A Recommendation Method for Garage Parking

Dr. Oliver Ullrich, 2015
Goals, Motivations, Challenges
Background & Related Research

Cruising for parking:

› Approx. 30% of all traffic in inner cities¹
› Avg. 8 minutes to find parking¹
Background & Related Research

Cruising for parking:
› Approx. 30% of all traffic in inner cities\(^1\)
› Avg. 8 minutes to find parking\(^1\)

Parking information systems:
› Several systems available: SFPark\(^2\), ParkMe\(^3\), ParkingPanda\(^4\), ParkMate\(^5\), ...
› Have smart-phone app as major component
› Main weaknesses:
 › Assume high adoption rate
 › Assume special electronic sensor systems in/at each parking spot
Our Approach: Goals and Pre-requisites

Goals:

› Recommend best available parking in controlled access garages
› No sensors at individual spots
› No assumption of high adoption
Our Approach: Goals and Pre-requisites

Goals:
› Recommend best available parking in controlled access garages
› No sensors at individual spots
› No assumption of high adoption

Pre-requisites:
› Data collection:
 › Camera/license plate reader at entry and exit lanes
 › Optional data from CCTV, mobile license plate readers, additional counters, etc.
› Recommendation:
 › Computer screen at entry lanes
 › Smart-phone app (or embedded front-end module)
Our Approach: How Do Garages Fill Up?

\[c(a_{i1}) \geq c(a_{i2}) \geq \ldots \geq c(a_{in}) \]
Our Approach: Basic Method

Car is registered in entry lane6,7:

› Can driver be reached (by screen or smart-phone app)?
› A. Yes – “Park in the most attractive area with ratio of $\frac{\text{estimated number of occupied spots}}{\text{total number of spots}} \leq h$!”
Our Approach: Basic Method

Car is registered in entry lane⁶,⁷:

› Can driver be reached (by screen or smart-phone app)?
› A. Yes – “Park in the most attractive area with ratio of \(\frac{\text{estimated number of occupied spots}}{\text{total number of spots}} \leq h \)!”
› Does driver follow recommendation (probability \(0 \leq p \leq 1 \))?
› A.1. Yes – Increase number of cars in recommended area
Our Approach: Basic Method

Car is registered in entry lane⁶,⁷:

› Can driver be reached (by screen or smart-phone app)?
 › A. Yes – “Park in the most attractive area with ratio of \(\frac{\text{estimated number of occupied spots}}{\text{total number of spots}} \leq h \)."

 › Does driver follow recommendation (probability \(0 \leq p_f \leq 1 \))?
 › A.1. Yes – Increase number of cars in recommended area
 › A.2. No – Two options (\(0 \leq p_c \leq 1 \)):
 › A.2.A – Driver does not trust or understand system and starts cruising
 › A.2.B – Driver’s order of attractiveness diverges widely from assumed order
 → Driver simply does not want to park at the recommended area
Our Approach: Basic Method

Car is registered in entry lane6,7:

\begin{itemize}
 \item Can driver be reached (by screen or smart-phone app)?
 \item A. Yes – “Park in the most attractive area with ratio of \(\frac{\text{estimated number of occupied spots}}{\text{total number of spots}} \leq h \)!”
 \item Does driver follow recommendation (probability \(0 \leq p_f \leq 1 \))?
 \begin{itemize}
 \item A.1. Yes – Increase number of cars in recommended area
 \item A.2. No – Two options (\(0 \leq p_c \leq 1 \)):
 \begin{itemize}
 \item A.2.A – Driver does not trust or understand system and starts cruising
 \item A.2.B – Driver’s order of attractiveness diverges widely from assumed order
 \rightarrow Driver simply does not want to park at the recommended area
 \end{itemize}
 \end{itemize}
 \item B. No – Similar procedure as in A.2
\end{itemize}
Our Approach: Basic Method

Car is registered in entry lane6,7:

\begin{itemize}
 \item Can driver be reached (by screen or smart-phone app)?
 \item A. Yes – "Park in the most attractive area with ratio of \(\frac{\text{estimated number of occupied spots}}{\text{total number of spots}} \leq h \) !"
 \begin{itemize}
 \item Does driver follow recommendation (probability \(0 \leq p_f \leq 1 \))?
 \begin{itemize}
 \item A.1. Yes – Increase number of cars in recommended area
 \item A.2. No – Two options (\(0 < p_c \leq 1 \)):
 \begin{itemize}
 \item A.2.A – Driver does not trust or understand system and starts cruising
 \item A.2.B – Driver’s order of attractiveness diverges widely from assumed order
 \(\rightarrow \) Driver simply does not want to park at the recommended area
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \item B. No – Similar procedure as in A.2
\end{itemize}

Car is registered in exit lane6,7:

\begin{itemize}
 \item Car is discharged from estimated parking position
 \item Estimated number of occupied spots in that area is decreased
\end{itemize}
Our Approach: What will it look like?

Smartphone app
Real-time and predictive parking recommendations
Summary

- Searching for parking a major waste of time
- Proposed research: Recommend best available parking in controlled access parking garages
 - Via smart-phone app or computer screen
 - Not an exact method, stochastic model
- Competitive advantages:
 - No sensors at each parking spot
 - Beneficial from first user on
Milestones & Deliverables:
› Core research – 6 months
› Demonstration – 3 months
› Report/paper – 3 months

Budget:
› Faculty time – $20,000
› Student time – $25,000
› Equipment, supplies, travel – $5,000
› Total: $50,000
END – THANK YOU
References

