooling layer is applied in 

the CNN in order to deduct trainable parameters 

and balance the computation, which serves as an 

efficient feature extraction by reducing the size of 

the output map obtained from the convolutional 

layer. A fully connected layer simply flattens the 

output obtained from the previous layer, which 

helps to connect the obtained features to the 

labels in the given model.   

As mentioned above, we used the TerraFly 

Map’s raster API (which uses the Microsoft Bing 

projection) to download the images. We use the 

TerraFly Map to determine the XY tile coordinates 

for specific regions within Florida, keeping the 

zoom level constant at 19. After determining those 

coordinates, we pass the values to the Raster 

API’s URL, and then we use web scraping to 

download the images. Since we aim to integrate 

the location feature into our CNN model, we need 

to prepare a dataset of satellite images that also 

have associated coordinates. To achieve this, we 

converted each XY tile coordinates obtained from 

the map to longitude and latitude by using the 

following procedure: 

A = X tile, B = Y tile coordinates                     (i) 

 



 

pixelA = A * 256 + 128                                   (ii) 

 

pixelB = B * 256 + 128                                  (iii) 

 

sizeofMap = 256 * 2zoom                                            (iv) 

 

normA = (pixelA / (sizeofMap)) – 0.5             (v) 

 

normB = 0.5 – (pixelB / (sizeofMap))            (vi) 

 

Latitude=90 – (
360

𝜋
) * tan-1(exp(-2π*normB) (vii) 

 

Longitude = 360 * normA                            (viii) 

 

In our model, we use a specific zoom value of 

19. To calculate the geohash code, we use the 

values of the latitude and longitude obtained from 

equations (vii) and (viii), as described in [12]. We 

use the Python Geohash Library to convert the 

latitude and longitude to geohash codes. In our 

final step of dataset preparation, we map each 

geohash code to the right images by using a 

Python dictionary. The keys of the dictionary are 

the filenames, and the values are the 

corresponding geohash codes. 

3. THE PROPOSED ARCHITECTURE 

 Our CNN architecture utilizes ideas from [4] 
and [5]. We apply convolutional layers that 
incorporate both convolutional and deconvolution 
operations, as described in [5]. We flatten the 
multi-dimensional tensor into a single-dimensional 
tensor output and apply the dense layer principle 
the output, as suggested by Mnih [4]. We feed the 
fully connected layer of the images into the CNN 
to extract the feature map, which is used for 
classifying the images according to their given 
labels. Our CNN architecture differs from the one 
presented in [6], as we focus on extraction that is 
capable of detecting features in the images, rather 
than extracting the spatial features of pixels in the 
images. As we can observe in Figure 1, the CNN 
architecture has three convolutional layers and 
three max pooling layers. In each max pooling 
layer, we downsample the dimension of each input 
map by a factor of 2, resulting in a feature map of 
size 32*32. Downsampling is a common approach 

in neural networks to reduce memory usage 
during computation and to enable high-level 
feature extraction [13]. We flatten the resulting 
feature map by applying a flatten layer, which 
transforms it into a one-dimensional array of size 
65,536. We then apply two separate dense layers 
followed by a Softmax activation function. The final 
dense layer has 4 units, as our model has 4 
classes of satellite images and the probability 
distribution is over those 4 classes.  

In the first stage of our image classification 
procedure, we use a satellite image dataset that 
excludes geohash codes. We split the dataset into 
a training set, a testing set, and a validation set, 
with 80%, 10%, and 10% of the full dataset, 
respectively. We have experimented with our 
model using various numbers of epochs and batch 
sizes, and have determined that using 60 epochs 
with a batch size of 32 produces the best results. 
In general, researchers tend to choose an optimal 
number of epochs to achieve good accuracy in 
complex models and prevent the model from 
overfitting. A lower accuracy in the testing set 
indicates that the model is overfitting. One reason 
for this overfitting is the lack of a large amount of 
data in our model, as we only had 300 images in 
each class, with a total of 1200 images. CNNs 
require a large dataset to extract complex features 
and provide better accuracy in image classification 
[13].  

To address this problem, we have used data 
augmentation strategies of deep learning, as 
presented in [8], [14], and [15]. In terms of images, 
data augmentation involves increasing the size of 
the dataset by applying variations, such as rotating 
images, changing the visual effects, etc., to the 
existing images [14]. To increase the size of the 
dataset, we have applied random horizontal 
flipping, random rotation with approximately 8.62 
degrees, and random zooming of 20% scale. The 
data augmentation has helped to address the 
problem of overfitting, but we have concluded that 
we can further increase the overall accuracy of our 
dataset by training our model using a pretrained 
model, such as VGG16 and ResNet50, with the 
concept of transfer learning. In the following 
Subsection 3.1, we provide details on how we use 
transfer learning in our model to improve overall 
accuracy. 
    

 

Figure 1: An illustration of the architecture of the CNN used. The template of the image has been obtained via 

https://alexlenail.me/NN-SVG/LeNet.html. 
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3.1 Applying Transfer Learning 

Transfer learning is a way to use a pretrained 
model in a different but related model to solve the 
problem of the lack of abundant data to extract 
effective features and reduce the time required for 
training the dataset [16]. Our idea on integrating 
Transfer Learning is based on [9] and [17], and we 
have selected VGG16 and ResNet50 as the two 
pretrained models for our experiment. VGG16 is 
one of the most widely used deep neural network 
architectures; it consists of 13 convolutional layers 
and 3 dense layers, and the model has been 
trained on the ImageNet dataset [18]. Similarly, 
ResNet50 is another widely used deep neural 
network trained on the ImageNet dataset, 
consisting of 50 layers in total; it enables the 
network to assimilate residual functions rather 
than underlying mappings [19].  

To set up the model using the transfer learning 
idea, we first remove the final connected layer of 
the VGG16 model. Then, we use the pretrained 
weights, and we set up the desired input shape to 
256*256*3, the same shape that matches the input 
shape of the images in our original dataset. We 
freeze all the pre-trained layers and use only pre-
trained weights to extract features, training the two 
new dense layers to predict new images in the 
dataset. The output of the flatten layer obtained 
from the pretrained model is passed to the first 
dense layer with 256 neurons, followed by the 
Relu activation function. In addition to this, we 
apply the Dropout function to the output from the 
dense layer to prevent overfitting in our model. 
Thereafter, we apply the final fully connected layer 
with 4 output nodes to obtain the probability 
distribution among 4 classes to predict the images 
followed by the Softmax activation function. We 
follow the same procedure when using the 
ResNet50 model. Once both models were ready, 
we experimented with them in our dataset. 
However, we have found misclassification in some 
of our data, which was further hindering the 
accuracy. To improve the accuracy, we integrate 
location coordinates in our image classification 
model in Subsection 3.2. 

3.2 Integration of Location as Geohash Codes 

Our goal is to increase the accuracy of satellite 
image classification in the downloaded dataset by 
integrating location information. We have decided 
to use geohash codes obtained from the 
conversion of latitude and longitude values. 
Geohash is a type of data structure used with 
spatial data that provide an encoding of latitude 
and longitude [20]. We are motivated to use 
geohash codes because locations with long 
common geohash prefixes are generally located 
nearby each other [20]. Our dataset contains 
satellite images downloaded within Florida, and 
there is a correlation between geographical 
location and image content. Images of houses and 
buildings are in two different classes, and some of 
these images might be misclassified if the model 

only considers visual characteristics because 
building images and house images captured from 
satellites have some visual similarity. In our 
dataset, two images of houses or buildings tend to 
be nearby each other as they have been 
downloaded by specifying the tiles coordinates. 
We believe that we can exploit this idea in our 
model by using geohash codes and prevent the 
misclassification of data. 

We have experimented with the location 
concept by incorporating geohash codes into the 
VGG16 pretrained model. We have converted 
each geohash code into a floating-point value 
since neural networks typically deal with numerical 
values rather than strings. Next, we add a new 
input layer for the geohash code and concatenate 
the flattened layer containing the weight features 
of VGG16 with the geohash codes, as shown in 
Figure 2. We then apply the same dense layers 
noted in Subsection 3.1 to extract the features that 
assist in the prediction of new images. We follow 
the same procedure of concatenation geohash 
code with the output layer in ResNet50.  

Finally, we integrate location information, i.e., 
geohash codes, into our CNN architecture. We 
concatenate the feature map induced by applying 
3 convolutional and 3 pooling layers with geohash 
codes to obtain a combined feature vector. We 
then follow the same procedure as noted above 
and apply a flatten layer and a dense layer, 
respectively, to the combined feature vector. We 
have experimented with our models using 60 
epochs and a batch size of 32 to obtain accuracy.  

4. COMPUTATIONAL RESULTS 

We have sequentially tested all the models, 
starting from the CNN architecture that only 
extracts features from the image without 
concatenating the geohash codes. Our intent is 
not just to check the accuracy in the dataset but 
also to analyze whether the model is overfitting by 
checking how well it performs on unseen image 
data. We use the Top-1 accuracy metric to check 
accuracies on all the models. Our CNN 
architecture yields an accuracy of 0.9244 on the 
training set but only 0.8842 on the testing set, 
indicating overfitting due to the limited size of the 
dataset. To address this issue, we apply data 
augmentation to the dataset, and our CNN 
architecture can generate approximately 0.9185 
accuracy on the testing dataset and 0.9253 on the 
training set. Even though data augmentation helps 
to increase the dataset, it still lacks the power to 
generalize efficient feature extraction. So, we 
utilize transfer learning by using pretrained 
models, VGG16 and ResNet50, for efficient 
feature extraction that could be used to obtain 
better accuracy in our dataset. Having tested 
these models on all the datasets, we achieve an 
accuracy of approximately 0.9456 on the testing 
set and 0.9529 on the 



 

 

Figure 2: An illustration of the architecture obtained by integrating geohash codes into the CNN (including pretrained models) 

architecture.  

training set for VGG16, as well as approximately 
0.9516 on the testing set and 0.9576 on the 
training set for ResNet50, respectively. 

Similarly, as mentioned in Subsection 3.2 
above, to integrate location as an additional 
feature, we initially integrate the geohash codes 
with VGG16 and ResNet50 pretrained models. We 
achieve top-1 accuracies of 0.9789 on the testing 
set and 0.9769 on the training set using the 
combined VGG16 and geohash feature 
architecture, and top-1 accuracies of 0.9812 on 
the testing set and 0.9795 on the training set using 
the combined ResNet50 and geohash feature 
architecture. Finally, we experimented with 
integrating location information into our CNN 
architecture by concatenating the geohash codes 
with the image features. By doing so, we are able 
to increase the top-1 accuracy on the testing set 
from 0.9185 to 0.9542 and on the training set from 
0.9253 to 0.9512 by incorporating location as a 
feature. 

From the results mentioned above, we can see 
that incorporating the geohash coding feature has 

led to an improvement in our classification 
accuracy. In each model, after integrating 
geohash as a location feature, there is an increase 
of top-1 accuracy by 2 to 3 percentage points. The 
reason for the small increases in the accuracies is 
because of the small size of the dataset. We have 
observed misclassifications mainly among house 
and building images, as they have a resemblance, 
but the number of misclassifications is relatively 
small due to our small dataset size. However, we 
can mitigate these misclassifications by utilizing 
geohash codes to differentiate between these 
images with similar features.     

We present the results and comparisons of all 
the models mentioned above in Table 1. The 
notations used in Table 1 are as follows:  

o 𝐴𝑐𝑐. – accuracy in the testing set 
(general accuracy of the model); 

o AccT – accuracy in the training set; 
o 𝐿𝑜𝑠𝑠 – categorical cross-entropy loss in 

our multi-class classification model; 

 

Table 1. Results and comparisons among our models based on the accuracy 

Method Acc. AccT Loss 

CNN (only) 0.8842 0.9244 0.8272 

CNN + Data Augmentation 0.9185 0.9253 0.4380 

VGG16 (CNN) 0.9456 0.9529 0.2549 

RestNet50 (CNN) 0.9516 0.9576 0.1590 

CNN + Data Augmentation + Geohash Code 0.9542 0.9512 0.0954 

VGG16 (CNN) + Geohash Code 0.9789 0.9769 0.0443 

ResNet50 (CNN) + Geohash Code 0.9812 0.9795 0.0394 

 As shown in Table 1, the proposed CNN model, 
as well as the VGG16 and ResNet50 models, 
show improved accuracy after the integration of 
geohash codes. As shown in the table, the 
categorical cross-entropy loss decreases after the 
geohash codes have been applied, indicating that 
the models are able to make predictions that are 
closer to the true class membership probabilities. 
The lower loss value and similar accuracy on both 
the training and testing datasets suggest that the 
model is not overfitting to the training data. 

5. CONCLUSION 

This paper analyzes the limitations of using only 
image features in multi-class satellite image 

classification using CNNs. In multi-class satellite 
image classification, CNN architectures tend to 
make false predictions when there is a high 
degree of visual similarity between images from 
different classes. This issue is addressed by 
integrating geohash codes as an additional feature 
in the CNN model. With the additional geohash 
code feature map, the CNN model is able to make 
more accurate predictions. 

According to the results presented in this paper, 
we can deduce that geohash codes can be used 
as an additional feature vector in the CNN 
architecture to make correct predictions and 
increase accuracy in satellite image classification. 
However, this may not apply in scenarios where 



 

there is no correlation between geographical 
location and image content. To build a robust 
model for satellite image classification, it is 
important to take into account a range of factors, 
such as the size and preprocessing of the dataset, 
integrating additional feature vectors, the risk of 
overfitting, and the CNN architecture itself. This is 
because even a well-designed architecture may 
produce poor results if there is insufficient data or 
if the data has not been efficiently preprocessed. 

In the future, we plan to explore the use of 
hybrid models in satellite image classification. The 
K-NN machine learning algorithm will be one of 
our focuses to identify the K-number of images 
that are most similar to each other based on their 
geohash codes, and then to automatically classify 
them into their respective classes. This approach 
has the prospect of increasing the accuracy of 
classifying images that are difficult to distinguish 
based on visual features alone, and may enable 
real-time classification of satellite imagery for 
applications such as disaster management and 
environmental monitoring. 
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Abstract: Presented here is a model 
objectivizing real estate prices so that prices 
across time could be compared to understand 
historical price trends and also to assist in a 
property evaluation or appraisal, as well as for the 
analysis of comparables in estimating a 
reasonable offer for a property on the market.  
Given a timespan of interest, a locale (e.g., a 
particular zipcode, a city, a county, a state), a 
category of properties of interest (e.g., condos), 
an objective historical trend in values can be 
computed by first evaluating the ratios between 
the transactions’ realized prices and objective 
governmental assessment of the properties at 
some fixed point of time; then, for each period (a 
month) averaging the ratios of all transaction in 
that period; then, comparing said averages (or 
medians) between different periods.   
 

Index Terms: Automatic Valuation Model, 
Geospatial Data Trend Analysis, House Price 
Trend Analysis, Real Estate, Spatiotemporal 
Extrapolation, Spatiotemporal Interpolation, 
Spatiotemporal Summarization 
 

1. BACKGROUND  
Various services and methods exist for the 

estimation of the change over time in real estate 
prices in any given locale.  Said prior models 
typically compute the average or median sale 
price in the locale during each period and then 
compare said statistics between the various 
periods.  Some of said prior models can also 
focus their comparison on specific property 
categories, e.g., single-family homes or condos, 
and may further narrow the categories down, 
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e.g., 3-bedroom homes or houses of 2000-2500 
interior square feet.  Yet, in said prior models, 
there is, in fact, a comparison of apples to 
oranges. Even in a small locale, e.g., a zipcode, 
and even in a narrow category, there are vastly 
different properties being averaged.  This 
creates a statistical bias when different periods 
are compared since in one period there could 
dominate sales of quality-built properties with a 
view, while in another period, lesser properties 
could dominate. This bias becomes even 
stronger when larger areas are analyzed, e.g., at 
the county or state level, because demographic 
changes can favor sale activity more in cheaper 
subareas in one period and in more exclusive 
subareas in another period. 

Models exist comparing price per unit of size, 
e.g., price per interior square foot of a home.  
However, that too comingles residences with a 
view and residences without a view, well-built 
houses to poorly built; further accounting for one 
size metric, such as interior area, ignores other 
size metrics, such as the lot size.   

A recent improvement to Automatic Valuation 
Models (AVM) [1-4] of properties includes the 
computation of ratios of actual sale prices to 
government-assessed values and the 
extrapolation of such ratios for the valuation of a 
specific property. 

2. THE PRESENT METHOD 
Presented here is a model objectivizing real 

estate prices so that prices across time can be 
compared to understand historical price trends 
and also to assist in property evaluation or 
appraisal, as well as for the analysis of 
comparables in estimating a reasonable offer for 
a property on the market. 

In order to objectivize and normalize real 
estate transactions across a locale and a time 
period, we need to have a metric of valuation of 
properties that was consistent among all the 
properties in the locale at some point in time.  
Said point in time of the objective metric does 
not need to be within said period.  Further, said 
metric does not have to represent the true value 

Spatiotemporal Model of Real Estate 
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of each property at said point in time; rather, it 
has to be consistently related or proportional to 
 
the true value.  Said relationship does not have 
to be a precise linear proportion, nor does it 
have to be truly consistent in 100% of the cases 
since we only need that metric for a statistical 
aggregation of large numbers of cases.  A good 
candidate for said metric is property valuation by 
local government tax assessors, particularly the 
tax appraisal offices in most counties in the 
United States.  Said offices typically invest 
immense effort in the attempt of consistent 
valuation of all the properties under their 
jurisdiction, taking into account quantitative 

metrics (such as the size of the interior, the size 
of the lot, year built, year renovated, the ground 
elevation, the floor level elevation of a condo in 
a building, the costs of improvement made 
based on the permits filed, etc.)  and qualitative 
metrics (location, exposure, view, special 
features, etc.).  For example, in Florida, the 
county assessor offices determine what they call 
the “just value” of the properties as of January 1 
of the assessment year.  In order to minimize 
litigation, the assessor’s office typically sets the 
“just value” at 10-20% below the true value, 
which does not affect the algorithm presented 
here as long as said discount is reasonably 
consistent. 
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Figure 1: Annual property valuation by a county assessor 

It should be noted that government offices 
sometimes provide multiple types of valuations 
for tax purposes.  The following example shows 
the various official “valuations” available from 
Florida counties.  Among these valuations, the 
only meaningful one for the present purposes is 

the “Just Value.”  The other valuations either 
reflect only a part of the property value (e.g., the 
Land Value and the Improvement Value) 
affected by the demographics of the property 
owner and, thus, are not meaningful for 
understanding the true value of the property. 
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Figure 2: Meta-data of various property valuations by county assessor offices in Florida; the “Just Value” is an objective valuation. 

The method proposed herein compares the 
transactional sale price of each property, no 
matter when, to one time-fixed metric of an 
objective valuation in order to evaluate the ratio 
by which the realized price is above (or below) 
said metric.  That is, this ratio is the ratio 
between the realized price and said objective 
metric.  In the example of this figure, sales at 
different times are compared to the county’s 
“Just Value” as of January 1, 2021, to compute 

the Ratio factor.  Notice that Row 3 in the table 
contains an obvious data entry error.  Therefore, 
there can be a data-cleansing process in order 
to disregard outliers that are outside a 
reasonable range.  Data about the realized 
prices of each transaction can be obtained from 
proprietary databases, such as those provided 
by data consolidators, from county or state 
records, or from the Real Estate Multiple Listing 
Service (MLS), as in the following figure. 
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Figure 3: Ratios of the realized price, at various times, to the County “Just Value” of 2021-0-01.  Row 3 is an outlier to be 

disregarded. 

The Ratio thusly computed is an objective 
comparison metric between different sale 
transactions in a locale at close times or across 
long timespans.  

To better compare sale transactions over time 
within a locale, we can subdivide properties into 
categories because it is possible that in different 
property categories, prices increased at different 
paces.  For example, we can consider two 
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categories of properties: single-family homes vs. 
condominium apartments. 

Next, we consider a locale of interest, e.g., 
Zipcode 33175; a category of interest, e.g., 
Houses (single-family homes); and a timespan 
of interest, e.g., from January 1, 2006, through 
December 31, 2007.  We subdivide said 
timespan into periods, e.g., calendar months.  In 
each period, for each sale transaction, we 
evaluate the Ratio of the price to the fixed 
objective metric, e.g., the 2021 County “Just 

Value.”  We can exclude outlier transactions 
based on any criteria of outlier exclusion.  For 
each period, we evaluate a representative 
statistical aggregator of the ratios, e.g., the 
average of the ratios or the median of the ratios, 
of all the relevant sale transactions.  We can 
further exclude months with a very low number 
of transactions, e.g., less than 6, to avoid the 
possibility of excess weight of any single 
transaction, which may cause bias in statistical 
analysis across time.  

 
Figure 4: The number of sale transactions in each month in 2006-2007 in Zipcode 33175, excluding outliers, and the median of their 

ratios of the sale price to the fixed objective metric of the county valuation as of 1/1/2021; months with less than six transactions 
(September 2007) are excluded. 

To facilitate human comprehension of said 
average (or median) ratios, we can normalize 
them to a specific period (month) as the base, 
e.g., the beginning month of said timespan, i.e., 
by computing the Factor as the median Ratio of 

any given month divided by the median Ratio of 
the base period.  Thereby average (or median) 
prices can be expressed as the percentage 
increase (or decrease) since the base month, as 
in the following figures.   



7 
 

 
Figure 5:  Normalization of the median ratios (the realized prices divided by the 2021 county valuation) to Month 2006-02, i.e., 

dividing by the median Ratio of 2006-02, whereby; the last column shows the percentage increase since 2006-02. 

 

Figure 6:  Normalization of the median ratios (the realized prices divided by the 2021 county valuation) of January-June 2022 to 
February 2006, i.e., dividing by the median Ratio of 2006-02; the last column shows the percentage increase since 2006-02. 
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For better understanding by users, said 
factors can be presented as a graph, as in the 

following figure. 

 
Figure 7: Chart of the change in the median ratios (the realized prices divided by the 2021 county valuation) in comparison to 

February 2006, for houses in Zipcode 33175. 

Said chart informs how property values in the 
locale changed over time.  The locale can be of 
any size as long as there are enough sale 
transactions therein to make a statistically 
significant analysis.  The example in the 

following figure shows entire Southeast Florida 
as one locale and differentiates two property 
categories: condominium units and single-family 
homes. 
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Figure 8: Charts of the change in the median ratios (the realized prices divided by the 2021 county valuation) in comparison to 

February 2006, for houses and condos in Southeast Florida. 

3. PSEUDO-CODE 

1. MLS := database of all multiple-listing service 
real estate transactions in SE Florida 

2. State_Parcels := database of county 
valuations of all properties in Florida as of a 
fixed date, e.g., 1/1/2021 

3. Allreal := inner join on the field of 
FOLIO_NUMBER of the MLS and Parcel 
databases:  

      MLS [FOLIO_NUMBER] State_Parcels;  

and projection of said join to all the fields on 
of MLS plus the field Just_Value 
from State_Parcels, i.e.: 

Allreal := select MLS.*, State_Parcels.Just_Valu
e from MLS, State_Parcels where MLS.Folio_n
br=State_Parcels.Folio_nbr 

4.  Zipcodes := all the zip codes in Allreal, i.e.: 
  
 Zipcodes := select unique Zipcode from Allreal 

5. for every zipcode in Zipcodes do { 

 5.1. Sub_Allreal := select * from Allreal  
         where Allreal.Zipcode = zipcode 

 5.2. Months := select unique (Closing_Date as 
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yyyy-mm-dd).substring(1,7) from Sub_Allreal  

 

5.3. for each month in Months  
   let Factor[zipcode,month] :=  
select median (Closing_Price/Just_Value)  
from Sub_Allreal  
where Closing_Date is within month 

 
5.4. reference_month := minimum(Months) (Any 
month can be chosen to serve as the reference, 
in particular, it could be the minimum (earliest) 
month or the maximum (latest) month.) 

 
5.5. Display or plot  
Factor[zipcode,*] / 
Factor[zipcode,reference_month] 
} 

  

4. ALTERNATIVE MODEL WITH CONTRACT-
PENDING DATES 

The closing date of property sale transactions 
has an imperfection in its utility to assess the 

contemporary market sentiment.  That is 
because the market sentiment is manifested at 
the time of the execution of a contract for 
purchase and sale between the buyer and the 
seller, while the closing of the transaction 
typically occurs a month or a couple of months 
later.  To capture the timeliness of the market 
sentiment more precisely, we can look at 
transactions that have closed, but we date them 
at the purchase contract’s effective date rather 
than at the closing date.  Said purchase contract 
date can typically be obtained from MLS 
(multiple listing service) data sources (where it is 
often called the “Pending Date,” i.e., the date the 
property went under a purchase contract and 
became pending closing), like in the following 
figure.  
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Figure 9:  MLS data showing the Contract-Pending Date, in addition to the Closing Date, as well as the ratio of the closed sale price 

to the 2021 county valuation. 

By reanalyzing the same data for sales closed 
between January 2006 and June 2012, we get a 
chart more accurately showing the timely market 

sentiment during most periods, as in the 
following figure. 
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Figure 10:  Charts of the change in the median ratios (the realized prices divided by the 2021 county valuation) in comparison to 
February 2006, for houses and condos in Southeast Florida, using the dates of purchase contracts rather than the closing dates. 

Although in this model we have more accurate 
market sentiment analysis in most periods, we 
do have noise bias at the edges.  The two 
rightmost data points in this example aggregate 
properties closed by June 2022 but contracted 
for purchase in May or June 2022 (because the 
chosen timespan in this example is user-defined 
as properties closed from 1/2006 to 6/2022).  
Because the time elapsing between the contract 
date and the closing date in said May and 
June’s data is very short, these data points are 
biased towards cash sales (not contingent on 
mortgages), which often allow the buyer to 
negotiate lower prices.  This bias can be 
excluded by disregarding the rightmost edge of 
the chart.  There is also a bias noise at the left 

edge of the chart because the leftmost points 
include few but unusual transactions with 
contract dates as early as April 2005 that were 
closed in January 2006 or later.  This bias can 
be excluded by disregarding the transactions 
where the purchase contract date is prior to the 
beginning of the user-chosen timespan (in this 
example, January 2006). 

5. HIERARCHY OF LOCALES 
Large locales, e.g., states and metropolitan 

areas, can be partitioned into smaller locales, 
e.g., townships and zipcodes, thus enabling the 
comparison of a locale to its neighbors as well 
as to its subsuming locales, as follows. 
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Figure 11:  Partitioning Southeast Florida into a hierarchy of smaller locales
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6. STATISTICAL AGGREGATORS AND OUTLIERS 
A representative statistical aggregator function 

is a function that matches any set of numbers to 
a single number intended to be a typical 
representative of said set.  Examples of 
representative statistical aggregator functions 
are: 

• Median (“Pure Median”) 
• Average (“Pure Average”) 
• Average of the input set’s elements 

excluding the lowest 10% and the 
highest 10% of said set 

• 0.5*Median+0.5*Average 
• 0.3*Median+0.7*(Average of the input 

set’s elements excluding the lowest 5% 
and the highest 9% of said set) 

• Average of the input set’s elements, 
excluding those elements that are 
outside predefined outlier thresholds of 
minimum 0.5 and maximum 1.5.  

The present method involves the computation 
of a representative statistical aggregator function 
of all the purchase transactions in a given locale 
during a given period.  

The easiest such aggregator function to 
compute is Pure Average.  Among various 
statistical concerns with the Pure Average 
function, it may deliver significantly misleading 
results if the input data is not pre-cleansed off 
outliers.  The Pure Median aggregator is more 
resilient to outliers, yet it still can benefit from the 
pre-cleansing of outliers.  Outliers can be the 
result of  

(a) erroneous data entry or  
(b) the inclusion of esoteric transactions. 

From the data cleansing algorithms’ point of 
view, there are several types of outlier cleansing 
that can be applied to a dataset of said ratios 
between transactional prices and the fixed-date 
objective valuation.  

• Fixed threshold: disregard transactions 
with ratios outside of a given range, e.g., 
the range of 0.5 to 3.0. 

• Percentage threshold: for a given category 
of properties, locale, and period, 
disregard certain percentages of the 
lowest and the highest ratios, e.g., the 
lowest 10% and the highest 5%. 

• Statistically insignificant periods:   for a 
given category of properties, locale, and 
period, if the number of the otherwise 
qualified transactions in the period is very 
small, e.g., less than 6, disregard all 
these transactions, i.e., skip this period 
for this locale (and for trend presentation 
purposes, interpolate this period form 
neighboring periods). 

• Date-dependent threshold: for transaction 
dates far removed from the fixed year of 
the valuation, allow more liberal 
thresholds than those close to the 
valuation year.  For example, if the 
objective valuation date is 1/1/2021, then 
for transactions in year y, where y<2021, 
e.g., y=2010, set the minimum threshold 
to 0.7-0.05*(2021-y). 

• Semantic outliers that involve analysis of 
additional data fields, for example: 

o If there is a data field indicating that 
this is a foreclosure sale, 
disregard the transaction for 
being esoteric, with the expected 
price being too low. 

o Likewise, for short sales. 
o If there is a data field showing when 

the house was built (what in the 
governmental language is called 
“year of property improvement”), 
then disregard the transactions 
where said improvement date 
falls in between the transaction 
date and the fixed objective 
valuation date – this would 
prevent, e.g., the incorrect 
relating of the sale price of a 
building to the appraised value of 
bare land before the building was 
built). 

7. PROTOTYPE DEPLOYMENT 
We have deployed a system for Southeast 

Florida based on the algorithms presented here.  
Using county and MLS data, the system 
computes the value trend using transaction 
closing dates [5] and contract dates [6].  The 
model is computed for nested areas down to a 
zipcode and the category of condos vs. single-
family homes.  For example, the price trend of 
condominium apartments in Zipcode 33140 is at 
[7], and for houses is at [8].  The contract-date 
model for houses and condos in Zipcode 33140 
is at [9] and [10]. 
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Abstract: In the past few years, automatic building 
detection in aerial images has become an 
emerging field in computer vision. Detecting the 
specific types of houses will provide information 
in urbanization, change detection, and urban 
monitoring that play increasingly important roles 
in modern city planning and natural hazard 
preparedness. In this paper, we demonstrate the 
effectiveness of detecting various types of houses 
in aerial imagery using Faster Region-based 
Convolutional Neural Network (Faster-RCNN). 
After formulating the dataset and extracting 
bounding-box information, pre-trained ResNet50 
is used to get the feature maps. The fully 
convolutional Region Proposal Network (RPN) 
first predicts the bounds and objectness score of 
objects (in this case house) from the feature 
maps. Then, the Region of Interest (RoI) pooling 
layer extracts interested regions to detect objects 
that are present in the images. To the best of our 
knowledge, this is the first attempt at detecting 
houses using Faster R-CNN that has achieved 
satisfactory results. This experiment opens a new 
path to conduct and extent the works not only for 
civil and environmental domain but also other 
applied science disciplines. 

Index Terms: RCNN, Neural Network, Deep 
Learning, Convolution, Mini batch 

1. INTRODUCTION 
In this section, we present the motivation for 

the development of an application to detect 
houses in aerial images. Subsequently, we 
discuss the prior works that have recently been 
published and explain how our proposed 
framework can be beneficial in the modern 
urbanized world. We also show the novelty of  
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this paper, which is followed by a brief 
description of the paper’s organization. 

1.1 Motivation 

 House detection is an important problem in 
computer vision and pattern recognition which 
has gained considerable attention in the past few 
decades [1]–[3]. Due to rapid urbanization, 
detecting houses plays a salient role in modern 
city planning, urban monitoring, change 
detection, and population estimation. Moreover, 
building shape related information can provide 
valuable input in engineering and risk 
applications related to natural hazards (e.g. 
extreme wind events, flooding, etc.). Aerial 
imagery is one of the prominent data sources for 
urban monitoring because it extracts various 
information such as roads, trees, buildings, etc. 
Although aerial imagery provides valuable 
insights, extracting appropriate features from 
them is a challenging task.  
 On the other hand, in recent years, deep 
learning models, especially Convolutional Neural 
Network (CNN) based models, have become a 
popular choice among the researchers for its 
state-of-the-art success in image classification, 
object detection, and localization tasks [4]–[7]. 
Faster-RCNN is a recently proposed object 
detection algorithm that has achieved state of-
the-art results in ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) [8], [9]. In this 
work, we have utilized a faster-RCNN algorithm 
to detect buildings in aerial images. 

1.2 Literature Review  

 In this section, we first talk about the history 
the algorithm applied in this work followed by a 
brief review of the prior works.  

1.2.1 CNN and RCNN family of Algorithms:  

 Due to the rapid developments of science and 
technology (e.g., advancements in automated 
vehicles, robotic navigation, and object tracking), 
object detection has become a prominent field of 
study. The goal of object detection is to find the 
location of an object from a given image and 
mark the object in an appropriate category. 
However, object detection is a challenging task. 
The object’s orientation, location, size, and 
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altitude can vary greatly in an image, making the 
task more difficult to solve. In the human visual 
system, we not only see and identify an object, 
we can identify multiple overlapping objects in 
diverse backgrounds. Moreover, we can classify 
these different objects and identify their 
boundaries, differences, and relationship to one 
another. However, in the field of computer vision, 
CNN-based architectures are applied 
successfully to solve various detection related 
tasks such as face detection, pedestrian 
detection and vehicle detection [10]–[14]. 
 The first successful CNN architecture was 
developed by Yann Lecun in 1998 to recognize 
handwritten digits on checks [15]. In 2012, more 
than 12 years later, Alex Krizhevsky et al. 
followed his path and built the famous AlexNet 
algorithm that won the ImageNet challenge [16]. 
Since then, CNN architectures have become the 
gold standard for solving computer vision tasks 
and are now outperforming humans in some 
scenarios.  
 In 2014 Girshick et al. proposed the Regions 
with CNN features (R-CNN) algorithm for object 
detection, which is the first algorithm of the R-
CNN family of algorithms [17]. RCNN achieved 
the mean average precision (mAP) result of 
53.3% in PASCAL VOC dataset. To capture all 
possible objects’ locations from a given image, 
authors applied the selective search algorithm 
[18]. The selective search algorithm proposes 2k 
regions for an image. In Figure 1, two examples 
of selective search are given where different 
sized scales are used to capture all possible 
objects. Each proposed region is warped to a 
compatible form of 227×227 pixels and forward 
propagated through the CNN architecture to 
compute feature maps. Next, the Support Vector 
Machine (SVM) algorithm is utilized to compute 
the classification score. In the RCNN 
architecture the workflow is like: an input image 
is given to detect possible objects; the selective 
search algorithm proposes ∼2k regions which 
are forwarded to the CNN layers, and the CNN 
architecture generates feature maps to detect 
which objects are present in the image. To 
compute the region proposal and features for 
images, R-CNN requires 13 s/image on a GPU 
integrated environment and 53 s/image on a 
CPU based environment, which is a significantly 
high computation time. Therefore, to minimize 
the computation time required by RCNN, an 
improved version of RCNN named Fast-RCNN 
was proposed by the same author Ross Girshick 
[19] in 2015. 
 The Fast-RCNN model requires an input 
image and a set of object proposals for its 
computation. Initially, it processes the whole 
image with several convolutional (conv) layers 
and max-pooling layers to produce the feature 
maps. Then, a fixed�length feature vector from 
the feature map is extracted by the RoI pooling 
layer to classify objects. Fast-RCNN is 25 times 

faster than R-CNN with the test time of 2 
seconds per image. Even though Fast-RCNN 
significantly improved the processing time and 
model’s performance, the selective search was 
still the bottleneck that slowed down the overall 
process. Region proposals are dependent on the 
feature maps and reusing the feature maps to 
generate region proposals will be cost-free. 
Taking this idea into consideration, Ren et al. 
developed the faster R-CNN that exceptionally 
improved the overall model performance [8]. In 
Figure 2, we show a faster R-CNN algorithm 
where conv layers compute the feature maps 
and RPN layer extracts region proposals from 
the feature maps for classification. The faster R-
CNN algorithm can detect objects in real time 
with the computational time of 0.2 seconds per 
image. 
 Figure 3 demonstrates the performance 
comparison of the R-CNN architectures where 
we can see that faster R-CNN reduced 
processing time by 250x, whereas Fast-RCNN 
had a reduction of 25x against the base case 
processing time of x for R-CNN. Both faster and 
Fast-RCNN maintained the same mean average 
precision (mAP) score of 66.9%, where R-CNN 
architecture’s mAP score was 66.0%. 1  

1.2.2 Recent Works on House Detection:  

 Buildings are the primary source of information 
for urban planners and, many governmental and 
non-governmental agencies as they provide the 
holistic overview of a geographical area. 
However, building detection is a challenging task 
because of its complex appearance, variant 
shapes, and surroundings. In the past few years, 
researchers have proposed several building 
extraction methods and followed various 
approaches [20]–[22]. Although building 
detection methods with good performance have 
evolved significantly over the years, there are 
still many aspects that have not been considered 
and need improvements.  
 Stankov et al. [23], [24] exploited the 
multispectral information and applied a grayscale 
hit-or-miss transform (HMT) method for building 
detection. In the paper, authors transformed the 
multispectral images to grayscale images in 
order to apply grayscale HMT. Sirmacek et al. 
[25] extracted shadow information and areas of 
interest using invariant color features and utilized 
edge information building detection. In [26], Ziaei 
et al. presented a comparison between three 
object-based models for urban feature 
classification from WorldView-2 images, where 
they have shown that rule-based classification 
outperformed support vector machines (SVM), 
and nearest neighbour (NN) algorithms. Building 
extraction from Quickbird images is presented by 
Lefevre et al. [27] by using an adaptive ` binary 
HMT method. Authors also proposed a  
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clustering-based approach to convert grayscale 
image to binary image and to determine 
operators parameters automatically. In [28], 
Grinias et al. presented a novel segmentation  
algorithm based on a Markov random field model 
for building and road detection. To detect 
changes of buildings from VHR imagery, Guo et 
al. [29] presented a parameter mining approach 
by introducing GIS data. For automatically 
extracting and recognizing 2- D building shape 
information, Sahar et al. [30] used vector parcel 
geometries and their attributes to simplify the 
building extraction task. Huang et al. [31] 
introduced a framework for building extraction 

from high-resolution imagery aiming to alleviate 
Morphological Building Index (MBI) algorithm’s 
limitations. Benarchid et al. [32] used shadow 
information and object-based approach to 
extract buildings where they first used object-
based classification to detect building and then 
the invariant color features to extract shadow 
information of the buildings. Based on shadow 
detection, Chen et al. [33] proposed a superpixel 
segmentation algorithm for splitting input image 
into patches, and the Level Set segmentation 
algorithms is leveraged to extract buildings for 
detection. 
 In this paper, we present a Faster RCNN 
based deep learning model that can detect 
different houses in aerial images. 

Figure 1:  Two examples of selective search showing the necessity of different scales. On the left we find many objects at different 
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv [18]. 

 
Figure 2: Faster-RCNN architecture. 



 

 
Figure 3:  Performance comparison of R-CNN architectures: 

R CNN, Fast-RCNN, Faster R-CNN. 1 

1.3 Contribution 

 Faster-RCNN is one of the promising 
algorithms for object detection that has also 
opened up the area of real time object detection. 
In some situations, we need to extract the 
building’s information in real time and our 
proposed method can be a good fit for such 
scenarios. It is our understanding that faster-
RCNN based house detection technique, which 
paves the way for real time detection, has not 
been considered in previous works. The main 
contributions of this paper are listed as follows: 
• House detection in aerial images leveraging 

faster R-CNN algorithm that paves the way 
for real time detection. 

• Bounding-box information extraction and 
preprocessing of the dataset to remove 
inconsistent data that may hamper the 
overall performance of the model. 

• Demonstrate the effectiveness of data 
augmentation such as random rotation, 
horizontal flip and shearing to im�prove 
performance and generalizability, and avoid 
over-fitting. 

• Demonstrate our model’s performance by 
considering average precision, loss function, 
prediction scores and image precision. 

1.4   Organization 

 The paper is organized as follows: Section II 
presents the methodology of the work including 
data pre-processing, data augmentation and the 
house detection technique. Section III represents 
experimental setup. Section IV is dedicated for 
result analysis. Finally, Section V concludes the 
paper. 

2. PROPOSED METHOD 
This section discusses data pre-processing, and 
data augmentation techniques, and the 
methodology used to detect houses. In Figure 4, 

we show the overall architecture of our proposed 
model that includes dataset generation, data 
preprocessing, data augmentation, object 
detection, and results afterwards. 

 
Figure 4: Overview of methodology adopted in this study 

 

2.1  Data pre-processing 
 In our dataset, we have aerial images and 
XML files containing the annotation information 
of the images. XML file is an extensible markup 
language file where components of the file are 
described by tags, and texts in between the start 
tag and end tag are the contents of the 
component. From the XML files, we extract the 
associated bounding-box information (for our 
case its the aerial image file, xmin, ymin, xmax, 
ymax and label) of each image. In the generated 
dataset, we observed 37 different labels / 
categories of houses where most of them are 
redundant (e.g., typo and inconsistent labels). 
For example the category of T shaped houses 
were labelled as t shape, t-shaped, t type, type t 
and t-shape which is inconsistent and it can be 
minimized to one category. After analyzing 37 
labels, we concluded that 37 different labels can 
be minimized to only 5 categories (T shaped, L 
shaped, C shaped, Rectangular shaped, and U 
shaped). Moreover, we had some anomalies in 
the extracted information such as xmin > xmax 
or ymin > ymax. In such cases, if possible, we 
exchanged min and max values without 
changing the bounding-box information of an 
object, otherwise we disregarded them due to 
incorrect bounding boxes. 

2.2 Data augmentation 
 Data augmentation is a technique to artificially 
expand the dataset size by marginally modifying 
the original data. Data augmentation helps to 
avoid overfitting and improves model’s 
performance. In images data augmentation 
technique is performed by flipping, random 
rotation, shifting, or shearing the original image. 
Deep learning is a data-hungry technique that 
yields better performance with larger dataset, 
avoids over-fitting, and improves the model’s 
generalizability. Therefore to improve model 
performance and avoid overfitting, we 
augmented our dataset using horizontal flip, 
random rotation with the angle value of 10 
degrees, shears with the value of 0.1, and 



 

random rotation with randomly generated angle 
value. In Figure 5, we demonstrated the 

augmented results after applying the data 
augmentation techniques.  

 
Figure 5: Data augmentation: 5a Horizontal flip; 5b Random rotation with 10°;5c Shear with 0.1;5d Random rotation with a random 

value. 

2.3 House Detection using Faster-RCNN 
The most widely used state-of-the-art object 
detection technique of the R-CNN family is 
Faster R-CNN that was first published in 2015 
[8]. In the R-CNN family of papers, the evolution 
among versions is usually in terms of 
computational efficiency, processing time, and 
performance improvement (i.e. mAP). These 
networks usually consist of  
1.    A region proposal algorithm to generate 

“bounding boxes” or locations of possible 
objects in the image. 

2.  A feature generation stage to obtain features 
of these objects (usually using a CNN).  

3.    A classification layer to predict which class 
an object belongs to. 4) A regression layer to 
make the coordinates of the object bounding 
boxes more precise. 
 

  To generate feature maps (e.g., Figure 7), 
ResNet50 is utilized in the initial stage where the 
input image goes through a set of convolutional 
layers, pooling layers and fully connected layers. 
After generating feature maps, RPN layer which 
is a small network, takes the feature map as an 
input, slides over it, and outputs a set of 
rectangular object proposals. Nine region 
proposals (anchors) are predicted at each sliding 
window location with respect to the center 

(Figure 8) of the anchor associated with scales 
of (128 x 128, 256 x 256, 512 x 512) and aspect 
ratios of (1:1, 1:2 and 2:1) (Figure 6). A binary 
class label of being an object or not an object is 
assigned to each anchor for RPN training based 
on the Intersection-over-Union (IoU) overlap with 
the ground-truth box. An anchor is considered 
positive if it has the highest IoU with any ground 
truth box or is greater than 0.7. If the IoU is less 
than 0.3 it is labeled as negative. The anchors 
which are neither positive nor negative (greater 
than 0.3 and less than 0.7) are disregarded from 
the RPN training. The loss function of RPN is 
defined as: 

 
Figure 6: An example of generating 9 anchors from a single 

centroids with different scales and aspect ratios. 



 

 
Figure 7: Sample feature map 

 

 
Here, i is the index of an anchor in a mini-batch 
and pi is the predicted probability of anchor i 
being an object. The ground-truth label Pi ∗ is 1 if 
the anchor is positive and is 0 if the anchor is 
negative. ti is a vector representing the 4 
parameterized coordinates of the predicted 
bounding box and ti ∗ is that of the ground-truth 
box associated with a positive anchor. The 
classification loss Lcls is log loss over two classes 
(object vs. not object). For the regression loss, 
we use Lreg(ti , ti ∗ ) = R(ti − ti ∗ ) where R is the 
robust loss function (smooth L1). The term Pi 
∗Lcls means the regression loss is activated only 
for positive anchors Pi ∗ = 1 and is disabled 
otherwise (i.e. Pi ∗ = 0). The outputs of the cls 
and reg layers consist of pi and ti respectively. 
The two terms are normalized by Ncls and Nreg 
and weighted by a balancing parameter λ. 
 For the model training, the batch size is 
defined to 16 and stochastic gradient descent 
(SGD) optimizer is applied with the learning rate 
of 0.005, momentum of 0.9 and weight decay of 
0.005. 

 
Figure 8:  Centriods of RPN. 

3. EXPERIMENTAL SETUP 
The entire experiment is carried out in Google 
Colab environment developed by Google as a 
simulation environment. The experiment 

leverages Colab environment utilizing GPU 
runtime settings using python as the 
programming language. The deep learning 
object detection classifier has been implemented 
using python version 3.7.3 and the PyTorch 
framework. 

4. EXPERIMENTAL EVALUATION 
 This section provides a brief description of the 
dataset we have used for our experiments 
followed by the performance evaluation of our 
proposed work. 

4.1 Dataset Description 
 In this experiment, we explored google earth 
images to detect houses of different shapes. In 
Figure 9, we demonstrate the process of 
creating our dataset using LabelMe [34] 
annotation tool where house objects are 
manually annotated in each image. The 
annotation tool then generates an XML file 
containing the annotated information for each 
image. (Figure 11) shows the structure of a 
sample xml file after completing the annotation 
process and in Figure 10 we show a sample 
annotated image afterwards. Finally, the 
annotation files along with the associated aerial 
image dataset are downloaded from the 
LabelMe application for carrying out the 
experiment. 

 
Figure 9: Flowchart for dataset annotation. 

 



 

 
Figure 10: Sample aerial image data annotated with 

bounding box information. Here, r represents rectangular 
shaped houses and l represents l shaped houses 

 
Figure 11: XML file: Annotation information of images such 

as shape, number, bounding-box information 

4.2 Experimental results 
 Object detectors performance is measured by 
average precision (AP), image precision and 
loss functions. In our experiment, we evaluated 
our methods performance by average precision, 
image precision and loss function. We defined 
different number of epochs to observe the 
model’s performance. In our observation, the 
simulation performs better with twenty epochs. In 
Figure 12, we demonstrate average precision in 
different IoU thresholds: 0.50, 0.55, 0.60, 0.65, 

0.70, 0.75. As the IoU threshold increases the 
average precision decreases naturally. 
Moreover, in Figure 13, we show the average 
image precision by comparing all IoU thresholds. 
From Figure 13, we can see that image precision 
increases moderately for 20 epochs. In Figure 
14, we show the loss function against the 
number of iterations where we observe that after 
400 iterations with twenty epochs the loss 
function is converged. The equations for 
calculating precision, average precision are 
discussed in the followings where tp = True 
positive; fp = False positive; tn = True negative; fn 
= False negative. 

 

4.2.1 Intersection over union (IoU) 
 IoU measures the overlap between 2 
boundaries. We use that to measure how much 
our predicted boundary overlaps with the ground 
truth. In our dataset, we defined various IoU 
threshold r ∈ {0.5, ..., 0.75} in classifying whether 
the prediction is a true or a false positive. 
Intersection over Union (IoU) for comparing 
similarity between the ground-truth and predicted 
shapes A, B ⊆ S ∈ Rn is attained by equation 3. 

 

4.2.2 Interpolated precision 
 The interpolated precision, pinterp, is calculated 
at each recall level, r, by taking the maximum 
precision measured for that r. The formula is 
given as such: 

 
 In our experiment an average for the 6-point 
interpolated average precision (AP) is 
calculated. And the formula to calculate the AP 
is attained by: 

 
 



 

 
Figure 12: Average precision 

 
Figure 13: Image precision 

 
Figure 14:  Loss function. 

 

5. CONCLUSION AND FUTURE WORKS 
 House detection is a fundamental but 
challenging issue in the field of aerial and 
satellite image analysis. It provides valuable 
information in different domains including civil 
engineering, urbanization, and modern city 
planning. During the last few years, considerable 
efforts have been made to develop various 
methods for detecting houses in aerial images. 
In this paper, we present a Faster-RCNN based 
house detection method that achieved a 
satisfactory result. Our proposed method can be 
utilized in real time object/house detection 
scenarios. A wide range of ensembles of faster 
RCNN is being utilized in various contexts such 
as pedestrian detection, vehicle detection, and 
face detection. In this experiment, we have 
leveraged pretrained resnet-50 model to detect 
houses in aerial images. A performance 
comparison of various models, such as VGG19, 
SeNet, GoogleNet, MobileNetV2, DenseNet201, 
and InceptionResNetV2, is important for both 
application and academic purposes and thus 
remains an integral part of our future research. 

ACKNOWLEDGMENT 
 In this work, we have leveraged faster RCNN 
algorithm and carried out the experiment in 
Google Colab environment. We are thankful to 
both communities. We also acknowledge the 
resources and support of Sustainability, 
Optimization, and Learning for InterDependent 
networks laboratory (solid lab) at Knight 
Foundation School of Computing and 
Information Sciences (KFSCIS), Florida 
International University (www.solidlab.network). 
We also acknowledge the effort of Divya Saxena 
from the KFSCIS, FIU, funded by NSF grant 
CNS-2018611 at the FIU High Performance 
Database Research Center. 
 This work was partially supported by the 
Graduate Assistantships in Areas of National 
Need (GAANN) fellowship from the Department 
of Education grant P200A210087. 

DECLARATION OF COMPETING INTEREST 
Authors declare no conflict of interest. 

REFERENCES 
[1]   S. Zou and L. Wang, “Detecting individual 

abandoned houses from google street view: A 
hierarchical deep learning approach,” ISPRS 
Journal of Photogrammetry and Remote Sensing, 
vol. 175, pp. 298– 310, 2021. 

[2]   S. Law, B. Paige, and C. Russell, “Take a look 
around: using street view and satellite images to 
estimate house prices,” ACM Transactions on 
Intelligent Systems and Technology (TIST), vol. 
10, no. 5, pp. 1–19, 2019. 

[3]   J. A. Tullis and J. R. Jensen, “Expert system house 
detection in high spatial resolution imagery using 
size, shape, and context,” Geocarto International, 
vol. 18, no. 1, pp. 5–15, 2003. 

http://www.solidlab.network/


 

[4]   W. Rawat and Z. Wang, “Deep convolutional neural 
networks for image classification: A 
comprehensive review,” Neural computation, vol. 
29, no. 9, pp. 2352–2449, 2017. 

[5]   Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object 
detection with deep learning: A review,” IEEE 
transactions on neural networks and learning 
systems, vol. 30, no. 11, pp. 3212–3232, 2019. 

[6]   X. Wu, D. Sahoo, and S. C. Hoi, “Recent advances 
in deep learning for object detection,” 
Neurocomputing, vol. 396, pp. 39–64, 2020. 

[7]   K. M. Ahmed, T. Eslami, F. Saeed, and M. H. 
Amini, “Deepcovidnet: Deep convolutional neural 
network for covid-19 detection from chest 
radiographic images,” in 2021 IEEE International 
Conference on Bioinformatics and Biomedicine 
(BIBM). IEEE, 2021, pp. 1703–1710. 

[8]    S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-
cnn: Towards real-time object detection with region 
proposal networks,” arXiv preprint 
arXiv:1506.01497, 2015. 

[9]   “ImageNet Large Scale Visual Recognition 
Challenge 2016 Results (ILSVRC2016),” 
http://www.image-
Net.org/challenges/LSVRC/2016/results, [Online; 
accessed 06-April-2021]. 

[10] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang, 
“Unitbox: An advanced object detection network,” 
in Proceedings of the 24th ACM international 
conference on Multimedia, 2016, pp. 516–520.  

[11] S. S. Farfade, M. J. Saberian, and L.-J. Li, “Multi-
view face detection using deep convolutional 
neural networks,” in Proceedings of the 5th ACM 
on International Conference on Multimedia 
Retrieval, 2015, pp. 643–650. 

[12] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “From 
facial parts responses to face detection: A deep 
learning approach,” in Proceedings of the IEEE 
international conference on computer vision, 2015, 
pp. 3676–3684. 

[13] Z. Jiang and D. Q. Huynh, “Multiple pedestrian 
tracking from monocular videos in an interacting 
multiple model framework,” IEEE transactions on 
image processing, vol. 27, no. 3, pp. 1361–1375, 
2017. 

[14] D. M. Gavrila and S. Munder, “Multi-cue pedestrian 
detection and tracking from a moving vehicle,” 
International journal of computer vision, vol. 73, no. 
1, pp. 41–59, 2007. 

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 
“Gradient-based learning applied to document 
recognition,” Proceedings of the IEEE, vol. 86, no. 
11, pp. 2278–2324, 1998. 

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 
“Imagenet classification with deep convolutional 
neural networks,” Advances in neural information 
processing systems, vol. 25, pp. 1097–1105, 2012. 

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik, 
“Rich feature hierarchies for accurate object 
detection and semantic segmentation,” in 
Proceedings of the IEEE conference on computer 
vision and pattern recognition, 2014, pp. 580–587. 

[18] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and 
A. W. Smeulders, “Selective search for object 
recognition,” International journal of computer 
vision, vol. 104, no. 2, pp. 154–171, 2013. 

[19] R. Girshick, “Fast r-cnn,” in Proceedings of the 
IEEE international conference on computer vision, 
2015, pp. 1440–1448. 

[20] D. A. Yudin, V. Adeshkin, A. V. Dolzhenko, A. 
Polyakov, and A. E. Naumov, “Roof defect 
segmentation on aerial images using neural 
networks,” in International Conference on 
Neuroinformatics. Springer, 2020, pp. 175–183. 

[21] H. Miura, T. Aridome, and M. Matsuoka, “Deep 
learning-based identification of collapsed, non-
collapsed and blue tarp-covered buildings from 

post-disaster aerial images,” Remote Sensing, vol. 
12, no. 12, p. 1924, 2020. 

[22] A. D. Schlosser, G. Szabo, L. Bertalan, Z. Varga, 
P. Enyedi, and S. Szabo, “Building extraction using 
orthophotos and dense point cloud ´ derived from 
visual band aerial imagery based on machine 
learning and segmentation,” Remote Sensing, vol. 
12, no. 15, p. 2397, 2020. 

[23] K. Stankov and D.-C. He, “Building detection in 
very high spatial resolution multispectral images 
using the hit-or-miss transform,” IEEE Geoscience 
and Remote Sensing Letters, vol. 10, no. 1, pp. 
86–90, 2012. 

[24] ——, “Detection of buildings in multispectral very 
high spatial resolution images using the 
percentage occupancy hit-or-miss transform,” 
IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, vol. 7, no. 10, 
pp. 4069–4080, 2014. 

[25] B. Sirmacek and C. Unsalan, “Building detection 
from aerial images using invariant color features 
and shadow information,” in 2008 23rd 
International Symposium on Computer and 
Information Sciences. IEEE, 2008, pp. 1–5. 

[26] Z. Ziaei, B. Pradhan, and S. B. Mansor, “A rule-
based parameter aided with object-based 
classification approach for extraction of building 
and roads from worldview-2 images,” Geocarto 
International, vol. 29, no. 5, pp. 554–569, 2014.  

[27] S. Lefevre, J. Weber, and D. Sheeren, “Automatic 
building extraction ` in vhr images using advanced 
morphological operators,” in 2007 Urban Remote 
Sensing Joint Event. IEEE, 2007, pp. 1–5. 

[28] I. Grinias, C. Panagiotakis, and G. Tziritas, “Mrf-
based segmentation and unsupervised 
classification for building and road detection in 
peri�urban areas of high-resolution satellite 
images,” ISPRS journal of photogrammetry and 
remote sensing, vol. 122, pp. 145–166, 2016. 

[29] Z. Guo and S. Du, “Mining parameter information 
for building extraction and change detection with 
very high-resolution imagery and gis data,” 
GIScience & Remote Sensing, vol. 54, no. 1, pp. 
38–63, 2017. 

[30] L. Sahar, S. Muthukumar, and S. P. French, “Using 
aerial imagery and gis in automated building 
footprint extraction and shape recognition for 
earthquake risk assessment of urban inventories,” 
IEEE Transactions on Geoscience and Remote 
Sensing, vol. 48, no. 9, pp. 3511–3520, 2010.  

[31] X. Huang and L. Zhang, “Morphological 
building/shadow index for building extraction from 
high-resolution imagery over urban areas,” IEEE 
Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, vol. 5, no. 1, 
pp. 161–172, 2011. 

[32] O. Benarchid, N. Raissouni, S. El Adib, A. Abbous, 
A. Azyat, N. B. Achhab, M. Lahraoua, and A. 
Chahboun, “Building extraction using object-based 
classification and shadow information in very high 
reso�lution multispectral images, a case study: 
Tetuan, morocco,” Canadian Journal on Image 
Processing and Computer Vision, vol. 4, no. 1, pp. 
1–8, 2013. 

[33] D. Chen, S. Shang, and C. Wu, “Shadow-based 
building detection and segmentation in high-
resolution remote sensing image.” journal of 
multimedia, vol. 9, no. 1, pp. 181–188, 2014. 

[34] “LabelMe, the open annotation tool,” 
http://labelme.csail.mit.edu/Release3.0/, accessed: 
2021-11-10 


	1. A Latent Variable Based Approach for Exploring Geographic Datasets.8pp
	2. Crime-avoiding Routing Navigation.11pp
	1. Introduction
	2. Methodology
	Availability of data and materials
	Competing interests
	Funding
	Authors’ contributions
	Acknowledgment
	REFERENCES
	3. Integrating Location Information as Geohash Codes in Convolutional Neural Network-Based Satellite Image Classification.7pp
	4. Spatiotemporal Model of Real Estate Valuation Trends.15pp
	1. Background
	2. The Present Method
	3. Pseudo-code
	4. Alternative Model with Contract-pending Dates
	5. Hierarchy of Locales
	6. Statistical Aggregators and Outliers
	7. Prototype Deployment
	Authors’ contributions
	Acknowledgment
	REFERENCES
	5. Towards Real-time House Detection in Aerial Imagery Using Faster Region-based Convolutional Neural Network.9pp
	1. Introduction
	1.1 Motivation
	1.2 Literature Review
	1.2.1 CNN and RCNN family of Algorithms:
	1.2.2 Recent Works on House Detection:

	1.3 Contribution
	1.4   Organization

	2. Proposed Method
	2.1  Data pre-processing
	2.2 Data augmentation
	2.3 House Detection using Faster-RCNN

	3. Experimental Setup
	4. EXPERIMENTAL EVALUATION
	4.1 Dataset Description
	4.2 Experimental results
	4.2.1 Intersection over union (IoU)
	4.2.2 Interpolated precision


	5. Conclusion And Future Works
	Acknowledgment
	Declaration Of Competing Interest
	References

