

1 A Latent Variable Based Approach for Exploring Geographic Datasets .8pp .pdf
2 Crime-avoiding Routing Navigation .11pp .pdf
3 Integrating Location Information as Geohash Codes in Convolutional Neural Network-Based Satellite Image
Classification .7pp .pdf
4 Spatiotemporal Model of Real Estate Valuation Trends .15pp .pdf
5 Towards Real-time House Detection in Aerial Imagery Using Faster Region-based Convolutional Neural Network .9pp .pdf

1/1

http://n6.cs.fiu.edu/A_Latent_Variable_Based_Approach_for_Exploring_Geographic_Datasets.8pp.pdf
http://n6.cs.fiu.edu/A_Latent_Variable_Based_Approach_for_Exploring_Geographic_Datasets.8pp.pdf
http://n6.cs.fiu.edu/Crime-avoiding_Routing_Navigation.11pp.pdf
http://n6.cs.fiu.edu/Crime-avoiding_Routing_Navigation.11pp.pdf
http://n6.cs.fiu.edu/Integrating_Location_Information_as_Geohash_Codes_in_Convolutional_Neural_Network-Based_Satellite_Image_Classification.7pp.pdf
http://n6.cs.fiu.edu/Integrating_Location_Information_as_Geohash_Codes_in_Convolutional_Neural_Network-Based_Satellite_Image_Classification.7pp.pdf
http://n6.cs.fiu.edu/Spatiotemporal_Model_of_Real_Estate_Valuation_Trends.15pp.pdf
http://n6.cs.fiu.edu/Spatiotemporal_Model_of_Real_Estate_Valuation_Trends.15pp.pdf
http://n6.cs.fiu.edu/Towards_Real-time_House_Detection_in_Aerial_Imagery_Using_Faster_Region-based_Convolutional_Neural_Network.9pp.pdf
http://n6.cs.fiu.edu/Towards_Real-time_House_Detection_in_Aerial_Imagery_Using_Faster_Region-based_Convolutional_Neural_Network.9pp.pdf

1. A Latent Variable
Based Approach for
Exploring Geographic
Datasets.8pp

Follows

LVRF: A Latent Variable Based Approach
for Exploring Geographic Datasets
Deng, Liangdong; Mahara, Arpan; Adjouadi, Malek; and Rishe, Naphtali

Abstract: Geographic datasets are usu-
ally accompanied by spatial non-stationarity –
a phenomenon that the relationship between
features varies across space. Naturally, non-
stationarity can be interpreted as the under-
lying rule that decides how data are gener-
ated and alters over space. Therefore, tra-
ditional machine learning algorithms are not
suitable for handling non-stationary geographic
datasets, as they only render a single global
model. To solve this problem, researchers of-
ten adopt the multiple-local-model approach,
which uses different models to account for dif-
ferent sub-regions of space. This approach has
been proven efficient but not optimal, as it is
inherently difficult to decide the size of sub-
regions. Additionally, the fact that local mod-
els are only trained on a subset of data also
limits their potential. This paper proposes an
entirely different strategy that interprets non-
stationarity as a lack of data and addresses it
by introducing latent variables to the original
dataset. Backpropagation is then used to find
the best values for these latent variables. Ex-
periments show that this method is at least
as efficient as multiple-local-model-based ap-
proaches and has even greater potential.

Index Terms: Back-propagation, Geograph-
ically Weighted Regression (GWR), Latent
Variable, Machine Learning Algorithm, Non-
stationary, Random Forest

Manuscript received April 10, 2023.
This material is based in part upon work supported

by the National Science Foundation under Grant Nos.
MRI20 CNS-2018611, MRI CNS-1920182, by FDEP
Grant C-2104, and DHS Grant E2055778.

Liangdong Deng, Arpan Mahara, and Naphtali
Rishe are with the School of Computing and Information
Sciences, Florida International University, USA. Corre-
spondence email is liadeng@cs.fiu.edu.

Malek Adjouadi is with the Department Electrical
and Computer Engineering, Florida International Uni-
versity, USA.

1. Introduction

Geographic data is defined as information
that is implicitly or explicitly associated

with a location on the surface of the Earth
[1]. With advancements in remote sensing
technologies and the widespread use of GPS-
enabled devices, the number of available phys-
ical and human geography datasets has vastly
increased in recent years [2]. These data are
studied and utilized for social good, such as
mitigating damages caused by natural disasters
[3], discovering mineral resources [4], prevent-
ing crimes [5], improving traffic conditions [6],
and many other scenarios.

However, when dealing with geographic
datasets, researchers find that many tradi-
tional machine learning algorithms do not per-
form very well due to the presence of non-
stationarity. In such data, the relationship
between features does not necessarily remain
the same everywhere, meaning the underly-
ing model that governs the data changes over
space. To address this issue, a natural solution
is to replace the global model with many local
models. Each local model is only responsible for
describing a much smaller region within which
the data is supposed to be relatively station-
ary. Most studies that have taken this approach
(such as [7], [8] and [9]) have observed signif-
icantly better results compared to traditional
algorithms, which are not specifically designed
to handle non-stationarity.

These multiple-local-model based ap-
proaches all face similar challenges. First, the
dataset used to train local models is only a
subset of all available data. Previous research
has shown that the accuracy of a model is
strongly correlated with the amount of data
used to train this model. There can be a

significant decrease in model performance if
the training data size drops below a certain
threshold [10]. Second, determining the size of
sub-regions to which local models correspond
is difficult. A larger size means more data
can be used to train local models, but the
region is more likely to exhibit non-stationary.
Conversely, a smaller size implies the opposite.
As a result, compromise is always necessary.

Our insight is that the source of non-
stationarity can be explained as a lack of data,
i.e., some dimensions of the data are not be-
ing collected. For example, a crime dataset
could exhibit strong non-stationarity, as crime
patterns in New York could be fundamentally
different from those in Washington DC. Even
within New York, it is hard to imagine that
Brooklyn shares the same crime pattern as
Manhattan. Ultimately, these differences are
caused by various factors such as household
income, population composition, culture, and
the number of police officers per capita, among
others. If one were able to collect data on every
single aspect of an area, the dataset would ulti-
mately become stationary. This theory is also in
accordance with the fact that non-stationarity
is quite often observed in human geography
datasets but rarely found in physical geography
data. Since physical geography data – which
is generated by Earth’s natural processes - has
fewer determining factors and is usually simpler
to collect, it is less prone to non-stationarity. In
contrast, human geography data focuses on hu-
man activities and is much more complex. Even
seemingly simple datasets can have countless
deciding factors that are impossible to collect
comprehensively. For example, house sale price
data generally includes features of the house
itself and its nearby areas, but other factors -
such as school, traffic, population, and crime -
are usually not included, even though they are
important and would certainly affect the pricing
model. The lack of these data would then be
observed as non-stationarity in the dataset and
would impact the final model in some way.

Based on this insight, we propose an en-
tirely different strategy that addresses non-
stationarity by introducing latent variables to
the original dataset. These latent variables
would account for all the missing factors that

not collected by the original dataset but ob-
servable as non-stationarity. Theoretically, as-
suming we have unlimited calculating power,
the optimal values of the latent variables could
be easily found through a brute-force search of
the entire vector space. However, this solu-
tion is obviously impossible due to the tremen-
dous size of the vector space. Thus, inspired
by neural networks, we use a back-propagation
algorithm to find the optimal values of the la-
tent variable. Experiments demonstrate that
this new approach can build models as accurate
as the state-of-the-art algorithms while offering
the potential for further improvement.

2. Background and Study Area

2.1 Background

The first renowned method for exploring spa-
tial non-stationarity, known as Geographically
Weighted Regression (GWR), was proposed by
Brunsdon, Fotheringham, and Charlton in 1996
[7]. The “main characteristic of GWR is that
it allows regression coefficients to vary across
space, and so the values of the parameters can
vary between locations” [11]. The motivation
for inventing GWR was that “a single global
model cannot explain the relationship between
some sets of variables” [7]. To address non-
stationarity, GWR allows relationships between
features and labels to differ across spaces. The
basic idea of how GWR works is to learn a
regression equation for every feature in the
dataset, during which dependent and explana-
tory components are accounted for by exam-
ining neighboring data points. The neighbors
contribute differently to this process according
to their distance, which is why it is called a
“weighted” regression. The closer a data point
is, the more weight it is assigned. This de-
sign complies with Tobler’s first law of geogra-
phy, “everything is related to everything else,
but near things are more related than distant
things” [12]. Later, in 2002, Brunsdon fur-
ther improved this algorithm to Semiparametric
GWR (SGWR) [13], which allows some features
to have fixed regression equations across space,
while others can still be variable.

Due to the success of GWR, many later

studies followed this multiple-local-model de-
sign. One example is Multiscale GWR
(MGWR), which was introduced in 2017 by
Fotheringham, Yang, and Kang. This method
“is similar in intent to Bayesian nonseparable
spatially varying coefficients (SVC) models, al-
though potentially providing a more flexible and
scalable framework in which to examine multi-
scale processes” [9]. It improves upon GWR
in a way that not only adapts to datasets on
different levels of non-stationarity but also pro-
vides the necessary information to evaluate the
scales of different processes. The latest re-
search using this approach is Geographical Ran-
dom Forest (GRF), proposed by Stefanos, Tais,
et al. in 2019. It adopts Random Forests [14]
as the base algorithm to create local models.
The principle idea of this method is the “disag-
gregation of RF into geographical space in the
form of local sub-models” [8], which is basically
another version of the multiple-local-model ap-
proach.

In conclusion, all these methods are di-
rectly or indirectly based on the multiple-local-
model approach and consequently suffer from
the same problems mentioned in the previous
section. In this work we propose a completely
different approach with the goal of better un-
derstanding and accounting for the intrinsic na-
ture of non-stationarity.

2.2 Study Area

We selected housing sales data from King
County, US as the target study area (ob-
tained from [15]). The dataset contains 21,613
records, with each record being a real estate
transaction that occurred between May 2014
and May 2015, a period during which the hous-
ing market remained relatively stable in King
County.

In this dataset, there are 20 features related
to the house’s location (latitude, longitude, zip
code), its basic information (size, number of
stories and rooms, garage, air conditioning),
and transaction-related information (sale date
and price). Some of the features have missing
values. This is not a problem for our algorithm,
which is based on the Random Forests algo-
rithm and can handle missing values. However,

Figure 1: Distribution of the King County hous-
ing data.

some other algorithms we use for performance
comparison are incapable of doing this. There-
fore, during the data preparation stage, we fill
in the missing values with the average value of
that column.

The goal of this dataset is to build a predic-
tive model that can estimate house sale prices,
given the house’s location and some of its basic
information. It is a well-researched topic that
has been studied for a long time. However,
even state-of-the-art algorithms in this area still
have ample room for improvement due to the
complicated nature of this task. Additionally,
it is a very typical human geography dataset
in which data availability varies depending on
the amount of human activity. Figure 1 shows
the distribution of the dataset on the map. As
depicted in the figure, the downtown area in
Seattle is populated with data, with some areas
left blank which are mostly parks or commer-
cial zones. Rural regions have much less data
scattered all over the place. The fact that this
dataset is distributed extraordinarily unevenly
across the space presents additional challenges
when using the previously mentioned multiple-
local-model approach, as local models which
correspond to rural areas will have fewer train-

ing samples, leading to inaccurate results. In
urban areas, overcrowded data points will only
bring marginal improvement to models built for
that area.

Another issue with this dataset is that the
house sale price spans over a fairly large range
with a long tail, as shown in figure 2, which is
undesirable. To eliminate the tail, we convert
Price to log(Price), which follows the normal
distribution and is a much better target variable
to deal with.

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000
0

1000

2000

3000

4000

5000

6000

16 17 18 19 20 21 22 23
0

250

500

750

1000

1250

1500

Figure 2: Distribution of Price vs. log(Price)

3. Latent Variable Random Forests

In this section, we provide a detailed descrip-
tion of the key designs of the Latent Variable
Random Forests as follows.

3.1 Key Design of the Latent Variable

By introducing a new latent variable, we aim
to use it to represent the hidden factors that
cause non-stationarity. In our housing price
model example, it would be a combination of
various unknown factors that could affect how
house prices should be modeled. For instance,
the security level of a community obviously has
an impact on house value. Although we don’t
have any information on which area is more se-
cure and which is not, its influence on the sale

price will be observable via non-stationarity. It
is important to note that the target variable
might be affected by multiple hidden factors
such as security, traffic, nearby schools, and so
on. But no matter how many hidden factors
there are, they will influence the target variable
together. It is impossible to know which fac-
tor has a larger impact. Fortunately, we don’t
need to care about that. Our primary focus is
on how these hidden factors as a whole would
affect the target variable we want to predict.

To better describe the problem, let
(f1, f2, ..., fn) denote the features in the
dataset and t denote the target variable to be
modeled and predicted. After adding a la-
tent variable lv, the feature vector becomes
F (lv) = (f1, f2, ..., fn, lv). Thus, the task is
converted to finding the best l⃗v that makes
the model trained from F (lv) (using a prede-
termined regular machine learning algorithm)
achieve the highest accuracy.

The vector space l⃗v is obviously unlim-
ited. Thus we introduce a value range of [0, 1]
to lv and define a minimum step interval of
0.01. The reason why we limit the value range
to [0, 1] is that the value range of lv actu-
ally doesn’t play an important role in the fi-
nal model. If lv is multiplied by 2, the result-
ing model will still be the same. So, only the
relative value matters and is what we should
care about. Also, during the machine learning
stage, all the features of the original dataset
need to be standardized and normalized any-
way, thus a standardized lv will, in fact, benefit
the entire procedure. For the minimum step,
the smaller it is, the more fine-grained the fi-
nal model would be. However, setting it too
small will also considerably increase the calcu-
lation time and may not be worth the marginal
return. So we recommend setting it to 0.01 as
a balance between speed and accuracy.

Theoretically, the value array of latent vari-
able l⃗v can be inferred by an exhaustive brute-
force search of the entire vector space. The
time complexity of doing so is as follows:

O(n) = (R

S
)n ∗ (Ttrain + Ttest) (1)

where n is the number of data points in the
dataset, R is the value range, S is the step size,

Ttrain and Ttest are the time needed for training
and testing the model, respectively. Note that
the value of n is usually very large. Even for a
very small dataset, n will probably be greater
than 1000. Thus, this brute-force method is
completely impractical considering the amount
of calculation needed.

3.2 Grid Based Latent Variable System

To solve the time complexity problem, we
clearly need a smarter algorithm, for example, a
heuristic search, which could greatly reduce the
search space. But before that, let’s examine the
possibility of reducing the size of the potential
vector space, which would greatly benefit the
entire procedure even if a heuristic search is to
be adopted.

Here we introduce a grid-based latent vari-
able system. Let (xmin, xmax, ymin, ymax) de-
note the minimum bounding box that contains
the entire dataset. A step size of s will evenly
divide the space into this many grids:

G(s) = ⌈xmax − xmin

s
⌉ ∗ ⌈ymax − ymin

s
⌉ (2)

For each intersection of the grid system,
we assign an Influence Center (abbreviated as
IC) to it. For a data point with a coordinate
of (x, y), we first determine which grid it is
located in. Then calculate its latent variable
value from all the nearby ICs located at the
four corners of grid. Here we use an inverse
distance weighted method to combine the val-
ues from nearby ICs, in accordance with the
idea that nearby ICs should have a stronger in-
fluence on the latent variable than remote ones.
The detailed formula is as follows:

v(x, y) =
∑N

i=1 W (ICi)V (ICi)∑N
i=1 W (ICi)

(3)

where W (ICi) is the weight for the ith in-
fluence center which equals the inverse of the
Euclidean distance between the data point and
the IC.

This design simulates how the hidden fac-
tors create non-stationarity in the dataset. No
matter what hidden factors there are, as a

general rule, they would affect nearby data
points more than remote ones. Thus we simu-
late this procedure by introducing the concept
of Influence Centers and making them impact
nearby records in a similar way. Another benefit
brought by this design is that now the search
space is greatly reduced down to the number
of ICs. Instead of finding the best values for
all the records, we only need to optimize the
values for ICs now, which is way less than the
total number of records.

3.3 Random Forests as the Base Algorithm

Before proceeding, we still need to decide which
base machine learning algorithm is to be used
to train models. Here, our choice is the Ran-
dom Forests [14] algorithm. As suggested in
the name, Random Forests will create many
randomly generated decision trees to perform
the prediction task together. For classifica-
tion tasks, the final result would be a major-
ity vote of results from all the decision trees.
For regression, this would be an average of all
results. The core idea of RF is to create a
bagging procedure where the variance of the
model is decreased but the bias remains un-
changed, thus generating a better result from
sub-optimal models.

There are multiple reasons why we choose
RF as our base algorithm. First, RF is based
on decision trees which are naturally good at
handling coordinates in geographic datasets.
Then, Random Forests is among the top ma-
chine learning algorithms available and often
shows exceedingly good results when handling
spatial data, as proven by [16] and [17]. We
will be able to inherit all of these advantages
by using RF as the base algorithm.

3.4 Back Propagation

With a reduced search space, the time complex-
ity is still massive as we are only replacing (R

S)n

in Formula 1 with Xn (X is the total number
of influence centers) if a brute-force search is
to be used. Thus we must find a way to further
reduce the search space, i.e., a heuristic-search
like method.

Here, inspired by the backpropagation al-
gorithm in Neural Networks [18], we have de-

signed a backpropagation process to search for
the best values for influence centers, as de-
tailed in Algorithm BackPropagation(). In
this function, a learning rate α is introduced,
which determines how fast the backpropa-
gation converges. A large value will cause
BackPropagation() to converge faster, but
the generated result will be more likely to be
coarse-grained and thus less than optimal. Con-
versely, a smaller value will converge slower but
produce better results. Generally speaking, the
best α value is recommended to be set to the
smallest value within acceptable training time.

1 Function BackPropagation()
2 Initialize IC Array
3 while IC Array has not converged

do
4 foreach IC in IC Array do
5 foreach learn rate in [α, -α]

do
6 IC new = IC +

learn rate
7 if Trained model sees

improvement in
accuracy then

8 IC = IC new
9 else

10 continue
11 end
12 end
13 end
14 end
15 return IC Array
16 end

The converge condition in the BackProp-
agation() algorithm is a bit tricky. Ideally, if
IC Array remains the same after an iteration,
the algorithm is considered converged as fu-
ture iterations will produce the same results.
However, this does not necessarily happen as
IC Array may always change slightly with pretty
much the same results. So, we insert a pro-
cess at the end of each iteration, which will
evaluate the test accuracy under the current
IC Array. If the test accuracy does not improve
for more than 5 iterations, we consider the algo-

rithm converged and stop the backpropagation
iteration. Although this extra calculation slows
down the entire algorithm, it is worth the cost.

3.5 Prediction

The prediction process is relatively simple. Af-
ter the IC Array is returned by BackPropaga-
tion(), the final Model is trained from the orig-
inal dataset plus the latent vector generated
from IC Array. When predicting an unknown
observation, the latent variable is first calcu-
lated by using the inverse distance weighted
method from Formula 3. Then, Mode is ap-
plied to get the final prediction result.

3.6 Assessment Measurements and Results

One thing that wasn’t mentioned in the previ-
ous sections is that a proper assessment mea-
surement must be chosen. This actually plays
an important role in the algorithm, as the eval-
uation result generated by the measurement
will be used to determine how the backprop-
agation process runs and guide it to gener-
ate a better result for each iteration. Some
of the most commonly used measurements
are [19]: mean absolute error (MAE), mean
squared error (MSE), and root mean squared
error (RMSE). In our case, MAE is preferred
as the other ones will penalize large errors and
cause bias in our algorithm.

Now that the algorithm is complete, we
have run LVRF on the King County housing
dataset and achieved an MAE of 0.263. As a
comparison, we also experimented with unmod-
ified Random Forests on the same dataset and
obtained a result of 0.289. This means that the
learned latent variables were able to offset some
of the non-stationarity and made it easier for
the standard RF to generate a more accurate
model. To compare with the others, we also
evaluated the same dataset using two state-
of-the-art algorithms, RFsp [20] and MGWR
[9], which are specifically designed to handle
geographic datasets and non-stationarity. The
results for RFsp and MGWR were 0.261 and
0.272, respectively. These results suggest that
the idea of using latent variables to capture
hidden factors that cause non-stationarity is at

least as effective as the best results achieved
using the multiple-local-model approach.

4. Conclusion

This paper presents LVRF, a machine-learning
algorithm that can create predictive models
for non-stationary geographic datasets. Un-
like other algorithms, LVRF adopts a latent
variable based approach, instead of the widely
used multiple-local-model strategy. Experi-
ments show that LVRF can build models as
accurately as state-of-the-art algorithms while
avoiding the common disadvantages of the
multiple-local-model approach. First, LVRF es-
tablishes grid-based influence centers. The la-
tent variable value of any data point is decided
by the nearby influence centers using an inverse
distance weighted method. Then it uses a back-
propagation algorithm to train the values of the
influence centers until they converge. To pre-
dict unknown observations, the data point’s la-
tent variable is calculated from the converged
influence centers, and fed into the model with
its other features.

The insight of LVRF is that the design of
the influence center can mimic the hidden fac-
tors which affect nearby data points in differ-
ent ways depending on the location. By learn-
ing these hidden factors with a backpropaga-
tion algorithm and then including them in the
model creation stage, the impact brought by
non-stationarity will be offset. This approach
allows for a single global model to be used to
describe the features plus the hidden factors.

It is also worth mentioning that, although
Random Forests is selected as the base algo-
rithm, LVRF is capable of using any other reg-
ular machine learning algorithm as the base al-
gorithm. Doing so may bring advantages in
certain scenarios when there is preknowledge
regarding the dataset.

References

[1] ISO/TC 211 committee, “ISO/TC 211,” https://
www.iso.org/committee/54904.html, 2011.

[2] C. Beath, I. Becerra-Fernandez, J. Ross, and
J. Short, “Finding value in the information explo-
sion,” MIT Sloan Management Review, vol. 53, pp.
18–20, 06 2012.

[3] E. Spyrou and Y. Avrithis, “A region thesaurus ap-
proach for high-level concept detection in the nat-
ural disaster domain,” vol. 4816, 12 2007, pp. 74–
77.

[4] P. Partsinevelos and Z. Mitraka, “Change detec-
tion of surface mining activity and reclamation
based on a machine learning approach of multi-
temporal landsat tm imagery,” Geocarto Interna-
tional, vol. 28, pp. 1–20, 01 2012.

[5] A. Wheeler and W. Steenbeek, “Mapping the risk
terrain for crime using machine learning,” 01 2020.

[6] Y. Meidan, M. Bohadana, A. Shabtai, J. D.
Guarnizo, M. Ochoa, N. O. Tippenhauer, and
Y. Elovici, “Profiliot: A machine learning
approach for iot device identification based on
network traffic analysis,” in Proceedings of the
Symposium on Applied Computing, ser. SAC ’17.
New York, NY, USA: Association for Computing
Machinery, 2017, p. 506–509. [Online]. Available:
https://doi.org/10.1145/3019612.3019878

[7] C. Brunsdon, A. S. Fotheringham, and
M. E. Charlton, “Geographically weighted re-
gression: A method for exploring spatial non-
stationarity,” Geographical Analysis, vol. 28,
no. 4, pp. 281–298, 1996. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1538-4632.1996.tb00936.x

[8] S. Georganos, T. Grippa, A. N. Gadiaga, C. Linard,
M. Lennert, S. Vanhuysse, N. Mboga, E. Wolff,
and S. Kalogirou, “Geographical random forests: a
spatial extension of the random forest algorithm to
address spatial heterogeneity in remote sensing and
population modelling,” Geocarto International, pp.
1–16, 2019.

[9] A. S. Fotheringham, W. Yang, and W. Kang,
“Multiscale geographically weighted regression
(mgwr),” Annals of the American Association of
Geographers, vol. 107, no. 6, pp. 1247–1265, 2017.

[10] J. Morgan, R. Dougherty, A. Hilchie, and B. Carey,
“Sample size and modeling accuracy with decision
tree based data mining tools,” Acad Inf Manag Sci
J, vol. 6, 01 2003.

[11] J. Mateu, “Comments on: A general science-based
framework for dynamical spatio-temporal models,”
Test, vol. 19, pp. 452–455, 11 2010.

[12] W. R. Tobler, “A computer movie simulating
urban growth in the detroit region,” Economic
Geography, vol. 46, pp. 234–240, 1970. [Online].
Available: http://www.jstor.org/stable/143141

[13] A. Fotheringham, C. Brunsdon, and M. Charlton,
“Geographically weighted regression: The analysis
of spatially varying relationships,” John Wiley and
Sons, vol. 13, 01 2002.

[14] L. Breiman, “Random forests,” in Machine Learn-
ing, 2001, pp. 5–32.

[15] Kaggle, “King County Housing Market
data,” https://www.kaggle.com/harlfoxem/
housesalesprediction, 2016.

[16] A.-L. Boulesteix, S. Janitza, J. Kruppa, and I. R.
König, “Overview of random forest methodology
and practical guidance with emphasis on com-
putational biology and bioinformatics,” WIREs

Data Mining and Knowledge Discovery, vol. 2,
no. 6, pp. 493–507, 2012. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.
1002/widm.1072

[17] M. Nussbaum, K. Spiess, A. Baltensweiler,
U. Grob, A. Keller, L. Greiner, M. E. Schaepman,
and A. Papritz, “Evaluation of digital soil mapping
approaches with large sets of environmental
covariates,” SOIL, vol. 4, no. 1, pp. 1–22, 2018.
[Online]. Available: https://soil.copernicus.org/
articles/4/1/2018/

[18] S. Putra and A. Wanto, “Analysis of artificial neu-
ral network accuracy using backpropagation algo-
rithm in predicting process (forecasting),” Interna-

tional Journal Of Information System & Technol-
ogy (IJISTECH), vol. 1, pp. 34–42, 11 2017.

[19] J. Hernandez-Orallo, C. Ferri, N. Lachiche,
A. Mart́ınez-Usó, and M. Raḿırez-Quintana, “Bi-
narised regression tasks: methods and evaluation
metrics,” Data Mining and Knowledge Discovery,
vol. 30, 11 2015.

[20] T. Hengl, M. Nussbaum, M. N. Wright, G. B.
Heuvelink, and B. Gräler, “Random forest as
a generic framework for predictive modeling of
spatial and spatio-temporal variables,” PeerJ,
vol. 6, p. e5518, Aug. 2018. [Online]. Available:
https://doi.org/10.7717/peerj.5518

2. Crime-avoiding
Routing
Navigation.11pp

Follows

Rishe, Naphtali; Sadjadi, Masoud; and Adjouadi, Malek

Abstract: Extensive prior work has provided
methods for the optimization of routing based on
the criteria of travel time and/or on the cost of
travel and/or the distance traveled. A typical
method of routing involves building a graph
comprised of street segments, assigning a
normalized weighted value to each segment, and
then applying the weighted-shorted path algorithm
to the graph in order to find the best route. Some
users desire that the routing suggestion include
consideration pertaining to the reduction of risk of
encountering violent crime. For example, a user
desires a leisure walk via a safe route from her
hotel in an unknown city. Here we present a
method to quantify such user preferences and the
risks of encountering crime and to augment the
standard routing methods by giving weight to
safety considerations. The proposed method’s
advantages, in comparison to other crime-
avoidance routing algorithms, include weighing
crime types with respect to their potential
detrimental value to the user, with temporal
qualification and quantification of crime and its
statistical aggregation at the geographic resolution
down to a city block.

Index Terms: Crime-avoidance, Crime
classification, Crime data, Crime impact weighting,
Multi-parametric routing, Navigation, Routing,
Spatiotemporal analysis of crime

1. INTRODUCTION
Previous research [1-9] has developed

methods for the optimization of routing based on
the criteria of travel time and/or on the cost of

Manuscript received February 19, 2023.
Naphtali Rishe is at the Knight Foundation School of Computing

and Information Sciences, Florida International University, Miami,
FL, USA (e-mail: rishe@cs.fiu.edu)

Masoud Sadjadi is at the Knight Foundation School of
Computing and Information Sciences, Florida International
University, Miami, FL, USA (e-mail: sadjadi@cs.fiu.edu)

Malek Adjouadi is at the Department of Electrical and Computer
Engineering, Florida International University, Miami, FL, USA (e-
mail: adjouadi@fiu.edu).
Correspondence email is rishe@cs.fiu.edu

travel and/or the distance traveled. Routing can
be in various modalities, such as by car, on foot,
by bicycle, via public transit, or by boat. A typical
method of routing involves building a graph
comprised of street segments, assigning a
normalized weighted value to each segment, and
then applying the weighted-shorted path
algorithm to the graph in order to find the best
route.

Routing can take into account preference
parameters in addition to time and distance. For
example, routing suggestions can include c
consideration pertaining to the reduction of the
risk of encountering violent crime. For example,
a user desires a leisure walk via a safe route
from her hotel in an unknown city. Here we
present a method to quantify such user
preferences and the risks of encountering crime
and to augment the standard routing methods by
giving weight to said safety considerations.

Galburn et al.[4] have utilized crime data to
optimize the safety aspect of navigation within a
city. Their case study involved urban crime data
from Illinois and Pennsylvania. Their proposed
risk model for the street network within a city
facilitated estimating probabilities of criminal
incidents that the traveler may encounter on any
road segment. In their approach, the same
importance is assigned to the path traversal time
and the crime incident risk. Their method solves
a dual-objective shortest-path problem.

Here we presented an improved method to co-
optimize crime avoidance with other criteria. The
proposed method’s advantages, in comparison to
other crime-avoidance routing algorithms, include
weighing crime types with respect to their
potential detrimental value to the user, with
temporal qualification and quantification of crime
and its statistical aggregation at the geographic
resolution down to a city block.

The following figure shows traditional routing
optimizing the time and/or distance.

Crime-Avoiding Routing Navigation

mailto:rishe@cs.fiu.edu
mailto:sadjadi@cs.fiu.edu
mailto:adjouadi@fiu.edu
mailto:rishe@cs.fiu.edu

Figure 1: Routing that optimizes time and/or distance

Here we present an improved method to co-
optimize crime avoidance with other criteria. The
proposed method’s advantages, in comparison to
Galburn [4] and the other crime-avoidance
routing algorithms, include:
(1) weighing crime types with respect to their
potential detrimental value to the user,
(2) with temporal qualification,
(3) quantification of crime and its statistical
aggregation at the geographic resolution down to
a city block, and
(4) evaluation of the crime detriment to the user
in each segment by considering the needs,
exposure, and preferences of the user rather
than merely considering the general crime
incidence statistics. For example, violent crime
committed outdoors have a higher impact, and
severe violence, such as homicide in the street,
have the highest impact. Crimes without a direct
unrelated victim, such as code violations or
embezzlement, have no impact on travelers.
Pick-pockets have an impact on travelers in
walking mode but minimal impact on travelers by

car. Non-statutory rape may be of high concern
to a woman walking alone. For each type of
traveler and travel modality, the present method
provides default formulas for the evaluation of
crime detriment in each segment. Additionally,
the user may modify the formula by assigning
greater or lesser importance to various types of
crimes.

2. METHODOLOGY
 In order to quantify crime risks for each street
segment, we count police reports that occurred
close to that segment during a set period of time,
e.g., a particular year of reference, counting only
violent and property crimes of the type that would
directly affect the traveler (e.g., exclude domestic
violence, exclude insider trading, exclude code
violations, exclude statutory rape) and can further
assign weights to various crime crimes based on
the impact it may have in the traveler. The
following is an example of a query to a crime
database for an area in mid-Miami Beach.

Figure 2: A sample query to a crime database

The above query may result in a set of
incidents shown in the following map.

Figure 3: Map of incidents

The following is a tabular output of the query:

Figure 4: Report of incidents

The mid-Miami Beach area of the previous
example did not have homicide reports during the
sampling period. To see homicide reports, which

should be considered with a higher weight than
battery, we need to query an area further west:

Figure 5: Homicide query

The results are shown in the following map and
table.

Figure 6: Map of homicide incidents

Figure 7: Table of homicide incidents

The importance of querying for only specific
types of crime (and weighting them) is
demonstrated by the following query, whose

results are mostly crimes that have no bearing on
the prospective traveler.

Figure 8: Query not restricting crime types

Figure 9: Map of the output of a query not restricting crime types

Figure 10: Tabular output of a query that does not restrict crime types, including crimes irrelevant for the traveler, e.g., credit card

fraud

Turning back to routing, the following is a route
optimizing travel time, which traverses segments

where relevant crimes have occurred during the
sampling period:

Figure 11: Time-optimized routing path, going through segments with higher crime potential

By co-optimizing the walk duration and crime
encounter probability reduction, we get a slightly
different route:

Figure 12: Routing co-optimizing time and crime avoidance

The routing may be different based on the mode of walking or transportation:

Figure 13: Time-optimized routing path, going through segments with higher crime potential, for various transportation modalities

The relative importance of time, cost of travel,

and crime avoidance can be determined by the
user utilizing a prior-art technology of weight
selection triangle: a touchable triangle allows the
user to assign importance weights to three
interrelated decision optimization objectives using
a single gesture [Oliver Ullrich, Naphtali Rishe,
Daniel Luckerath. U.S. Patent US10061501B2
“User Interface for Co-Optimizing Weight
Factors” issued on: August 28, 2018]:

Figure 14: A weighting triangle with values along one side

Figure 15: A weighting triangle with weighting values along

all three sides

Figure 16: A smart device with the weighting triangle
displayed thereon, showing a user selecting different

weighting points

Applying said prior-art method to the herein
proposed weighting selection problem, three
objectives (A=time, B=cost of travel, and C=crime
avoidance) are presented in a triangular fashion
on a touch screen. Sub-figure 1 shows the
underlying principle of the establishment of a
single weight wA for Objective A; Sub-figure 2
combines three objectives into a single triangle,
allowing for the establishment of a tri-variable
weight function (wA, wB, wC). By applying a finger
gesture, the user moves an indicator freely inside
the triangle (see Sub-figure 3). The position of
the indicator establishes a tri-variable weight
function, which in further steps, is then used as
input for a co-optimization algorithm. When the
user is satisfied with the established weights, she
indicates this, e.g., by pressing a touch screen
button labeled “Go.”

AVAILABILITY OF DATA AND MATERIALS
The data used in this work is available at

http://terrafly.com. The geospatial data sets used
in case studies to illustrate the method proposed
herein can be provided by the corresponding
author with appropriate arrangements.

COMPETING INTERESTS
The authors declare that they have no

competing interests.

http://terrafly.com/

FUNDING
The authors’ effort resulting in this publication

has been funded by the U.S. National Science
Foundation (Grants CNS-2018611 and CNS-
1920182), the Florida Department of
Environmental Protection (Grant C-2104), and
the U.S. Department of Homeland Security
(Grant E2055778). The funding agencies had no
role in the design of the study and collection,
analysis, and interpretation of data, nor in writing
the manuscript.

AUTHORS’ CONTRIBUTIONS
Conceptualization: Rishe; Methodology: Rishe

and Adjouadi; Investigation: Rishe, Sadjadi, and
Adjouadi; Writing: Rishe and Sadjadi; Funding
acquisition: Rishe, Sadjadi, and Adjouadi. All the
authors of this paper concur with its content and
consent to its publication.

ACKNOWLEDGMENT
Divya Saxena has helped in editing this
manuscript. Liangdong Deng has helped with
mapping technology.

REFERENCES
[1] E. Kanoulas, Yang Du, Tian Xia, and Donghui Zhang

(2006). Finding Fastest Paths on A Road Network with
Speed Patterns. In: 22nd International Conference on
Data Engineering (ICDE’06), pp. 10-10, doi:
10.1109/ICDE.2006.71.

[2] Y.-J. Joo, S.-H. Kim (2011). A new route guidance
method considering the pedestrian level of service using
a multi-criteria decision-making technique. Journal of
Korea Spatial Information Society, 19. pp. 83–91.

[3] Michael Shekelyan, Gregor Jossé, Matthias Schuber,
Hans-Peter Kriegel (2014). Linear Path Skyline
Computation in Bicriteria Networks. International
Conference on Database Systems for Advanced
Applications (DASFAA 2014). Lecture Notes in
Computer Science, volume 8421, Springer, pp. 173-187.

[4] Esther Galbrun, Konstantinos Pelechrinis, Evimaria Terzi
(2016). Urban navigation beyond shortest route: The
case of safe paths. Information Systems, Volume 57,
pp. 160-171.

[5] Hochmair, H. H. (2010). Spatial association of
geotagged photos with scenic locations. In A. Car, G.
Griesebner, & J. Strobl (Eds.), Geospatial
Crossroads@GI_Forum ‘10: Proceedings of the
geoinformatics forum Salzburg (pp. 91–100). Heidelberg:
Wichmann.

[6] Lu, X., Wang, C., Yang, J. M., Pang, Y., & Zhang, L.
(2010). Photo2Trip: Generating travel routes from geo-
tagged photos for trip planning. In Proceedings of the
international conference on Multimedia (pp. 143–152).
New York City: ACM.

[7] Sun, Y., Fan, H., Bakillah, M., & Zipf, A. (2013). Road-
based travel recommendation using geo-tagged images.
Computers, Environment and Urban Systems.

[8] Alivand, M., Hochmair, H. and Srinivasan, S. (2015),
“Analyzing how travelers choose scenic routes using
route choice models,” Computers, Environment and
Urban Systems, Vol. 50, pp. 41–52.

[9] Mišković, S. and Stanimirović, Z. (2017), “Variable
Neighborhood Search Based Heuristics for the Hard
Capacitated k -facility Location Problem,” IPSI Bgd
Trans. Internet Res., pp. 1–8.

[10] Oliver Ullrich, Naphtali Rishe, Daniel Luckerath. U.S.
Patent US10061501B2 “User Interface for Co-Optimizing
Weight Factors” issued on: August 28, 2018.

Rishe [http://cake.fiu.edu/Rishe] is the inaugural outstanding
university professor for Florida International University (FIU).
He is a professor at FIU’s Knight Foundation School of
Computing and Information Sciences. Rishe is the Director of
FIU’s High-Performance Database Research Center. From
2013 to 2022, Rishe was the executive director of a multi-
university Center for Advanced Knowledge Enablement
sponsored by the National Science Foundation’s industry-
university cooperation program. Rishe’s research has been
funded by the U.S. Government and Industry at over $50
million. Rishe’s inventions include 26 U.S. patents. Rishe is
a Fellow medalist of the National Academy of Inventors. In
2021, Rishe received the IBM Global University Programs
award. Rishe’s publications include 440 papers and six
books. Rishe’s pioneering geospatial system TerraFly has
been highlighted by the National Science Foundation in its
reports to U.S. Congress.

Sadjadi received the B.S. degree in Hardware Engineering in
1995, the M.S. degree in Software Engineering in 1999, and
the Ph.D. degree in Computer Science from Michigan State
University in 2004. Dr. Sadjadi is currently an Associate
Professor in the Knight Foundation School of Computing and
Information Sciences at Florida International University,
where he has been on the faculty since 2004. He is the
Director of the Center of Partnership for International
Research & Education (PIRE) funded by the National Science
Foundation for $2.3 million. He is also the Director of
the Autonomic Cloud Research Laboratory (ACRL) and leads
several projects under the Latin American Grid initiative. He
has extensive experience in software development and
leading large scale software engineering projects both in
industry and in academia. Currently, he is collaborating with
top researchers in 8 countries and is leading several
international collaborative research projects. He is serving as
a General Chair of SEKE 2012 and has served as the
Program Chair, Co-Chair, and Committee Member of several
top-tier international conferences and workshops of his field.
He has served as a referee for several IEEE and SP&E
journals and as a referee and panelist for several funding
agencies including National Science Foundation (NSF),
Luxembourg National Research Fund (FNR), and Florida Sea
Grant. His current research interests include Distributed
Systems, Software Engineering, Autonomic Computing, High-
Performance Computing, Grid Computing, Cloud Computing,
Pervasive Systems, and Mobile Computing. He has more
than 80 refereed publications and is PI or Co-PI of 17 grants
from NSF, IBM, Kaseya, TeraGrid, and FIU for a total of about
$6 million. He is a member of the IEEE and can be reached at
sadjadi@cs.fiu.edu and http://www.cs.fiu.edu/~sadjadi/.

Adjouadi is the WARE Distinguished Professor at FIU’s
Department of Electrical and Computer Engineering. Since
1993, Adjouadi has directed the FIU Center for Advanced
Technology and Education [http://cate.fiu.edu]. Adjouadi’s
doctorate is from the University of Florida (1985).

http://cake.fiu.edu/Rishe
http://pire.fiu.edu/
http://pire.fiu.edu/
http://acrl.cis.fiu.edu/
http://latinamericangrid.org/
http://www.cs.fiu.edu/%7Esadjadi/
http://cate.fiu.edu/

3. Integrating Location
Information as Geohash
Codes in Convolutional
Neural Network-Based
Satellite Image
Classification.7pp

Follows

Abstract: In the past few years, there have been
many research studies conducted in the field of
Satellite Image Classification. The purposes of
these studies included flood identification, forest
fire monitoring, greenery land identification, and
land-usage identification. In this field, finding
suitable data is often considered problematic, and
some research has also been done to identify and
extract suitable datasets for classification.
Although satellite data can be challenging to deal
with, Convolutional Neural Networks (CNNs), which
consist of multiple interconnected neurons, have
shown promising results when applied to satellite
imagery data. In the present work, first we have
manually downloaded satellite images of four
different classes in Florida locations using the
TerraFly Mapping System, developed and managed
by the High Performance Database Research Center
at Florida International University. We then develop
a CNN architecture suitable for extracting features
and capable of multi-class classification in our
dataset. We discuss the shortcomings in the
classification due to the limited size of the dataset.
To address this issue, we first employ data
augmentation and then utilize transfer learning
methodology for feature extraction with VGG16 and
ResNet50 pretrained models. We use these features
to classify satellite imagery of Florida. We analyze
the misclassification in our model and, to address
this issue, we introduce a location-based CNN
model. We convert coordinates to geohash codes,
use these codes as an additional feature vector and
feed them into the CNN model. We believe that the
new CNN model combined with geohash codes as
location features provides a better accuracy for our
dataset.

Index Terms: CNN (Convolutional Neural

Network), Data Augmentation, Geohash Code,
Satellite Image, Transfer Learning

1. INTRODUCTION

HE classification of remotely sensed data has

numerous practical applications, including

forest fire detection, landslide detection, and

environmental monitoring. In recent years, several

Manuscript received March 24, 2023.

Arpan Mahara is at the Knight Foundation School of Computing

and Information Sciences, Florida International University, Miami,

FL, USA (e-mail: amaha038@cs.fiu.edu)

 Naphtali Rishe is at the Knight Foundation School of

 Computing and Information Sciences, Florida International
University, Miami, FL, USA (e-mail: rishe@cs.fiu.edu)

Correspondence email is amaha038@cs.fiu.edu

machine learning and deep learning algorithms,

including but not limited to K-Nearest Neighbor

(KNN), Random Forest (RF), Support Vector

Machine (SVM), and Neural Networks (NNs), have

been applied to the classification of remotely

sensed data. In the Deep Learning field, CNNs

have demonstrated the capability to learn complex

models [1]. One of the key reasons for CNNs’

success is their ability to extract features

automatically, which greatly benefits researchers

in achieving generalized and efficient

classification. Comprehensive reviews of various

models, architectures, and classifications related

to CNNs can be found in references [1]–[3].

In general, image classification is performed

based on pixel-wise feature extraction and

assigning them to certain classes. Mnih proposed

a CNN architecture for aerial image classification

using a patch-based framework[4]. In that paper,

the CNN network outputs a dense classification

patch rather than a single categorical value. As a

result, the patch-based CNN architecture

increases the number of unproductive trainable

parameters, potentially leading to inefficiencies in

classification. To provide a solution to this issue,

Maggiori et al. [5] proposed a fully convolutional

architecture that only incorporates the convolution

and deconvolution norms of CNN, producing

classification maps that can be used for satellite

image classification. In [5], the authors have

created a more efficient CNN architecture, but

their focus was on binary classification with only

one class, i.e., buildings. The authors have not

addressed the importance of using image location

to enhance classification accuracy. The CNN

architecture we use in this paper is based on the

architectures described in [4] and [5], and we

focus on multi-class image classification by

integrating the location concept. In [6], coordinates

were integrated into CNN to enhance remote

sensing image classification. During the training

phase, they directly fed spatial information, such

as longitude and latitude, as an additional feature

to the CNN for feature extraction. Similarly, Tang

et al. [7] proposed a GPS encoding idea that

incorporates location information into CNN for

extracting features and improved image

classification. They represented location as a

Integrating Location Information as
Geohash Codes in Convolutional Neural

Network-Based Satellite Image
Classification

Mahara, Arpan; and Rishe, Naphtali

T

mailto:amaha038@cs.fiu.edu
mailto:rishe@cs.fiu.edu
mailto:amaha038@cs.fiu.edu

binary code, with each bit corresponding to a

specific geographic location. They devised a

method for creating a set of grid cells covering the

Earth’s geographical area, primarily focusing on

regions within the United States.

 In the present work, we first downloaded

satellite images of Florida using TerraFly Map’s

raster API, which incorporates a predefined tile

system utilizing the Microsoft Bing projection. The

images are all 256 * 256 pixels and have three

color channels (Red, Green, and Blue). We have

grouped the images into four different classes:

Building, GreeneryLand, House, and

WaterResource. Here, by a “house” we mean a

structure of 1-2 stories, and by a “building” we

mean a structure of 3 or more stories. We have

developed our CNN architecture based on the

idea mentioned in [4] and [5]. However, CNNs

require large datasets to learn features and make

efficient predictions, and our CNN may not be able

to generalize efficient classification from manually-

collected datasets due to the lack of a large

number of images. To improve the efficiency of our

classification, we first use data augmentation

presented in [8]. Then, we adopt transfer learning

strategies presented in [9] to extract features using

pre-trained models, such as VGG16 and

ResNet50. Finally, we enhance the CNN’s feature

set by converting each longitude and latitude to

geohash codes and feeding them as extra

features. Geohash is a process that converts

coordinates into strings of data, which are easy to

handle; more information on geohash codes can

be found in [10]–[12]. We then evaluate the

accuracy of our model with these additional

features.

The paper is structured as follows. In Section 2,

we describe the mechanism of CNN and how we

have prepared the dataset. In Section 3, we

propose a CNN architecture and analyze the

shortcomings of the lack of a large dataset. In

Subsection 3.1, we set up a transfer learning

architecture to obtain an efficient classification

model. In addition, we integrate coordinates as

geohash codes into our model. Section 4 presents

the computational results achieved from all the

models, including the results obtained after the

integration of location information. Finally, we

summarize our findings and outline future

research directions in Section 5.

2. CNN INTRODUCTION AND DATASET

CNNs are a special type of neural networks that

have been invented to mimic the mechanism of

human brain for identifying or recognizing objects.

They contain numerous interconnected neurons,

each of which responds only to their own receptive

field. The interesting part of the neurons in CNNs

is that they possess the ability to automatically

extract features from an image. In a CNN, each

neuron undergoes input and output procedures to

learn the pattern of the model. The common

mathematical interpretation of the neural

operation to obtain an output ‘o’ can be expressed

as follows:

 o = σ (∑ 𝑤𝑘 .𝑛
𝑘=1 𝑥𝑘 + 𝑏) (1)

where σ is an activation function that helps the

CNN to learn an intricate pattern by encompassing

non-linearity in the output. Similarly, xk and wk are

kth input and kth weight, respectively, and b denotes

a scalar parameter added to each output, which

helps the CNN to extract complicated patterns

from data. Biases should be carefully addressed;

otherwise, they may lead to overfitting or

underfitting in the model.

 In general, the CNN architecture has three

different layers: a convolutional layer, a pooling

layer, and a connected layer. In the convolutional

layer, the dot product between the kernel and the

input image is calculated by sliding a filter over the

image. This aids the architecture in extracting

features from the images in the dataset. The

sliding of the filter around the image can be

controlled with a specific stride size. Let’s say we

have an image of dimension D*D with C channels.

We define the size of the stride as S, the size of

the kernel or filter as K, and X as the amount of

padding to maintain the same size of images in

both the input and output sectors. The output of

the convolutional layer can be stated as follows:

 Cout =
𝐷−𝐾+2𝑋

𝑆
+1 (2)

Once the output is calculated, it is passed through

an activation function. A pooling layer is applied in

the CNN in order to deduct trainable parameters

and balance the computation, which serves as an

efficient feature extraction by reducing the size of

the output map obtained from the convolutional

layer. A fully connected layer simply flattens the

output obtained from the previous layer, which

helps to connect the obtained features to the

labels in the given model.

As mentioned above, we used the TerraFly

Map’s raster API (which uses the Microsoft Bing

projection) to download the images. We use the

TerraFly Map to determine the XY tile coordinates

for specific regions within Florida, keeping the

zoom level constant at 19. After determining those

coordinates, we pass the values to the Raster

API’s URL, and then we use web scraping to

download the images. Since we aim to integrate

the location feature into our CNN model, we need

to prepare a dataset of satellite images that also

have associated coordinates. To achieve this, we

converted each XY tile coordinates obtained from

the map to longitude and latitude by using the

following procedure:

A = X tile, B = Y tile coordinates (i)

pixelA = A * 256 + 128 (ii)

pixelB = B * 256 + 128 (iii)

sizeofMap = 256 * 2zoom (iv)

normA = (pixelA / (sizeofMap)) – 0.5 (v)

normB = 0.5 – (pixelB / (sizeofMap)) (vi)

Latitude=90 – (
360

𝜋
) * tan-1(exp(-2π*normB) (vii)

Longitude = 360 * normA (viii)

In our model, we use a specific zoom value of

19. To calculate the geohash code, we use the

values of the latitude and longitude obtained from

equations (vii) and (viii), as described in [12]. We

use the Python Geohash Library to convert the

latitude and longitude to geohash codes. In our

final step of dataset preparation, we map each

geohash code to the right images by using a

Python dictionary. The keys of the dictionary are

the filenames, and the values are the

corresponding geohash codes.

3. THE PROPOSED ARCHITECTURE

 Our CNN architecture utilizes ideas from [4]
and [5]. We apply convolutional layers that
incorporate both convolutional and deconvolution
operations, as described in [5]. We flatten the
multi-dimensional tensor into a single-dimensional
tensor output and apply the dense layer principle
the output, as suggested by Mnih [4]. We feed the
fully connected layer of the images into the CNN
to extract the feature map, which is used for
classifying the images according to their given
labels. Our CNN architecture differs from the one
presented in [6], as we focus on extraction that is
capable of detecting features in the images, rather
than extracting the spatial features of pixels in the
images. As we can observe in Figure 1, the CNN
architecture has three convolutional layers and
three max pooling layers. In each max pooling
layer, we downsample the dimension of each input
map by a factor of 2, resulting in a feature map of
size 32*32. Downsampling is a common approach

in neural networks to reduce memory usage
during computation and to enable high-level
feature extraction [13]. We flatten the resulting
feature map by applying a flatten layer, which
transforms it into a one-dimensional array of size
65,536. We then apply two separate dense layers
followed by a Softmax activation function. The final
dense layer has 4 units, as our model has 4
classes of satellite images and the probability
distribution is over those 4 classes.

In the first stage of our image classification
procedure, we use a satellite image dataset that
excludes geohash codes. We split the dataset into
a training set, a testing set, and a validation set,
with 80%, 10%, and 10% of the full dataset,
respectively. We have experimented with our
model using various numbers of epochs and batch
sizes, and have determined that using 60 epochs
with a batch size of 32 produces the best results.
In general, researchers tend to choose an optimal
number of epochs to achieve good accuracy in
complex models and prevent the model from
overfitting. A lower accuracy in the testing set
indicates that the model is overfitting. One reason
for this overfitting is the lack of a large amount of
data in our model, as we only had 300 images in
each class, with a total of 1200 images. CNNs
require a large dataset to extract complex features
and provide better accuracy in image classification
[13].

To address this problem, we have used data
augmentation strategies of deep learning, as
presented in [8], [14], and [15]. In terms of images,
data augmentation involves increasing the size of
the dataset by applying variations, such as rotating
images, changing the visual effects, etc., to the
existing images [14]. To increase the size of the
dataset, we have applied random horizontal
flipping, random rotation with approximately 8.62
degrees, and random zooming of 20% scale. The
data augmentation has helped to address the
problem of overfitting, but we have concluded that
we can further increase the overall accuracy of our
dataset by training our model using a pretrained
model, such as VGG16 and ResNet50, with the
concept of transfer learning. In the following
Subsection 3.1, we provide details on how we use
transfer learning in our model to improve overall
accuracy.

Figure 1: An illustration of the architecture of the CNN used. The template of the image has been obtained via

https://alexlenail.me/NN-SVG/LeNet.html.

16@256x256

16@128x128
32@128x12

32@64x64

64@64x64 64@32x32

1x128

1x4

Max-Pool Convolution Max-Pool Convolution Max-Pool Dense

https://alexlenail.me/NN-SVG/LeNet.html

3.1 Applying Transfer Learning

Transfer learning is a way to use a pretrained
model in a different but related model to solve the
problem of the lack of abundant data to extract
effective features and reduce the time required for
training the dataset [16]. Our idea on integrating
Transfer Learning is based on [9] and [17], and we
have selected VGG16 and ResNet50 as the two
pretrained models for our experiment. VGG16 is
one of the most widely used deep neural network
architectures; it consists of 13 convolutional layers
and 3 dense layers, and the model has been
trained on the ImageNet dataset [18]. Similarly,
ResNet50 is another widely used deep neural
network trained on the ImageNet dataset,
consisting of 50 layers in total; it enables the
network to assimilate residual functions rather
than underlying mappings [19].

To set up the model using the transfer learning
idea, we first remove the final connected layer of
the VGG16 model. Then, we use the pretrained
weights, and we set up the desired input shape to
256*256*3, the same shape that matches the input
shape of the images in our original dataset. We
freeze all the pre-trained layers and use only pre-
trained weights to extract features, training the two
new dense layers to predict new images in the
dataset. The output of the flatten layer obtained
from the pretrained model is passed to the first
dense layer with 256 neurons, followed by the
Relu activation function. In addition to this, we
apply the Dropout function to the output from the
dense layer to prevent overfitting in our model.
Thereafter, we apply the final fully connected layer
with 4 output nodes to obtain the probability
distribution among 4 classes to predict the images
followed by the Softmax activation function. We
follow the same procedure when using the
ResNet50 model. Once both models were ready,
we experimented with them in our dataset.
However, we have found misclassification in some
of our data, which was further hindering the
accuracy. To improve the accuracy, we integrate
location coordinates in our image classification
model in Subsection 3.2.

3.2 Integration of Location as Geohash Codes

Our goal is to increase the accuracy of satellite
image classification in the downloaded dataset by
integrating location information. We have decided
to use geohash codes obtained from the
conversion of latitude and longitude values.
Geohash is a type of data structure used with
spatial data that provide an encoding of latitude
and longitude [20]. We are motivated to use
geohash codes because locations with long
common geohash prefixes are generally located
nearby each other [20]. Our dataset contains
satellite images downloaded within Florida, and
there is a correlation between geographical
location and image content. Images of houses and
buildings are in two different classes, and some of
these images might be misclassified if the model

only considers visual characteristics because
building images and house images captured from
satellites have some visual similarity. In our
dataset, two images of houses or buildings tend to
be nearby each other as they have been
downloaded by specifying the tiles coordinates.
We believe that we can exploit this idea in our
model by using geohash codes and prevent the
misclassification of data.

We have experimented with the location
concept by incorporating geohash codes into the
VGG16 pretrained model. We have converted
each geohash code into a floating-point value
since neural networks typically deal with numerical
values rather than strings. Next, we add a new
input layer for the geohash code and concatenate
the flattened layer containing the weight features
of VGG16 with the geohash codes, as shown in
Figure 2. We then apply the same dense layers
noted in Subsection 3.1 to extract the features that
assist in the prediction of new images. We follow
the same procedure of concatenation geohash
code with the output layer in ResNet50.

Finally, we integrate location information, i.e.,
geohash codes, into our CNN architecture. We
concatenate the feature map induced by applying
3 convolutional and 3 pooling layers with geohash
codes to obtain a combined feature vector. We
then follow the same procedure as noted above
and apply a flatten layer and a dense layer,
respectively, to the combined feature vector. We
have experimented with our models using 60
epochs and a batch size of 32 to obtain accuracy.

4. COMPUTATIONAL RESULTS

We have sequentially tested all the models,
starting from the CNN architecture that only
extracts features from the image without
concatenating the geohash codes. Our intent is
not just to check the accuracy in the dataset but
also to analyze whether the model is overfitting by
checking how well it performs on unseen image
data. We use the Top-1 accuracy metric to check
accuracies on all the models. Our CNN
architecture yields an accuracy of 0.9244 on the
training set but only 0.8842 on the testing set,
indicating overfitting due to the limited size of the
dataset. To address this issue, we apply data
augmentation to the dataset, and our CNN
architecture can generate approximately 0.9185
accuracy on the testing dataset and 0.9253 on the
training set. Even though data augmentation helps
to increase the dataset, it still lacks the power to
generalize efficient feature extraction. So, we
utilize transfer learning by using pretrained
models, VGG16 and ResNet50, for efficient
feature extraction that could be used to obtain
better accuracy in our dataset. Having tested
these models on all the datasets, we achieve an
accuracy of approximately 0.9456 on the testing
set and 0.9529 on the

Figure 2: An illustration of the architecture obtained by integrating geohash codes into the CNN (including pretrained models)

architecture.

training set for VGG16, as well as approximately
0.9516 on the testing set and 0.9576 on the
training set for ResNet50, respectively.

Similarly, as mentioned in Subsection 3.2
above, to integrate location as an additional
feature, we initially integrate the geohash codes
with VGG16 and ResNet50 pretrained models. We
achieve top-1 accuracies of 0.9789 on the testing
set and 0.9769 on the training set using the
combined VGG16 and geohash feature
architecture, and top-1 accuracies of 0.9812 on
the testing set and 0.9795 on the training set using
the combined ResNet50 and geohash feature
architecture. Finally, we experimented with
integrating location information into our CNN
architecture by concatenating the geohash codes
with the image features. By doing so, we are able
to increase the top-1 accuracy on the testing set
from 0.9185 to 0.9542 and on the training set from
0.9253 to 0.9512 by incorporating location as a
feature.

From the results mentioned above, we can see
that incorporating the geohash coding feature has

led to an improvement in our classification
accuracy. In each model, after integrating
geohash as a location feature, there is an increase
of top-1 accuracy by 2 to 3 percentage points. The
reason for the small increases in the accuracies is
because of the small size of the dataset. We have
observed misclassifications mainly among house
and building images, as they have a resemblance,
but the number of misclassifications is relatively
small due to our small dataset size. However, we
can mitigate these misclassifications by utilizing
geohash codes to differentiate between these
images with similar features.

We present the results and comparisons of all
the models mentioned above in Table 1. The
notations used in Table 1 are as follows:

o 𝐴𝑐𝑐. – accuracy in the testing set
(general accuracy of the model);

o AccT – accuracy in the training set;
o 𝐿𝑜𝑠𝑠 – categorical cross-entropy loss in

our multi-class classification model;

Table 1. Results and comparisons among our models based on the accuracy

Method Acc. AccT Loss

CNN (only) 0.8842 0.9244 0.8272

CNN + Data Augmentation 0.9185 0.9253 0.4380

VGG16 (CNN) 0.9456 0.9529 0.2549

RestNet50 (CNN) 0.9516 0.9576 0.1590

CNN + Data Augmentation + Geohash Code 0.9542 0.9512 0.0954

VGG16 (CNN) + Geohash Code 0.9789 0.9769 0.0443

ResNet50 (CNN) + Geohash Code 0.9812 0.9795 0.0394

 As shown in Table 1, the proposed CNN model,
as well as the VGG16 and ResNet50 models,
show improved accuracy after the integration of
geohash codes. As shown in the table, the
categorical cross-entropy loss decreases after the
geohash codes have been applied, indicating that
the models are able to make predictions that are
closer to the true class membership probabilities.
The lower loss value and similar accuracy on both
the training and testing datasets suggest that the
model is not overfitting to the training data.

5. CONCLUSION

This paper analyzes the limitations of using only
image features in multi-class satellite image

classification using CNNs. In multi-class satellite
image classification, CNN architectures tend to
make false predictions when there is a high
degree of visual similarity between images from
different classes. This issue is addressed by
integrating geohash codes as an additional feature
in the CNN model. With the additional geohash
code feature map, the CNN model is able to make
more accurate predictions.

According to the results presented in this paper,
we can deduce that geohash codes can be used
as an additional feature vector in the CNN
architecture to make correct predictions and
increase accuracy in satellite image classification.
However, this may not apply in scenarios where

there is no correlation between geographical
location and image content. To build a robust
model for satellite image classification, it is
important to take into account a range of factors,
such as the size and preprocessing of the dataset,
integrating additional feature vectors, the risk of
overfitting, and the CNN architecture itself. This is
because even a well-designed architecture may
produce poor results if there is insufficient data or
if the data has not been efficiently preprocessed.

In the future, we plan to explore the use of
hybrid models in satellite image classification. The
K-NN machine learning algorithm will be one of
our focuses to identify the K-number of images
that are most similar to each other based on their
geohash codes, and then to automatically classify
them into their respective classes. This approach
has the prospect of increasing the accuracy of
classifying images that are difficult to distinguish
based on visual features alone, and may enable
real-time classification of satellite imagery for
applications such as disaster management and
environmental monitoring.

ACKNOWLEDGMENT

This material is based in part upon work supported
by the National Science Foundation under Grant
Nos. MRI20 CNS-2018611, MRI CNS-1920182,
B-BROIPS FDEP C-2104, and DHS E2055778.

REFERENCES

[1] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey

of Convolutional Neural Networks: Analysis,
Applications, and Prospects,” IEEE Transactions on
Neural Network Learning Systems, vol. 33, no. 12, pp.
6999–7019, Dec. 2022, doi:
10.1109/TNNLS.2021.3084827.

[2] W. Rawat and Z. Wang, “Deep convolutional neural
networks for image classification: A comprehensive
review,” Neural Computing, vol. 29, no. 9, pp. 2352–
2449, Sep. 2017, doi: 10.1162/NECO_A_00990.

[3] N. Aloysius and M. Geetha, “A review on deep
convolutional neural networks,” Proceedings of the
2017 IEEE International Conference on
Communication and Signal Processing, ICCSP 2017,
vol. 2018-January, pp. 588–592, Feb. 2018, doi:
10.1109/ICCSP.2017.8286426.

[4] V. Mnih, “Machine Learning for Aerial Image
Labeling,” 2013.

[5] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez,
“Convolutional Neural Networks for Large-Scale
Remote-Sensing Image Classification,” IEEE
Transactions on Geoscience and Remote Sensing,
vol. 55, no. 2, pp. 645–657, Feb. 2017, doi:
10.1109/TGRS.2016.2612821.

[6] F. Zhang, M. Yan, C. Hu, J. Ni, and Y. Zhou,
“Integrating Coordinate Features in CNN-Based
Remote Sensing Imagery Classification,” IEEE
Geoscience and Remote Sensing Letters, vol. 19,
2022, doi: 10.1109/LGRS.2020.3045744.

[7] K. Tang, M. Paluri, L. Fei-Fei, R. Fergus, and L.
Bourdev, “Improving Image Classification With
Location Context.” pp. 1008–1016, 2015.

[8] J. Wang and L. Perez, “The Effectiveness of Data
Augmentation in Image Classification using Deep
Learning”.

[9] R. P. de Lima and K. Marfurt, “Convolutional Neural
Network for Remote-Sensing Scene Classification:

Transfer Learning Analysis,” Remote Sensing 2020,
Vol. 12, Page 86, vol. 12, no. 1, p. 86, Dec. 2019, doi:
10.3390/RS12010086.

[10] C. Zhou, H. Lu, Y. Xiang, J. Wu, and F. Wang,
“GeohashTile: Vector Geographic Data Display
Method Based on Geohash,” ISPRS International
Journal of Geo-Information 2020, Vol. 9, Page 418,
vol. 9, no. 7, p. 418, Jun. 2020, doi:
10.3390/IJGI9070418.

[11] K. Huang, G. Li, and J. Wang, “Rapid retrieval
strategy for massive remote sensing metadata based
on GeoHash coding,”
https://doi.org/10.1080/2150704X.2018.1508907,
vol. 9, no. 11, pp. 1070–1078, Nov. 2018, doi:
10.1080/2150704X.2018.1508907.

[12] R. Moussalli, M. Srivatsa, and S. Asaad, “Fast and
flexible conversion of geohash codes to and from
latitude/longitude coordinates,” Proceedings - 2015
IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM
2015, pp. 179–186, Jul. 2015, doi:
10.1109/FCCM.2015.18.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional
neural networks,” Commun ACM, vol. 60, no. 6, pp.
84–90, May 2017, doi: 10.1145/3065386.

[14] J. Shijie, W. Ping, J. Peiyi, and H. Siping, “Research
on data augmentation for image classification based
on convolution neural networks,” Proceedings - 2017
Chinese Automation Congress, CAC 2017, vol. 2017-
January, pp. 4165–4170, Dec. 2017, doi:
10.1109/CAC.2017.8243510.

[15] A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard,
“Adaptive data augmentation for image classification,”
Proceedings - International Conference on Image
Processing, ICIP, vol. 2016-August, pp. 3688–3692,
Aug. 2016, doi: 10.1109/ICIP.2016.7533048.

[16] R. Ribani and M. Marengoni, “A Survey of Transfer
Learning for Convolutional Neural Networks,”
Proceedings - 32nd Conference on Graphics,
Patterns and Images Tutorials, SIBGRAPI-T 2019,
pp. 47–57, Oct. 2019, doi: 10.1109/SIBGRAPI-
T.2019.00010.

[17] D. Theckedath and R. R. Sedamkar, “Detecting Affect
States Using VGG16, ResNet50 and SE-ResNet50
Networks,” SN Comput Sci, vol. 1, no. 2, pp. 1–7, Mar.
2020, doi: 10.1007/S42979-020-0114-9/TABLES/5.

[18] K. Simonyan and A. Zisserman, “Very Deep
Convolutional Networks for Large-Scale Image
Recognition,” 3rd International Conference on
Learning Representations, ICLR 2015 - Conference
Track Proceedings, Sep. 2014, Accessed: Mar. 20,
2023. [Online]. Available:
https://arxiv.org/abs/1409.1556v6

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition.” pp. 770–778, 2016.
Accessed: Mar. 20, 2023. [Online]. Available:
http://image-net.org/challenges/LSVRC/2015/

[20] K. Lee, R. K. Ganti, M. Srivatsa, and L. Liu, “Efficient
Spatial Query Processing for Big Data,” 2014, doi:
10.1145/2666310.2666481.

Arpan is a Ph.D. student at the Florida International University.
He is currently working as a research assistant at the High
Performance Database Research Center (HPDRC) lab. His
primary research is focused on the domain of neural network
and geospatial data. At present, he is doing research on
advanced deep learning models like Recurrent Neural
Networks (RNN) and Transformers, with the goal of applying
these models to various unique domains.

Rishe [http://cake.fiu.edu/Rishe] is the inaugural outstanding
university professor for Florida International University (FIU).
He is a professor at FIU’s Knight Foundation School of
Computing and Information Sciences. Rishe is the Director of
FIU’s High-Performance Database Research Center. aFrom
2013 to 2022, Rishe was the executive director of a multi-

http://cake.fiu.edu/Rishe

university Center for Advanced Knowledge Enablement
sponsored by the National Science Foundation’s industry-
university cooperation program. Rishe’s research has been
funded by the U.S. Government and Industry at over $50
million. Rishe’s inventions include 26 U.S. patents. Rishe is a
Fellow medalist of the National Academy of Inventors. In 2021,
Rishe received the IBM Global University Programs award.
Rishe’s publications include 440 papers and six books. Rishe’s
pioneering geospatial system TerraFly has been highlighted by
the National Science Foundation in its reports to U.S.
Congress.

4. Spatiotemporal Model
of Real Estate Valuation
Trends.15pp

Follows

1

Rishe, Naphtali; Tamir, Dan; and Adjouadi, Malek

Abstract: Presented here is a model
objectivizing real estate prices so that prices
across time could be compared to understand
historical price trends and also to assist in a
property evaluation or appraisal, as well as for the
analysis of comparables in estimating a
reasonable offer for a property on the market.
Given a timespan of interest, a locale (e.g., a
particular zipcode, a city, a county, a state), a
category of properties of interest (e.g., condos),
an objective historical trend in values can be
computed by first evaluating the ratios between
the transactions’ realized prices and objective
governmental assessment of the properties at
some fixed point of time; then, for each period (a
month) averaging the ratios of all transaction in
that period; then, comparing said averages (or
medians) between different periods.

Index Terms: Automatic Valuation Model,
Geospatial Data Trend Analysis, House Price
Trend Analysis, Real Estate, Spatiotemporal
Extrapolation, Spatiotemporal Interpolation,
Spatiotemporal Summarization

1. BACKGROUND
Various services and methods exist for the

estimation of the change over time in real estate
prices in any given locale. Said prior models
typically compute the average or median sale
price in the locale during each period and then
compare said statistics between the various
periods. Some of said prior models can also
focus their comparison on specific property
categories, e.g., single-family homes or condos,
and may further narrow the categories down,

Manuscript received April 11, 2023.
Naphtali Rishe is at the Knight Foundation School of

Computing and Information Sciences, Florida International
University, Miami, FL, USA (e-mail: rishe@cs.fiu.edu)

Dan Tamir is at the Texas State University, San Marcos, Texas,
USA (e-mail: dt19@txstate.edu)

Malek Adjouadi is at the Department of Electrical and
Computer Engineering, Florida International University, Miami,
FL, USA (e-mail: adjouadi@fiu.edu).

Correspondence email is rishe@cs.fiu.edu
U.S. patent pending.

e.g., 3-bedroom homes or houses of 2000-2500
interior square feet. Yet, in said prior models,
there is, in fact, a comparison of apples to
oranges. Even in a small locale, e.g., a zipcode,
and even in a narrow category, there are vastly
different properties being averaged. This
creates a statistical bias when different periods
are compared since in one period there could
dominate sales of quality-built properties with a
view, while in another period, lesser properties
could dominate. This bias becomes even
stronger when larger areas are analyzed, e.g., at
the county or state level, because demographic
changes can favor sale activity more in cheaper
subareas in one period and in more exclusive
subareas in another period.

Models exist comparing price per unit of size,
e.g., price per interior square foot of a home.
However, that too comingles residences with a
view and residences without a view, well-built
houses to poorly built; further accounting for one
size metric, such as interior area, ignores other
size metrics, such as the lot size.

A recent improvement to Automatic Valuation
Models (AVM) [1-4] of properties includes the
computation of ratios of actual sale prices to
government-assessed values and the
extrapolation of such ratios for the valuation of a
specific property.

2. THE PRESENT METHOD
Presented here is a model objectivizing real

estate prices so that prices across time can be
compared to understand historical price trends
and also to assist in property evaluation or
appraisal, as well as for the analysis of
comparables in estimating a reasonable offer for
a property on the market.

In order to objectivize and normalize real
estate transactions across a locale and a time
period, we need to have a metric of valuation of
properties that was consistent among all the
properties in the locale at some point in time.
Said point in time of the objective metric does
not need to be within said period. Further, said
metric does not have to represent the true value

Spatiotemporal Model of Real Estate
Valuation Trend

mailto:rishe@cs.fiu.edu
mailto:dt19@txstate.edu
mailto:adjouadi@fiu.edu
mailto:rishe@cs.fiu.edu

2

of each property at said point in time; rather, it
has to be consistently related or proportional to

the true value. Said relationship does not have
to be a precise linear proportion, nor does it
have to be truly consistent in 100% of the cases
since we only need that metric for a statistical
aggregation of large numbers of cases. A good
candidate for said metric is property valuation by
local government tax assessors, particularly the
tax appraisal offices in most counties in the
United States. Said offices typically invest
immense effort in the attempt of consistent
valuation of all the properties under their
jurisdiction, taking into account quantitative

metrics (such as the size of the interior, the size
of the lot, year built, year renovated, the ground
elevation, the floor level elevation of a condo in
a building, the costs of improvement made
based on the permits filed, etc.) and qualitative
metrics (location, exposure, view, special
features, etc.). For example, in Florida, the
county assessor offices determine what they call
the “just value” of the properties as of January 1
of the assessment year. In order to minimize
litigation, the assessor’s office typically sets the
“just value” at 10-20% below the true value,
which does not affect the algorithm presented
here as long as said discount is reasonably
consistent.

3

Figure 1: Annual property valuation by a county assessor

It should be noted that government offices
sometimes provide multiple types of valuations
for tax purposes. The following example shows
the various official “valuations” available from
Florida counties. Among these valuations, the
only meaningful one for the present purposes is

the “Just Value.” The other valuations either
reflect only a part of the property value (e.g., the
Land Value and the Improvement Value)
affected by the demographics of the property
owner and, thus, are not meaningful for
understanding the true value of the property.

4

Figure 2: Meta-data of various property valuations by county assessor offices in Florida; the “Just Value” is an objective valuation.

The method proposed herein compares the
transactional sale price of each property, no
matter when, to one time-fixed metric of an
objective valuation in order to evaluate the ratio
by which the realized price is above (or below)
said metric. That is, this ratio is the ratio
between the realized price and said objective
metric. In the example of this figure, sales at
different times are compared to the county’s
“Just Value” as of January 1, 2021, to compute

the Ratio factor. Notice that Row 3 in the table
contains an obvious data entry error. Therefore,
there can be a data-cleansing process in order
to disregard outliers that are outside a
reasonable range. Data about the realized
prices of each transaction can be obtained from
proprietary databases, such as those provided
by data consolidators, from county or state
records, or from the Real Estate Multiple Listing
Service (MLS), as in the following figure.

5

Figure 3: Ratios of the realized price, at various times, to the County “Just Value” of 2021-0-01. Row 3 is an outlier to be

disregarded.

The Ratio thusly computed is an objective
comparison metric between different sale
transactions in a locale at close times or across
long timespans.

To better compare sale transactions over time
within a locale, we can subdivide properties into
categories because it is possible that in different
property categories, prices increased at different
paces. For example, we can consider two

6

categories of properties: single-family homes vs.
condominium apartments.

Next, we consider a locale of interest, e.g.,
Zipcode 33175; a category of interest, e.g.,
Houses (single-family homes); and a timespan
of interest, e.g., from January 1, 2006, through
December 31, 2007. We subdivide said
timespan into periods, e.g., calendar months. In
each period, for each sale transaction, we
evaluate the Ratio of the price to the fixed
objective metric, e.g., the 2021 County “Just

Value.” We can exclude outlier transactions
based on any criteria of outlier exclusion. For
each period, we evaluate a representative
statistical aggregator of the ratios, e.g., the
average of the ratios or the median of the ratios,
of all the relevant sale transactions. We can
further exclude months with a very low number
of transactions, e.g., less than 6, to avoid the
possibility of excess weight of any single
transaction, which may cause bias in statistical
analysis across time.

Figure 4: The number of sale transactions in each month in 2006-2007 in Zipcode 33175, excluding outliers, and the median of their

ratios of the sale price to the fixed objective metric of the county valuation as of 1/1/2021; months with less than six transactions
(September 2007) are excluded.

To facilitate human comprehension of said
average (or median) ratios, we can normalize
them to a specific period (month) as the base,
e.g., the beginning month of said timespan, i.e.,
by computing the Factor as the median Ratio of

any given month divided by the median Ratio of
the base period. Thereby average (or median)
prices can be expressed as the percentage
increase (or decrease) since the base month, as
in the following figures.

7

Figure 5: Normalization of the median ratios (the realized prices divided by the 2021 county valuation) to Month 2006-02, i.e.,

dividing by the median Ratio of 2006-02, whereby; the last column shows the percentage increase since 2006-02.

Figure 6: Normalization of the median ratios (the realized prices divided by the 2021 county valuation) of January-June 2022 to
February 2006, i.e., dividing by the median Ratio of 2006-02; the last column shows the percentage increase since 2006-02.

8

For better understanding by users, said
factors can be presented as a graph, as in the

following figure.

Figure 7: Chart of the change in the median ratios (the realized prices divided by the 2021 county valuation) in comparison to

February 2006, for houses in Zipcode 33175.

Said chart informs how property values in the
locale changed over time. The locale can be of
any size as long as there are enough sale
transactions therein to make a statistically
significant analysis. The example in the

following figure shows entire Southeast Florida
as one locale and differentiates two property
categories: condominium units and single-family
homes.

9

Figure 8: Charts of the change in the median ratios (the realized prices divided by the 2021 county valuation) in comparison to

February 2006, for houses and condos in Southeast Florida.

3. PSEUDO-CODE

1. MLS := database of all multiple-listing service
real estate transactions in SE Florida

2. State_Parcels := database of county
valuations of all properties in Florida as of a
fixed date, e.g., 1/1/2021

3. Allreal := inner join on the field of
FOLIO_NUMBER of the MLS and Parcel
databases:

 MLS [FOLIO_NUMBER] State_Parcels;

and projection of said join to all the fields on
of MLS plus the field Just_Value
from State_Parcels, i.e.:

Allreal := select MLS.*, State_Parcels.Just_Valu
e from MLS, State_Parcels where MLS.Folio_n
br=State_Parcels.Folio_nbr

4. Zipcodes := all the zip codes in Allreal, i.e.:

 Zipcodes := select unique Zipcode from Allreal

5. for every zipcode in Zipcodes do {

 5.1. Sub_Allreal := select * from Allreal
 where Allreal.Zipcode = zipcode

 5.2. Months := select unique (Closing_Date as

10

yyyy-mm-dd).substring(1,7) from Sub_Allreal

5.3. for each month in Months
 let Factor[zipcode,month] :=
select median (Closing_Price/Just_Value)
from Sub_Allreal
where Closing_Date is within month

5.4. reference_month := minimum(Months) (Any
month can be chosen to serve as the reference,
in particular, it could be the minimum (earliest)
month or the maximum (latest) month.)

5.5. Display or plot
Factor[zipcode,*] /
Factor[zipcode,reference_month]
}

4. ALTERNATIVE MODEL WITH CONTRACT-
PENDING DATES

The closing date of property sale transactions
has an imperfection in its utility to assess the

contemporary market sentiment. That is
because the market sentiment is manifested at
the time of the execution of a contract for
purchase and sale between the buyer and the
seller, while the closing of the transaction
typically occurs a month or a couple of months
later. To capture the timeliness of the market
sentiment more precisely, we can look at
transactions that have closed, but we date them
at the purchase contract’s effective date rather
than at the closing date. Said purchase contract
date can typically be obtained from MLS
(multiple listing service) data sources (where it is
often called the “Pending Date,” i.e., the date the
property went under a purchase contract and
became pending closing), like in the following
figure.

11

Figure 9: MLS data showing the Contract-Pending Date, in addition to the Closing Date, as well as the ratio of the closed sale price

to the 2021 county valuation.

By reanalyzing the same data for sales closed
between January 2006 and June 2012, we get a
chart more accurately showing the timely market

sentiment during most periods, as in the
following figure.

12

Figure 10: Charts of the change in the median ratios (the realized prices divided by the 2021 county valuation) in comparison to
February 2006, for houses and condos in Southeast Florida, using the dates of purchase contracts rather than the closing dates.

Although in this model we have more accurate
market sentiment analysis in most periods, we
do have noise bias at the edges. The two
rightmost data points in this example aggregate
properties closed by June 2022 but contracted
for purchase in May or June 2022 (because the
chosen timespan in this example is user-defined
as properties closed from 1/2006 to 6/2022).
Because the time elapsing between the contract
date and the closing date in said May and
June’s data is very short, these data points are
biased towards cash sales (not contingent on
mortgages), which often allow the buyer to
negotiate lower prices. This bias can be
excluded by disregarding the rightmost edge of
the chart. There is also a bias noise at the left

edge of the chart because the leftmost points
include few but unusual transactions with
contract dates as early as April 2005 that were
closed in January 2006 or later. This bias can
be excluded by disregarding the transactions
where the purchase contract date is prior to the
beginning of the user-chosen timespan (in this
example, January 2006).

5. HIERARCHY OF LOCALES
Large locales, e.g., states and metropolitan

areas, can be partitioned into smaller locales,
e.g., townships and zipcodes, thus enabling the
comparison of a locale to its neighbors as well
as to its subsuming locales, as follows.

13

Figure 11: Partitioning Southeast Florida into a hierarchy of smaller locales

14

6. STATISTICAL AGGREGATORS AND OUTLIERS
A representative statistical aggregator function

is a function that matches any set of numbers to
a single number intended to be a typical
representative of said set. Examples of
representative statistical aggregator functions
are:

• Median (“Pure Median”)
• Average (“Pure Average”)
• Average of the input set’s elements

excluding the lowest 10% and the
highest 10% of said set

• 0.5*Median+0.5*Average
• 0.3*Median+0.7*(Average of the input

set’s elements excluding the lowest 5%
and the highest 9% of said set)

• Average of the input set’s elements,
excluding those elements that are
outside predefined outlier thresholds of
minimum 0.5 and maximum 1.5.

The present method involves the computation
of a representative statistical aggregator function
of all the purchase transactions in a given locale
during a given period.

The easiest such aggregator function to
compute is Pure Average. Among various
statistical concerns with the Pure Average
function, it may deliver significantly misleading
results if the input data is not pre-cleansed off
outliers. The Pure Median aggregator is more
resilient to outliers, yet it still can benefit from the
pre-cleansing of outliers. Outliers can be the
result of

(a) erroneous data entry or
(b) the inclusion of esoteric transactions.

From the data cleansing algorithms’ point of
view, there are several types of outlier cleansing
that can be applied to a dataset of said ratios
between transactional prices and the fixed-date
objective valuation.

• Fixed threshold: disregard transactions
with ratios outside of a given range, e.g.,
the range of 0.5 to 3.0.

• Percentage threshold: for a given category
of properties, locale, and period,
disregard certain percentages of the
lowest and the highest ratios, e.g., the
lowest 10% and the highest 5%.

• Statistically insignificant periods: for a
given category of properties, locale, and
period, if the number of the otherwise
qualified transactions in the period is very
small, e.g., less than 6, disregard all
these transactions, i.e., skip this period
for this locale (and for trend presentation
purposes, interpolate this period form
neighboring periods).

• Date-dependent threshold: for transaction
dates far removed from the fixed year of
the valuation, allow more liberal
thresholds than those close to the
valuation year. For example, if the
objective valuation date is 1/1/2021, then
for transactions in year y, where y<2021,
e.g., y=2010, set the minimum threshold
to 0.7-0.05*(2021-y).

• Semantic outliers that involve analysis of
additional data fields, for example:

o If there is a data field indicating that
this is a foreclosure sale,
disregard the transaction for
being esoteric, with the expected
price being too low.

o Likewise, for short sales.
o If there is a data field showing when

the house was built (what in the
governmental language is called
“year of property improvement”),
then disregard the transactions
where said improvement date
falls in between the transaction
date and the fixed objective
valuation date – this would
prevent, e.g., the incorrect
relating of the sale price of a
building to the appraised value of
bare land before the building was
built).

7. PROTOTYPE DEPLOYMENT
We have deployed a system for Southeast

Florida based on the algorithms presented here.
Using county and MLS data, the system
computes the value trend using transaction
closing dates [5] and contract dates [6]. The
model is computed for nested areas down to a
zipcode and the category of condos vs. single-
family homes. For example, the price trend of
condominium apartments in Zipcode 33140 is at
[7], and for houses is at [8]. The contract-date
model for houses and condos in Zipcode 33140
is at [9] and [10].

AUTHORS’ CONTRIBUTIONS
Conceptualization: Rishe; Methodology: Rishe

and Adjouadi; Investigation: Rishe, Tamir, and
Adjouadi; Writing: Rishe and Tamir; Statistics:
Tamir; Funding acquisition: Rishe and Adjouadi.
All the authors of this paper concur with its
content and consent to its publication.

15

ACKNOWLEDGMENT
This material is based in part upon work

supported by the National Science Foundation
under Grant Nos. MRI20 CNS-2018611, MRI
CNS-1920182, B-BROIPS FDEP C-2104, and
DHS E2055778.

REFERENCES
[1] Lind, H.; Nordlund, B. Advanced Issues in Property

Valuation; John Wiley & Sons: Hoboken, NJ, USA,
2021.

[2] Francois, P. Comment on Artificial Intelligence and
Economic Growth. In The Economics of Artificial
Intelligence: An Agenda; Agrawal, A., Gans, J.,
Goldfarb, A., Eds.; University of Chicago Press:
Chicago, IL, USA, 2018; pp. 282–289.

[3] International Valuation Standards Council (IVSC).
2021. International Valuation Standards (IVS).
Available online: https://www.ivsc.org/standards/

[4] The Appraisal Foundation. 2020-2021. The Uniform
Standards of Professional Appraisal Practice
(USPAP). Available
online: https://www.appraisalfoundation.org/iMIS/TA
F/USPAP.aspx

[5] Real Estate Price Trend in SE Florida, Closing Date
Model.
http://n6.cs.fiu.edu/scripts/Real_estate_trend/

[6] Real Estate Price Trend in SE Florida, Contract Date
Model.
https://n6.cs.fiu.edu/scripts/Real_estate_trend,_Cont
ract_Date_Model/

[7] Real estate sale price trend in 33140 Miami Beach
Condos.
http://n6.cs.fiu.edu/scripts/Real_estate_trend/33140.
Condos.Miami_Beach.htm

[8] Real estate sale price trend in 33140 Miami Beach
Houses.
http://n6.cs.fiu.edu/scripts/Real_estate_trend/33140.
Houses.Miami_Beach.htm

[9] Real estate sale price trend in 33140 Miami Beach
Houses, Contract Date Model.
http://n6.cs.fiu.edu/scripts/Real_estate_trend,_Contr
act_Date_Model/33140.Houses.Miami_Beach.htm

[10] Real estate sale price trend in 33140 Miami Beach
Condos, Contract Date Model.
http://n6.cs.fiu.edu/scripts/Real_estate_trend,_Contr
act_Date_Model/33140.Condos.Miami_Beach.htm

Rishe [http://cake.fiu.edu/Rishe] is the inaugural outstanding
university professor for Florida International University (FIU).
He is a professor at FIU’s Knight Foundation School of
Computing and Information Sciences. Rishe is the Director of
FIU’s High-Performance Database Research Center. From
2013 to 2022, Rishe was the executive director of a multi-
university Center for Advanced Knowledge Enablement
sponsored by the National Science Foundation’s industry-
university cooperation program. Rishe’s research has been
funded by the U.S. Government and Industry at over $50
million. Rishe’s inventions include 26 U.S. patents. Rishe is
a Fellow medalist of the National Academy of Inventors. In
2021, Rishe received the IBM Global University Programs
award. Rishe’s publications include 440 papers and six
books. Rishe’s pioneering geospatial system TerraFly has
been highlighted by the National Science Foundation in its
reports to U.S. Congress.

Tamir [https://userweb.cs.txstate.edu/~dt19/] is an associate
professor in the Department of Computer Science at the
Texas State University. He obtained the PhD-CS from Florida
State University and the MS/BS-EE from Ben-Gurion
University, Israel. He has managed applied research and

design in DSP Core technology in Motorola-SPS/Freescale.
He has served as an assistant/associate professor at the CS
Department at Florida Tech, has served as a member of the
MPEG committee and has worked in the Applied Research
Division, Tadiran, Israel.

Adjouadi is the WARE Distinguished Professor at FIU’s
Department of Electrical and Computer Engineering. Since
1993, Adjouadi has directed the FIU Center for Advanced
Technology and Education [http://cate.fiu.edu]. Adjouadi’s
doctorate is from the University of Florida (1985).

https://www.ivsc.org/standards/
https://www.appraisalfoundation.org/iMIS/TAF/USPAP.aspx
https://www.appraisalfoundation.org/iMIS/TAF/USPAP.aspx
http://n6.cs.fiu.edu/scripts/Real_estate_trend/
https://n6.cs.fiu.edu/scripts/Real_estate_trend,_Contract_Date_Model/
https://n6.cs.fiu.edu/scripts/Real_estate_trend,_Contract_Date_Model/
http://n6.cs.fiu.edu/scripts/Real_estate_trend/33140.Condos.Miami_Beach.htm
http://n6.cs.fiu.edu/scripts/Real_estate_trend/33140.Condos.Miami_Beach.htm
http://n6.cs.fiu.edu/scripts/Real_estate_trend/33140.Houses.Miami_Beach.htm
http://n6.cs.fiu.edu/scripts/Real_estate_trend/33140.Houses.Miami_Beach.htm
http://n6.cs.fiu.edu/scripts/Real_estate_trend,_Contract_Date_Model/33140.Houses.Miami_Beach.htm
http://n6.cs.fiu.edu/scripts/Real_estate_trend,_Contract_Date_Model/33140.Houses.Miami_Beach.htm
http://n6.cs.fiu.edu/scripts/Real_estate_trend,_Contract_Date_Model/33140.Condos.Miami_Beach.htm
http://n6.cs.fiu.edu/scripts/Real_estate_trend,_Contract_Date_Model/33140.Condos.Miami_Beach.htm
http://cake.fiu.edu/Rishe
http://cate.fiu.edu/

5. Towards Real-time
House Detection in
Aerial Imagery Using
Faster Region-based
Convolutional Neural
Network.9pp

Follows

Ahmed, Khandaker Mamun; Ghareh Mohammadi, Farid; Matus, Manuel; Shenavarmasouleh,
Farzan; Manella Pereira, Luiz; Ioannis, Zisis; Amini, M. Hadi

Abstract: In the past few years, automatic building
detection in aerial images has become an
emerging field in computer vision. Detecting the
specific types of houses will provide information
in urbanization, change detection, and urban
monitoring that play increasingly important roles
in modern city planning and natural hazard
preparedness. In this paper, we demonstrate the
effectiveness of detecting various types of houses
in aerial imagery using Faster Region-based
Convolutional Neural Network (Faster-RCNN).
After formulating the dataset and extracting
bounding-box information, pre-trained ResNet50
is used to get the feature maps. The fully
convolutional Region Proposal Network (RPN)
first predicts the bounds and objectness score of
objects (in this case house) from the feature
maps. Then, the Region of Interest (RoI) pooling
layer extracts interested regions to detect objects
that are present in the images. To the best of our
knowledge, this is the first attempt at detecting
houses using Faster R-CNN that has achieved
satisfactory results. This experiment opens a new
path to conduct and extent the works not only for
civil and environmental domain but also other
applied science disciplines.

Index Terms: RCNN, Neural Network, Deep
Learning, Convolution, Mini batch

1. INTRODUCTION
In this section, we present the motivation for

the development of an application to detect
houses in aerial images. Subsequently, we
discuss the prior works that have recently been
published and explain how our proposed
framework can be beneficial in the modern
urbanized world. We also show the novelty of

Manuscript received February 13, 2023.

 Corresponding Author: M. Hadi Amini, moamini@fiu.edu
Khandaker Mamun Ahmed, M. Hadi Amini and Luiz Manella
Pereira are with the Knight Foundation School of Computing and
Information Sciences, Florida International University (FIU),
Miami, FL, USA; and the Sustainability, Optimization, and
Learning for InterDependent networks laboratory (solid lab), FIU,
Miami, FL, USA
 Farid Ghareh Mohammadi is with the Department of Radiology,
Center for Augmented Intelligence (CAI), Mayo Clinic,
Jacksonville, FL, USA
 Manuel Matus and Ioannis Zisis is with the Dept. of Civil &
Environ. Engineering Florida International University, Miami, FL,
USA
Farzan Shenavarmasouleh is with the R&D Department, MediaLab
Inc., GA, USA

this paper, which is followed by a brief
description of the paper’s organization.

1.1 Motivation

 House detection is an important problem in
computer vision and pattern recognition which
has gained considerable attention in the past few
decades [1]–[3]. Due to rapid urbanization,
detecting houses plays a salient role in modern
city planning, urban monitoring, change
detection, and population estimation. Moreover,
building shape related information can provide
valuable input in engineering and risk
applications related to natural hazards (e.g.
extreme wind events, flooding, etc.). Aerial
imagery is one of the prominent data sources for
urban monitoring because it extracts various
information such as roads, trees, buildings, etc.
Although aerial imagery provides valuable
insights, extracting appropriate features from
them is a challenging task.
 On the other hand, in recent years, deep
learning models, especially Convolutional Neural
Network (CNN) based models, have become a
popular choice among the researchers for its
state-of-the-art success in image classification,
object detection, and localization tasks [4]–[7].
Faster-RCNN is a recently proposed object
detection algorithm that has achieved state of-
the-art results in ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [8], [9]. In this
work, we have utilized a faster-RCNN algorithm
to detect buildings in aerial images.

1.2 Literature Review

 In this section, we first talk about the history
the algorithm applied in this work followed by a
brief review of the prior works.

1.2.1 CNN and RCNN family of Algorithms:

 Due to the rapid developments of science and
technology (e.g., advancements in automated
vehicles, robotic navigation, and object tracking),
object detection has become a prominent field of
study. The goal of object detection is to find the
location of an object from a given image and
mark the object in an appropriate category.
However, object detection is a challenging task.
The object’s orientation, location, size, and

Towards Real-time House Detection in
Aerial Imagery Using Faster Region-based

Convolutional Neural Network

mailto:moamini@fiu.edu

altitude can vary greatly in an image, making the
task more difficult to solve. In the human visual
system, we not only see and identify an object,
we can identify multiple overlapping objects in
diverse backgrounds. Moreover, we can classify
these different objects and identify their
boundaries, differences, and relationship to one
another. However, in the field of computer vision,
CNN-based architectures are applied
successfully to solve various detection related
tasks such as face detection, pedestrian
detection and vehicle detection [10]–[14].
 The first successful CNN architecture was
developed by Yann Lecun in 1998 to recognize
handwritten digits on checks [15]. In 2012, more
than 12 years later, Alex Krizhevsky et al.
followed his path and built the famous AlexNet
algorithm that won the ImageNet challenge [16].
Since then, CNN architectures have become the
gold standard for solving computer vision tasks
and are now outperforming humans in some
scenarios.
 In 2014 Girshick et al. proposed the Regions
with CNN features (R-CNN) algorithm for object
detection, which is the first algorithm of the R-
CNN family of algorithms [17]. RCNN achieved
the mean average precision (mAP) result of
53.3% in PASCAL VOC dataset. To capture all
possible objects’ locations from a given image,
authors applied the selective search algorithm
[18]. The selective search algorithm proposes 2k
regions for an image. In Figure 1, two examples
of selective search are given where different
sized scales are used to capture all possible
objects. Each proposed region is warped to a
compatible form of 227×227 pixels and forward
propagated through the CNN architecture to
compute feature maps. Next, the Support Vector
Machine (SVM) algorithm is utilized to compute
the classification score. In the RCNN
architecture the workflow is like: an input image
is given to detect possible objects; the selective
search algorithm proposes ∼2k regions which
are forwarded to the CNN layers, and the CNN
architecture generates feature maps to detect
which objects are present in the image. To
compute the region proposal and features for
images, R-CNN requires 13 s/image on a GPU
integrated environment and 53 s/image on a
CPU based environment, which is a significantly
high computation time. Therefore, to minimize
the computation time required by RCNN, an
improved version of RCNN named Fast-RCNN
was proposed by the same author Ross Girshick
[19] in 2015.
 The Fast-RCNN model requires an input
image and a set of object proposals for its
computation. Initially, it processes the whole
image with several convolutional (conv) layers
and max-pooling layers to produce the feature
maps. Then, a fixed�length feature vector from
the feature map is extracted by the RoI pooling
layer to classify objects. Fast-RCNN is 25 times

faster than R-CNN with the test time of 2
seconds per image. Even though Fast-RCNN
significantly improved the processing time and
model’s performance, the selective search was
still the bottleneck that slowed down the overall
process. Region proposals are dependent on the
feature maps and reusing the feature maps to
generate region proposals will be cost-free.
Taking this idea into consideration, Ren et al.
developed the faster R-CNN that exceptionally
improved the overall model performance [8]. In
Figure 2, we show a faster R-CNN algorithm
where conv layers compute the feature maps
and RPN layer extracts region proposals from
the feature maps for classification. The faster R-
CNN algorithm can detect objects in real time
with the computational time of 0.2 seconds per
image.
 Figure 3 demonstrates the performance
comparison of the R-CNN architectures where
we can see that faster R-CNN reduced
processing time by 250x, whereas Fast-RCNN
had a reduction of 25x against the base case
processing time of x for R-CNN. Both faster and
Fast-RCNN maintained the same mean average
precision (mAP) score of 66.9%, where R-CNN
architecture’s mAP score was 66.0%. 1

1.2.2 Recent Works on House Detection:

 Buildings are the primary source of information
for urban planners and, many governmental and
non-governmental agencies as they provide the
holistic overview of a geographical area.
However, building detection is a challenging task
because of its complex appearance, variant
shapes, and surroundings. In the past few years,
researchers have proposed several building
extraction methods and followed various
approaches [20]–[22]. Although building
detection methods with good performance have
evolved significantly over the years, there are
still many aspects that have not been considered
and need improvements.
 Stankov et al. [23], [24] exploited the
multispectral information and applied a grayscale
hit-or-miss transform (HMT) method for building
detection. In the paper, authors transformed the
multispectral images to grayscale images in
order to apply grayscale HMT. Sirmacek et al.
[25] extracted shadow information and areas of
interest using invariant color features and utilized
edge information building detection. In [26], Ziaei
et al. presented a comparison between three
object-based models for urban feature
classification from WorldView-2 images, where
they have shown that rule-based classification
outperformed support vector machines (SVM),
and nearest neighbour (NN) algorithms. Building
extraction from Quickbird images is presented by
Lefevre et al. [27] by using an adaptive ` binary
HMT method. Authors also proposed a

1Stanford lecture notes on CNN by Fei Fei Li and Andrej
Karpathy

clustering-based approach to convert grayscale
image to binary image and to determine
operators parameters automatically. In [28],
Grinias et al. presented a novel segmentation
algorithm based on a Markov random field model
for building and road detection. To detect
changes of buildings from VHR imagery, Guo et
al. [29] presented a parameter mining approach
by introducing GIS data. For automatically
extracting and recognizing 2- D building shape
information, Sahar et al. [30] used vector parcel
geometries and their attributes to simplify the
building extraction task. Huang et al. [31]
introduced a framework for building extraction

from high-resolution imagery aiming to alleviate
Morphological Building Index (MBI) algorithm’s
limitations. Benarchid et al. [32] used shadow
information and object-based approach to
extract buildings where they first used object-
based classification to detect building and then
the invariant color features to extract shadow
information of the buildings. Based on shadow
detection, Chen et al. [33] proposed a superpixel
segmentation algorithm for splitting input image
into patches, and the Level Set segmentation
algorithms is leveraged to extract buildings for
detection.
 In this paper, we present a Faster RCNN
based deep learning model that can detect
different houses in aerial images.

Figure 1: Two examples of selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv [18].

Figure 2: Faster-RCNN architecture.

Figure 3: Performance comparison of R-CNN architectures:

R CNN, Fast-RCNN, Faster R-CNN. 1

1.3 Contribution

 Faster-RCNN is one of the promising
algorithms for object detection that has also
opened up the area of real time object detection.
In some situations, we need to extract the
building’s information in real time and our
proposed method can be a good fit for such
scenarios. It is our understanding that faster-
RCNN based house detection technique, which
paves the way for real time detection, has not
been considered in previous works. The main
contributions of this paper are listed as follows:
• House detection in aerial images leveraging

faster R-CNN algorithm that paves the way
for real time detection.

• Bounding-box information extraction and
preprocessing of the dataset to remove
inconsistent data that may hamper the
overall performance of the model.

• Demonstrate the effectiveness of data
augmentation such as random rotation,
horizontal flip and shearing to im�prove
performance and generalizability, and avoid
over-fitting.

• Demonstrate our model’s performance by
considering average precision, loss function,
prediction scores and image precision.

1.4 Organization

 The paper is organized as follows: Section II
presents the methodology of the work including
data pre-processing, data augmentation and the
house detection technique. Section III represents
experimental setup. Section IV is dedicated for
result analysis. Finally, Section V concludes the
paper.

2. PROPOSED METHOD
This section discusses data pre-processing, and
data augmentation techniques, and the
methodology used to detect houses. In Figure 4,

we show the overall architecture of our proposed
model that includes dataset generation, data
preprocessing, data augmentation, object
detection, and results afterwards.

Figure 4: Overview of methodology adopted in this study

2.1 Data pre-processing
 In our dataset, we have aerial images and
XML files containing the annotation information
of the images. XML file is an extensible markup
language file where components of the file are
described by tags, and texts in between the start
tag and end tag are the contents of the
component. From the XML files, we extract the
associated bounding-box information (for our
case its the aerial image file, xmin, ymin, xmax,
ymax and label) of each image. In the generated
dataset, we observed 37 different labels /
categories of houses where most of them are
redundant (e.g., typo and inconsistent labels).
For example the category of T shaped houses
were labelled as t shape, t-shaped, t type, type t
and t-shape which is inconsistent and it can be
minimized to one category. After analyzing 37
labels, we concluded that 37 different labels can
be minimized to only 5 categories (T shaped, L
shaped, C shaped, Rectangular shaped, and U
shaped). Moreover, we had some anomalies in
the extracted information such as xmin > xmax
or ymin > ymax. In such cases, if possible, we
exchanged min and max values without
changing the bounding-box information of an
object, otherwise we disregarded them due to
incorrect bounding boxes.

2.2 Data augmentation
 Data augmentation is a technique to artificially
expand the dataset size by marginally modifying
the original data. Data augmentation helps to
avoid overfitting and improves model’s
performance. In images data augmentation
technique is performed by flipping, random
rotation, shifting, or shearing the original image.
Deep learning is a data-hungry technique that
yields better performance with larger dataset,
avoids over-fitting, and improves the model’s
generalizability. Therefore to improve model
performance and avoid overfitting, we
augmented our dataset using horizontal flip,
random rotation with the angle value of 10
degrees, shears with the value of 0.1, and

random rotation with randomly generated angle
value. In Figure 5, we demonstrated the

augmented results after applying the data
augmentation techniques.

Figure 5: Data augmentation: 5a Horizontal flip; 5b Random rotation with 10°;5c Shear with 0.1;5d Random rotation with a random

value.

2.3 House Detection using Faster-RCNN
The most widely used state-of-the-art object
detection technique of the R-CNN family is
Faster R-CNN that was first published in 2015
[8]. In the R-CNN family of papers, the evolution
among versions is usually in terms of
computational efficiency, processing time, and
performance improvement (i.e. mAP). These
networks usually consist of
1. A region proposal algorithm to generate

“bounding boxes” or locations of possible
objects in the image.

2. A feature generation stage to obtain features
of these objects (usually using a CNN).

3. A classification layer to predict which class
an object belongs to. 4) A regression layer to
make the coordinates of the object bounding
boxes more precise.

 To generate feature maps (e.g., Figure 7),
ResNet50 is utilized in the initial stage where the
input image goes through a set of convolutional
layers, pooling layers and fully connected layers.
After generating feature maps, RPN layer which
is a small network, takes the feature map as an
input, slides over it, and outputs a set of
rectangular object proposals. Nine region
proposals (anchors) are predicted at each sliding
window location with respect to the center

(Figure 8) of the anchor associated with scales
of (128 x 128, 256 x 256, 512 x 512) and aspect
ratios of (1:1, 1:2 and 2:1) (Figure 6). A binary
class label of being an object or not an object is
assigned to each anchor for RPN training based
on the Intersection-over-Union (IoU) overlap with
the ground-truth box. An anchor is considered
positive if it has the highest IoU with any ground
truth box or is greater than 0.7. If the IoU is less
than 0.3 it is labeled as negative. The anchors
which are neither positive nor negative (greater
than 0.3 and less than 0.7) are disregarded from
the RPN training. The loss function of RPN is
defined as:

Figure 6: An example of generating 9 anchors from a single

centroids with different scales and aspect ratios.

Figure 7: Sample feature map

Here, i is the index of an anchor in a mini-batch
and pi is the predicted probability of anchor i
being an object. The ground-truth label Pi ∗ is 1 if
the anchor is positive and is 0 if the anchor is
negative. ti is a vector representing the 4
parameterized coordinates of the predicted
bounding box and ti ∗ is that of the ground-truth
box associated with a positive anchor. The
classification loss Lcls is log loss over two classes
(object vs. not object). For the regression loss,
we use Lreg(ti , ti ∗) = R(ti − ti ∗) where R is the
robust loss function (smooth L1). The term Pi
∗Lcls means the regression loss is activated only
for positive anchors Pi ∗ = 1 and is disabled
otherwise (i.e. Pi ∗ = 0). The outputs of the cls
and reg layers consist of pi and ti respectively.
The two terms are normalized by Ncls and Nreg
and weighted by a balancing parameter λ.
 For the model training, the batch size is
defined to 16 and stochastic gradient descent
(SGD) optimizer is applied with the learning rate
of 0.005, momentum of 0.9 and weight decay of
0.005.

Figure 8: Centriods of RPN.

3. EXPERIMENTAL SETUP
The entire experiment is carried out in Google
Colab environment developed by Google as a
simulation environment. The experiment

leverages Colab environment utilizing GPU
runtime settings using python as the
programming language. The deep learning
object detection classifier has been implemented
using python version 3.7.3 and the PyTorch
framework.

4. EXPERIMENTAL EVALUATION
 This section provides a brief description of the
dataset we have used for our experiments
followed by the performance evaluation of our
proposed work.

4.1 Dataset Description
 In this experiment, we explored google earth
images to detect houses of different shapes. In
Figure 9, we demonstrate the process of
creating our dataset using LabelMe [34]
annotation tool where house objects are
manually annotated in each image. The
annotation tool then generates an XML file
containing the annotated information for each
image. (Figure 11) shows the structure of a
sample xml file after completing the annotation
process and in Figure 10 we show a sample
annotated image afterwards. Finally, the
annotation files along with the associated aerial
image dataset are downloaded from the
LabelMe application for carrying out the
experiment.

Figure 9: Flowchart for dataset annotation.

Figure 10: Sample aerial image data annotated with

bounding box information. Here, r represents rectangular
shaped houses and l represents l shaped houses

Figure 11: XML file: Annotation information of images such

as shape, number, bounding-box information

4.2 Experimental results
 Object detectors performance is measured by
average precision (AP), image precision and
loss functions. In our experiment, we evaluated
our methods performance by average precision,
image precision and loss function. We defined
different number of epochs to observe the
model’s performance. In our observation, the
simulation performs better with twenty epochs. In
Figure 12, we demonstrate average precision in
different IoU thresholds: 0.50, 0.55, 0.60, 0.65,

0.70, 0.75. As the IoU threshold increases the
average precision decreases naturally.
Moreover, in Figure 13, we show the average
image precision by comparing all IoU thresholds.
From Figure 13, we can see that image precision
increases moderately for 20 epochs. In Figure
14, we show the loss function against the
number of iterations where we observe that after
400 iterations with twenty epochs the loss
function is converged. The equations for
calculating precision, average precision are
discussed in the followings where tp = True
positive; fp = False positive; tn = True negative; fn
= False negative.

4.2.1 Intersection over union (IoU)
 IoU measures the overlap between 2
boundaries. We use that to measure how much
our predicted boundary overlaps with the ground
truth. In our dataset, we defined various IoU
threshold r ∈ {0.5, ..., 0.75} in classifying whether
the prediction is a true or a false positive.
Intersection over Union (IoU) for comparing
similarity between the ground-truth and predicted
shapes A, B ⊆ S ∈ Rn is attained by equation 3.

4.2.2 Interpolated precision
 The interpolated precision, pinterp, is calculated
at each recall level, r, by taking the maximum
precision measured for that r. The formula is
given as such:

 In our experiment an average for the 6-point
interpolated average precision (AP) is
calculated. And the formula to calculate the AP
is attained by:

Figure 12: Average precision

Figure 13: Image precision

Figure 14: Loss function.

5. CONCLUSION AND FUTURE WORKS
 House detection is a fundamental but
challenging issue in the field of aerial and
satellite image analysis. It provides valuable
information in different domains including civil
engineering, urbanization, and modern city
planning. During the last few years, considerable
efforts have been made to develop various
methods for detecting houses in aerial images.
In this paper, we present a Faster-RCNN based
house detection method that achieved a
satisfactory result. Our proposed method can be
utilized in real time object/house detection
scenarios. A wide range of ensembles of faster
RCNN is being utilized in various contexts such
as pedestrian detection, vehicle detection, and
face detection. In this experiment, we have
leveraged pretrained resnet-50 model to detect
houses in aerial images. A performance
comparison of various models, such as VGG19,
SeNet, GoogleNet, MobileNetV2, DenseNet201,
and InceptionResNetV2, is important for both
application and academic purposes and thus
remains an integral part of our future research.

ACKNOWLEDGMENT
 In this work, we have leveraged faster RCNN
algorithm and carried out the experiment in
Google Colab environment. We are thankful to
both communities. We also acknowledge the
resources and support of Sustainability,
Optimization, and Learning for InterDependent
networks laboratory (solid lab) at Knight
Foundation School of Computing and
Information Sciences (KFSCIS), Florida
International University (www.solidlab.network).
We also acknowledge the effort of Divya Saxena
from the KFSCIS, FIU, funded by NSF grant
CNS-2018611 at the FIU High Performance
Database Research Center.
 This work was partially supported by the
Graduate Assistantships in Areas of National
Need (GAANN) fellowship from the Department
of Education grant P200A210087.

DECLARATION OF COMPETING INTEREST
Authors declare no conflict of interest.

REFERENCES
[1] S. Zou and L. Wang, “Detecting individual

abandoned houses from google street view: A
hierarchical deep learning approach,” ISPRS
Journal of Photogrammetry and Remote Sensing,
vol. 175, pp. 298– 310, 2021.

[2] S. Law, B. Paige, and C. Russell, “Take a look
around: using street view and satellite images to
estimate house prices,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol.
10, no. 5, pp. 1–19, 2019.

[3] J. A. Tullis and J. R. Jensen, “Expert system house
detection in high spatial resolution imagery using
size, shape, and context,” Geocarto International,
vol. 18, no. 1, pp. 5–15, 2003.

http://www.solidlab.network/

[4] W. Rawat and Z. Wang, “Deep convolutional neural
networks for image classification: A
comprehensive review,” Neural computation, vol.
29, no. 9, pp. 2352–2449, 2017.

[5] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object
detection with deep learning: A review,” IEEE
transactions on neural networks and learning
systems, vol. 30, no. 11, pp. 3212–3232, 2019.

[6] X. Wu, D. Sahoo, and S. C. Hoi, “Recent advances
in deep learning for object detection,”
Neurocomputing, vol. 396, pp. 39–64, 2020.

[7] K. M. Ahmed, T. Eslami, F. Saeed, and M. H.
Amini, “Deepcovidnet: Deep convolutional neural
network for covid-19 detection from chest
radiographic images,” in 2021 IEEE International
Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 2021, pp. 1703–1710.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-
cnn: Towards real-time object detection with region
proposal networks,” arXiv preprint
arXiv:1506.01497, 2015.

[9] “ImageNet Large Scale Visual Recognition
Challenge 2016 Results (ILSVRC2016),”
http://www.image-
Net.org/challenges/LSVRC/2016/results, [Online;
accessed 06-April-2021].

[10] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang,
“Unitbox: An advanced object detection network,”
in Proceedings of the 24th ACM international
conference on Multimedia, 2016, pp. 516–520.

[11] S. S. Farfade, M. J. Saberian, and L.-J. Li, “Multi-
view face detection using deep convolutional
neural networks,” in Proceedings of the 5th ACM
on International Conference on Multimedia
Retrieval, 2015, pp. 643–650.

[12] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “From
facial parts responses to face detection: A deep
learning approach,” in Proceedings of the IEEE
international conference on computer vision, 2015,
pp. 3676–3684.

[13] Z. Jiang and D. Q. Huynh, “Multiple pedestrian
tracking from monocular videos in an interacting
multiple model framework,” IEEE transactions on
image processing, vol. 27, no. 3, pp. 1361–1375,
2017.

[14] D. M. Gavrila and S. Munder, “Multi-cue pedestrian
detection and tracking from a moving vehicle,”
International journal of computer vision, vol. 73, no.
1, pp. 41–59, 2007.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278–2324, 1998.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“Imagenet classification with deep convolutional
neural networks,” Advances in neural information
processing systems, vol. 25, pp. 1097–1105, 2012.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik,
“Rich feature hierarchies for accurate object
detection and semantic segmentation,” in
Proceedings of the IEEE conference on computer
vision and pattern recognition, 2014, pp. 580–587.

[18] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and
A. W. Smeulders, “Selective search for object
recognition,” International journal of computer
vision, vol. 104, no. 2, pp. 154–171, 2013.

[19] R. Girshick, “Fast r-cnn,” in Proceedings of the
IEEE international conference on computer vision,
2015, pp. 1440–1448.

[20] D. A. Yudin, V. Adeshkin, A. V. Dolzhenko, A.
Polyakov, and A. E. Naumov, “Roof defect
segmentation on aerial images using neural
networks,” in International Conference on
Neuroinformatics. Springer, 2020, pp. 175–183.

[21] H. Miura, T. Aridome, and M. Matsuoka, “Deep
learning-based identification of collapsed, non-
collapsed and blue tarp-covered buildings from

post-disaster aerial images,” Remote Sensing, vol.
12, no. 12, p. 1924, 2020.

[22] A. D. Schlosser, G. Szabo, L. Bertalan, Z. Varga,
P. Enyedi, and S. Szabo, “Building extraction using
orthophotos and dense point cloud ´ derived from
visual band aerial imagery based on machine
learning and segmentation,” Remote Sensing, vol.
12, no. 15, p. 2397, 2020.

[23] K. Stankov and D.-C. He, “Building detection in
very high spatial resolution multispectral images
using the hit-or-miss transform,” IEEE Geoscience
and Remote Sensing Letters, vol. 10, no. 1, pp.
86–90, 2012.

[24] ——, “Detection of buildings in multispectral very
high spatial resolution images using the
percentage occupancy hit-or-miss transform,”
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 7, no. 10,
pp. 4069–4080, 2014.

[25] B. Sirmacek and C. Unsalan, “Building detection
from aerial images using invariant color features
and shadow information,” in 2008 23rd
International Symposium on Computer and
Information Sciences. IEEE, 2008, pp. 1–5.

[26] Z. Ziaei, B. Pradhan, and S. B. Mansor, “A rule-
based parameter aided with object-based
classification approach for extraction of building
and roads from worldview-2 images,” Geocarto
International, vol. 29, no. 5, pp. 554–569, 2014.

[27] S. Lefevre, J. Weber, and D. Sheeren, “Automatic
building extraction ` in vhr images using advanced
morphological operators,” in 2007 Urban Remote
Sensing Joint Event. IEEE, 2007, pp. 1–5.

[28] I. Grinias, C. Panagiotakis, and G. Tziritas, “Mrf-
based segmentation and unsupervised
classification for building and road detection in
peri�urban areas of high-resolution satellite
images,” ISPRS journal of photogrammetry and
remote sensing, vol. 122, pp. 145–166, 2016.

[29] Z. Guo and S. Du, “Mining parameter information
for building extraction and change detection with
very high-resolution imagery and gis data,”
GIScience & Remote Sensing, vol. 54, no. 1, pp.
38–63, 2017.

[30] L. Sahar, S. Muthukumar, and S. P. French, “Using
aerial imagery and gis in automated building
footprint extraction and shape recognition for
earthquake risk assessment of urban inventories,”
IEEE Transactions on Geoscience and Remote
Sensing, vol. 48, no. 9, pp. 3511–3520, 2010.

[31] X. Huang and L. Zhang, “Morphological
building/shadow index for building extraction from
high-resolution imagery over urban areas,” IEEE
Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 5, no. 1,
pp. 161–172, 2011.

[32] O. Benarchid, N. Raissouni, S. El Adib, A. Abbous,
A. Azyat, N. B. Achhab, M. Lahraoua, and A.
Chahboun, “Building extraction using object-based
classification and shadow information in very high
reso�lution multispectral images, a case study:
Tetuan, morocco,” Canadian Journal on Image
Processing and Computer Vision, vol. 4, no. 1, pp.
1–8, 2013.

[33] D. Chen, S. Shang, and C. Wu, “Shadow-based
building detection and segmentation in high-
resolution remote sensing image.” journal of
multimedia, vol. 9, no. 1, pp. 181–188, 2014.

[34] “LabelMe, the open annotation tool,”
http://labelme.csail.mit.edu/Release3.0/, accessed:
2021-11-10

	1. A Latent Variable Based Approach for Exploring Geographic Datasets.8pp
	2. Crime-avoiding Routing Navigation.11pp
	1. Introduction
	2. Methodology
	Availability of data and materials
	Competing interests
	Funding
	Authors’ contributions
	Acknowledgment
	REFERENCES
	3. Integrating Location Information as Geohash Codes in Convolutional Neural Network-Based Satellite Image Classification.7pp
	4. Spatiotemporal Model of Real Estate Valuation Trends.15pp
	1. Background
	2. The Present Method
	3. Pseudo-code
	4. Alternative Model with Contract-pending Dates
	5. Hierarchy of Locales
	6. Statistical Aggregators and Outliers
	7. Prototype Deployment
	Authors’ contributions
	Acknowledgment
	REFERENCES
	5. Towards Real-time House Detection in Aerial Imagery Using Faster Region-based Convolutional Neural Network.9pp
	1. Introduction
	1.1 Motivation
	1.2 Literature Review
	1.2.1 CNN and RCNN family of Algorithms:
	1.2.2 Recent Works on House Detection:

	1.3 Contribution
	1.4 Organization

	2. Proposed Method
	2.1 Data pre-processing
	2.2 Data augmentation
	2.3 House Detection using Faster-RCNN

	3. Experimental Setup
	4. EXPERIMENTAL EVALUATION
	4.1 Dataset Description
	4.2 Experimental results
	4.2.1 Intersection over union (IoU)
	4.2.2 Interpolated precision

	5. Conclusion And Future Works
	Acknowledgment
	Declaration Of Competing Interest
	References

